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Abstract: Increasing the efficiency of the solar energy harvesting system is an urgent need in light
of the climate changes we live in nowadays. The most significant data to be processed in the
photovoltaic harvesters are the curve of solar radiation intensity to achieve the maximum benefits of
the solar incident light. This processing contains complicated procedures, and the used algorithms are
also high computational power-consuming which makes using special software and high potential
hardware essential requirements. An explanation of the Minimum Energy Effect method is presented
in this article. Our proposed algorithm uses this method to provide a simple and high-accuracy
mathematical tool for generating a simple alternative curve instead of the complicated original
nonlinear curve of solar radiation intensity. The produced curve is suitable for further operations,
such as derivatives, integrals, or even simple addition/subtraction. Our algorithm provides a gradual
procedure to find an optimum solution of the equation system, unlike the iterative methods. In
addition, the results of analyzing the effect of time-division density showed the relationship between
the speed of solving the task and the accuracy of results.

Keywords: solar energy; numerical methods; Minimum Energy Effect

1. Introduction
1.1. Generally on Solar Insolation

There are currently a number of ways and technologies for using solar energy. In this
study, we will focus only on those that come into consideration in terrestrial conditions.
One large category is the direct use of the thermal energy of solar radiation falling on
the Earth’s surface for heating (usually water as an accumulation medium, but also, for
example, cooking surfaces) or drying (linen, agricultural products, seawater in salt mining),
or lighting areas below the surface or inside buildings using different types of light guides.
The second group is the photovoltaic conversion of solar energy into electricity, usually in
conjunction with battery storage (either local or central).

Limiting factors for photovoltaics include the following:

• Costly construction;
• Relatively low efficiency;
• Limited service life;
• Environmental issues associated with subsequent disposal;
• Usability depending on geographical location (especially latitude);
• Unstable output power in connection with the pollution of panels, but especially with

weather conditions (clouds and precipitation, air pollution of natural origin, and due
to human activity).

Photovoltaics is the most important area in the use of solar irradiation/insolation
data on the Earth’s surface. Operators of individual power plants and the entire energy
system are usually primarily interested in the forecast so that they are able to respond
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well in advance to expected fluctuations in the generated power [1]. An example of
a service that provides such predictions is Solcast [2]. Different models use, for example,
curve approximations [3–5] or neural networks [6,7]. Historical measurement data from
meteorological stations and satellites are then used for verification.

1.2. Processing of Solar Data

The authors use splice interpolation to set an interval in the solar radiation curve;
then, they use the Discrete-Calculus Technique to calculate the space under the curve
in the specified interval [8]. The shape produced by this method is a trapezoid, so the
corresponding method for calculation is used, and the obtained area is multiplied by solar
panel efficiency to get the equivalent output electrical energy [8].

In [9], the authors used a data set of the global solar irradiance in a specific location
on the Earth to calculate the solar power generated by solar panels. They calculated the
average of the mean hourly solar irradiance.

The authors in [10] used a PV panel connected through a 50-ohm resistor for compari-
son between the output pattern and the open-circuit voltage. Then they used MATLAB
to derive an equation from the insolation data collected from the solar lab and the PV
output voltage. The obtained equation gave a regression analysis of 98.9%, which is highly
accurate for the calculation of insolation.

The authors used a statistical representation to analyze the insolation graph, which is
presented by the means of average and the standard deviation. First, they obtained the
irradiation data from meteorological stations; then, they calculated the monthly average of
the solar source and the intermediate monthly means for each selected year [11].

In [12], the authors used the D10 wavelets method to analyze the solar radiation
data collected at Universiti Teknologi PETRONAS (UTP). The basic equation contains
an approximation coefficient, a detail coefficient, a low-pass filter, and a high-pass filter.
Then a threshold equation was used to define the global threshold value because it is
important to choose the proper threshold value for solar radiation data processing. The
authors dropped the value of the reflected solar radiation because it was small compared
to the value of the direct solar radiation.

A data fitting method to apply smoothing and filtering operation to the collected
global solar radiation data was used in [13]. The authors experiment with several degrees
of polynomial curve fitting and calculate the RMSE (root-mean-square error) and R-squared
(the coefficient of determination), which present the quality of data fitting. Then, a math-
ematical model was presented to predict the missing data, being based on the quadratic
polynomial fitting.

Machine learning regression algorithms to analyze solar irradiation, which was the
Gaussian process regression (GPR), are presented in [14]. Their contribution consists in
using the time domain in their model because the previous machine learning models were
using just the spatial domain; thanks to that, the computational efficiency of the model has
been improved.

Typical applications have also been presented in [15], where the authors used mean
and standard deviation on the insolation to find the optimal size of a photovoltaic battery
system. In [16], the authors used a new algorithm to analyze the insolation and optimize the
most important statistic in the insolation data by using a neural network for applications
of Building Integrated Photo Voltaic (BIPV).

1.3. An Overview of Numerical Methods for Solving Solar “Field” Distributions

Numerical methods for solving technical problems can be categorized according to
many (often inconsistent) criteria. For the research we are presenting in this article, the
concentration (or vice versa: distribution) of the parameters of the investigated events
is an important factor. When concentrating parameters in the “center of gravity” of the
whole task—or its part—we get into the domain of equivalent circuits. Here, solutions are
sought by computer simulations, and the results are very often presented as a function
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of time. Typical examples of such simulations are [17] where a photovoltaic harvester
equivalent circuit, quartz piezoelectric harvester equivalent circuit, equivalent circuit of
an electromagnetic force harvester, etc., are presented.

The importance of simulations based on the principle of equivalent circuits certainly
cannot be questioned. It is a powerful tool available to technicians and scientists. Neverthe-
less, our approach is focused on simulations of events distributed in “space” and “time”.
These can be characterized as field resolution methods. That is why the next part of this
section will focus on a more detailed overview of how methods analyzing the distribution
of fields in the energy harvesting (EH) area are applied.

The basic and historically oldest numerical method based on differential calculus (and
subsequent development over the Taylor series) is the Finite Difference Method (FDM).
Countless examples can be found of using this method in the field of EH. A typical example
may be [18] where, like many others (e.g., [19,20]), the authors deal with the analysis of
piezoelectric systems.

The Finite Element Method (FEM) is also an extremely widespread method. It is
undoubtedly possible to declare this method to be the most frequently used today. Its
principles are sufficiently clearly described in [21]. The penetration of FEM into the EH
area is well illustrated by more than 530,000 records offered by one of the major web search
engines. The most cited articles include [22–24]. However, it should be noted here that
the research of these authors is directed to the field of chemistry rather than to electrical
engineering or electronics. A typical example of the FEM application in the field of electrical
engineering is [25]. The authors of the article analyzed the piezoelectric harvester. The
responses of piezoelectric actuators were analyzed by FEM in [26]. Special application
of an energy harvester device was analyzed in [27]. The issues of solar radiation were
discussed in [28].

In addition to the above two methods of solving arrays, it is advisable to add a third
one: Boundary Element Method. This, unlike the former two, is based on integration
principles. The required mathematical complexity of the method ranks it among the least
used. The method is in principle, particularly suitable for open-type tasks [29,30]. Quite
often, this method is used in a combined mode with FEM [31].

All three of the above methods are robust and computationally intensive. The further
use of the results (postprocessing) provided by these methods is also complicated as the
used software solutions are closed.

The numerical reconstruction of the solar radiation intensity curve was dealt with
in [32] (including its theoretical analysis) or [33] (design of the solar simulator). The authors
rather analyzed the effect of altitude on solar radiation, including altitudes corresponding
to Low Earth Orbit (LEO) for satellites. In [34], the numerical simulation was focused
on the analysis of solar radiation for the purpose of identifying possible heat or sound
sources. The vast majority of articles published in this field focus on the technologies for or
ecological properties of solar cells. An overview article summarizing the situation in the
area is [35].

1.4. Motivation

Relatively extensive research by many authors is linked to the processing of solar
radiation intensity (a general overview, including the methods used, is provided above).
With respect to the stated goals, these authors used various more or less sophisticated
mathematical methods and operations to process the curves of solar radiation—from
the analytical calculation (see Section 2), which is relatively complex due to multiple
nonlinearities, to the various statistically-based interpretations of the individual parts
of the curve. Our objective was to provide these authors with another tool that will
be mathematically simple, and which will replace—with high accuracy—the original
nonlinear curve of solar radiation intensity with a curve that will be more suitable for
further processing. Due to the partial linearization of the curve, the subsequent use of the
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data provided by us is relatively simple. This applies to practically all required operations,
such as derivatives, integrals, or even simple addition/subtraction.

1.5. Structure of the Article

The structure of the article is as follows.
Section 1: Introduction: an overview of the current state in the field of solar energy

with special regard to the further processing of the curve of solar radiation intensity.
An overview of numerical methods commonly used in the field.

Section 2: Introduction to the Minimum Energy Effect method.
Section 3: Introduction to the basic mathematical apparatus used in analytical calcula-

tions of solar radiation intensity.
Section 4: Application of the Minimum Energy Effect method to the field of solar

radiation intensity analysis. Quadratization of the function (Section 4.1). Division of the
quadratization region into three time periods (Section 4.2). Design of an algorithm for
solving the problem divided into several elements (Section 4.3).

Section 5: A case study of the MEE application for a specific day of the year and for
a specific location on the surface of the Earth.

Section 6: Discussion on results that we have achieved and challenges for future work.
Section 7: Conclusions.

2. Minimum Energy Effect

Many different simulation tools and computer-aided design software products are
currently available to technicians and designers. Some of them are focused on real-time
simulations, where computer software evaluates data based on a mathematical model.
A characteristic feature of this type of simulation is that it is possible to enter into ongoing
calculations and change some of the input variables. Sufficient computing capacity then
provides calculations of the system response in real-time. A typical example of this logic is
the MATLAB-Simulink software. These are mostly 1D problems—mainly from the point of
view of the dependence of the investigated quantities on time.

On the other hand, there are software simulation products that are based on different
physical interpretations of the problem. Here we usually talk about solving fields (for
example, electromagnetic ones). In general, the currently available computing capacity
for simulation does not allow real-time calculations of this type to be performed. Typical
representatives are, for example, the Boundary Element Method (a method based on
transforming a problem through integral calculus), the Finite Element Method (based on
differential calculus), or the Finite Difference Method (based on the differential calculus of
Taylor expansion). All these methods have one thing in common: they look for the optimal
solution for the distribution of fields in the area of interest and offer the solution that best
meets the initial conditions of the task on average. The popular least squares method,
which minimizes the sums of the squares of the deviations of the proposed solution from
the assignment, behaves similarly in this respect.

A completely different principle applies to the often-neglected method of Minimum
Energy Effect (MEE). The principles of this method were described, for example, by Richard
Feynman in [36]. Feynman illustrated the reformulation of the physical interpretation of
the problem using the example of a circle: the mathematical definition of a circle is clearly
given—it is a set of points in a plane, the distance of which from the center point is constant.
The reformulation of the problem into the optimization plane consists of the definition of
a circle so that it is a “curve” of a given (understand: constant) length, which has the task
of encircling the maximum area.

According to [36], the distribution of a physical field (electromagnetic, gravitational,
etc.) will always be such that it meets the condition of minimum energy. However, the
concept of minimum energy is often used incorrectly, as it does not concern energies
from the physical point of view. Therefore, we will call this condition the energy effect,
and the method based on it is the Minimum Energy Effect method. A specific example
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is demonstrated in [36], focusing on the motion of a body in the gravitational field of
the Earth.

Feynmann’s Approach to the Problem

In his lectures on physics, Feynman focused on motion in the gravitational field of the
Earth. Feynman processed the kinetic (Wk) and potential (Wp) energy of motion in such
a way of evaluating its difference Wdiff [36]:

Wdi f f = Wk −Wp =
1
2

m
(

dh
dt

)2
−mgh. (1)

In this step, it is important to note that the mass m occurs in both members of the
difference. Therefore, its value does not play a role in finding the extreme (minimum or
maximum) of the investigated function.

According to [36], an important element is the effect S of the differential energy Wdiff
in the time interval from t1 (start time of the event) to t2 (end time of the event) [37]:

S =
∫ t2

t1

[
1
2

m
(

dh
dt

)2
−mgh

]
dt. (2)

The analytical solution of this integral is [37]:

S = m
[

1
2

v2
0t− gv0t2 +

1
3

g2t3
]t1

t0

. (3)

After substituting specific values, the value of the energy effect is obtained. What is
important is the fact that this value is minimal for the actual curve of the physical process.
The effect of energy intensity (the principle of the least action) will logically manifest itself
in such a way that in any other curve of the investigated event (i.e., in this case, the path of
movement, would be other, different from the real one), the value of the energy effect will
be higher. At the same time, the greater the deviation from the original function, the greater
the value of the energy effect. We will also use this principle in the numerical reconstruction
of the investigated curve. Instead of the original quadratic function, we will use linear
functions, which are simpler and less demanding for possible further processing. This
means that if we use a linear approximation, the subsequent mathematical operations (such
as integrals or derivatives) can be replaced by the operations of multiplication (division)
and addition (subtraction) that are time-saving and more suitable for digital computational
techniques. The main point of this method is that the optimization of linear (or any other)
replacement of the original event is possible without knowledge of the original course of
the sought quantity, i.e., without knowledge of the global minimum value of the energy
effect. We get a typical example of an optimization task: finding a new global or local
minimum for several variables. Given the theory presented in Section 4.3 of this article, it is
also possible to circumvent this step and significantly simplify the calculation procedures.

A detailed analysis of the characteristic properties of the Method is presented in [37].
The situation is illustrated in Figure 1, where three points are defined:

• A: time t0, height h0
• B: time t2, height h2

The coordinates of these two points (t0, h0; t2, h2) are clearly given—these are the
boundary conditions of the task. Let us define a single internal point C, which we place on
the time axis to the value t1:

• C: time t1

Our task is to find the optimal value of h1 for point C. It is obvious that the time axis
is divided into two intervals (elements): <t0, t1> and <t1, t2>. At each of these intervals, the
required linear approximation is expressed as follows:
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• h{int.1} = e1t + f1 for t belonging to <t0, t1>
• h{int.2} = e2t + f2 for t belonging to <t1, t2>

At the same time, for reasons of physical continuity of the sought quantity, it is
h{int.1} = h{int.2} for t = t1.

The energy effect for linear waveforms in combination with Equation (2) is expressed as:

S = m
[

1
2

e2
1t− 1

2
ge1t2 − g f1t

]t1

t0

+ m
[

1
2

e2
2t− 1

2
ge2t2 − gd f2t

]tn

t0

. (4)

1 

 

 

 

Figure 1. General principles of the Minimum Energy Effect method.

Through a detailed analysis of the described event, the authors concluded in [37]
that the method of Minimum Energy Effect tends to reconstruct the value of the original
quantity at the selected point. This means that when moving point C up or down, the
value of the energy effect is always higher than it would be if the height of point C was
set to the original (blue) curve. From the mathematical and system point of view, this
is a very interesting fact, which will be used to present a possible scenario for mapping
the curve with divisions on a larger number of time intervals (elements), which bypasses
computationally intensive optimization of a problem with a large number of degrees of
freedom (see Section 4.3).

3. Analytical Calculation of Solar Radiation

The basic tool for assessing the usability of solar energy are well-known relationships
for calculating the intensity of solar radiation falling on the Earth’s surface. If we neglect
disturbing influences (typically current atmospheric conditions or reflections and shading
caused by surrounding objects), we must take into account only latitude (or longitude if
we want to work with local time) and the day of the year. Furthermore, we can assume the
ideal impact of solar radiation is always perpendicular to the measured area, regardless of
the angular height of the Sun above the horizon (zenith angle) and the slope of the terrain
or other ground (for example, when using automatic positioning of the solar panel).

The fundamental analytical formula expressing the whole daily extraterrestrial radia-
tion from the sunrise to the sunset is as follows [38]:

Io =
24
π

Isc

[
1 + 0.033 cos

(
360n
365

)][
cos L cos δ cos hs +

(
2πhs

360

)
sin L sin δ

]
, (5)
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where:
ISC the solar constant (1353 ± 21) [W/m2];
n the day of the year that counts from 1 January;
L local latitude;
δ declination;
hs the time of sunrise (sunset) beyond the horizon.
On the other hand, there exist already implemented solutions that transform Equation (5)

as well as other necessary equations from [38] to the required insolation waveforms. One
of the solutions can be found on the website [39]. Here, after entering the input conditions
(latitude, day of the year, etc.), it is possible to obtain not only a graphical representation of
the ideal curve of insolation but also tabular data for individual parts of the day in sufficient
resolution. These materials served as input data for subsequent numerical solutions.

4. Application of the MEE to Solar Insolation Analysis
4.1. Partial Quadratization

In order to be able to use the MEE method in the field of insolation analysis, it is nec-
essary to look for the shape similarity of the waveforms with those presented in Section 2.
The similarity with the quadratic function is obvious here, but the theoretical nature of the
curves is completely different (see Section 3). The question is, what is the degree of similar-
ity between these curves? For this reason, we sought suitable approximations of insolation
curves through a trend line. The analysis was not performed for each day of the year—we
selected days number 35 (4 February), 80 (21 March), 126 (6 May), 172 (21 June), 219 (7 Au-
gust), 266 (23 September), 310 (6 November), 355 (21 December). Due to their distribution
in the calendar year, they sufficiently represent all seasons and relevant possible states. In
Figure 2, it is possible to compare the original distribution of insolation intensity (bold blue
curve) with the approximation (thin curve) for a specific day No. 126 (6 May). The points
of the curve correspond to the values of insolation according [39]. Figure 2 is completed
with real measured data (red curve) provided by the Czech Hydrometeorological Institute;
however, due to the actual weather conditions, day 131 (measured in 2015) is represented
in the illustration. It should be noted here that although this approximation led for some
days to a relatively high value of reliability R2 (in this case, R2 = 0.967 for day No. 35), this
is not the case for all days of the year. For some days, this value decreased to 0.93, and
similar values (specific values of R2 for such an approximation are provided in Table 1).
Therefore, this form of this step is not applicable universally to the subsequent procedure.
We decided to improve the accuracy of the approximation (the criterion is the value of the
reliability coefficient R2) by dividing each day into three intervals:

1. from sunrise to 9:00 a.m.;
2. from 9:00 a.m. to 3:00 p.m.;
3. from 15:00 p.m. to sunset.

Table 1. Reliability coefficient values for the sunrise–sunset approximation.

Day
R2 Whole Day R2 for Three Daily Intervals

Sunrise–Sunset Sunrise–9:00 9:00–15:00 15:00–Sunset

Day35 0.96698216 0.99987956 0.99438629 0.99987956
Day80 0.94087229 0.99629058 0.99789852 0.99629058
Day126 0.93315426 0.99188302 0.99910400 0.99188302
Day172 0.93689507 0.99162372 0.99927887 0.99162372
Day219 0.93501843 0.99202784 0.99908987 0.99202784
Day266 0.94193598 0.99646385 0.99783519 0.99646385
Day310 0.96693848 0.99989190 0.99433739 0.99989190
Day355 0.98107886 0.99993787 0.99086938 0.99993787

Note: The reliability coefficient R2 states how many percent of the variance is explained by the approximation and
how many is not. For example, at a value of R2 equal to 0.99, it means that 99% of the variance of the investigated
quantity falls within the applied approximation.
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Figure 2. Original waveform of insolation and its quadratic approximation.

For each of the three intervals, it is possible to approximate a concave quadratic
function in the following form:

f (x) = ax2 + bx + c. (6)

Another possible problem is the unidirectional component in a given course, both in
the direction of the x-axis and in the direction of the y-axis. This problem can be evaded
by defining a new relative coordinate system with the center at a point corresponding to
sunrise, or more precisely, the first non-zero value of solar radiation intensity. An example
of such offset is shown in Figure 3. By setting this point to the beginning of the coordinate
system, Equation (6) is simplified to the form:

f (x) = a1x2 + b1x, (7)

which is equivalent to the equations provided in [36]. We must always keep in mind
that—from the point of view of accuracy—it is more advantageous to divide the day into
three independent intervals and to find the numerical solution of the equation virtually
independently of each of these intervals.

4.2. Application to Insolation Curve

As described in Section 4.1, there are two procedures for solving the problem:

(A) A universal solution covering the period from sunrise to sunset:
(B) The solution by dividing the period of sunshine into three intervals.

The procedure (A) is seemingly simpler; on the other hand, the inaccuracy of the
quadratic approximation (R2 ranging from 0.93 to 0.98) of the solved curve can lead to
local inaccuracies, which can fundamentally affect the results of the analysis. Therefore,
we preferred procedure (B), i.e., dividing the approximated curves into three intervals.
Here, the value of R2 was always higher than 0.99, so the approximation can be considered
sufficiently accurate. The complexity of applying the mathematical apparatus to the type
of problem formulated in this way consists in the fact that it is necessary to determine the
parameters a1 and b1 in Equation (7) for essentially each interval. In principle, it is then
possible to search for a numerical solution for each of the three intervals independently
of each other and thus reduce the complexity of the algorithm used. Each interval is
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approached so that the curve is shifted (see Figure 3 in Section 4.1) to the origin of the
coordinate system (the “DC” component of the waveform is always zero). 

2 

 

 

Figure 3. Insolation waveform (and its quadratic approximation) shifted to the beginning of the
coordinate system.

Principle of the Method Application in a Single Time Interval

The simplest example of MEE application in a single time interval is illustrated in
Figure 1. For a universal solution, according to Section 4.1, point A corresponds to sunrise
and point B to sunset. For a solution by dividing the period into three intervals, points
A and B may represent, for example, the values for times 9:00 (point A) and 15:00 (point B).
The value of the sought quantity is known for these points, and therefore these two points
are considered as boundary conditions of the problem. A solution (value) is sought for the
central point C. Its position in time is at the choice of the operator—this basically creates the
division of the task into time intervals—elements. However, the value at the selected time
is already calculated by the MEE system so that the height of point C tends to be placed on
the original (blue) curve. Subsequently, the values at any other time are approximated by
the linear approximation according to Figure 1.

The course of the effect of energies depending on the value at point C is a simple task
that can be performed by virtually any mathematical apparatus. In [37], the authors of
the article proved that a MEE system really tends to reconstruct the original curve and
thus set the value of the approximation in accordance with reality. Linear interpolation,
of course, introduces considerable inaccuracy into the system—this manifests itself (see
Section 5) in a significantly different value of the energy effect compared to the original
curve. The logical step to achieve more accurate results with a given access logic is to
divide the timeline into a larger number of intervals—elements. We present the logic of
solving the problem for such a case in Section 4.3.

4.3. Possible Approaches to Solution

Taking into account the stricter requirements for accuracy, the logical step is to divide
the timeline into a larger number of elements. Consequently, the demands on the math-
ematical apparatus capable of solving the optimization problem formulated in this way
increase. Possible approaches are presented through the example in Figure 4, where the
problem has boundary conditions (fixed points A and B) and three internal points (C1, C2,
and C3). The solution algorithm for a large number of elements can be based on either of
the following principles:
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(A) Calculation of a system of equations “at once”. This is a “classical” approach
to solving an optimization problem. A relatively sophisticated mathematical apparatus
is needed. The “optimal” solution of the system of equations is sought either by direct
calculation (with a smaller number of variables) or various iterative methods are used
(Newton-Raphson and the like), which do not find an “exact” solution to the problem, but
at least a solution close enough to the optimal one. This procedure is illustrated in Figure 4,
where the system tries to set the values of all internal points C1–C3 at once, based on the
defined criteria.

(B) Recursive solution. This solution is based on the already mentioned feature of
the MEE system, the trend of which is to adhere to the values of the original investigated
curve. The principle of this solution is that the value of the sought quantity at point
C1 should remain the same regardless of the presence of the other points C2 and C3.
Thus, an identical solution at point C1 can be achieved by solving an equivalent problem
according to Figure 5a, which is based (except for the boundary conditions in points
A and B) on a single internal point C1 (so it can be solved directly according to Section 4.2).
After solving this problem, the assignment itself will change: points C1 and B will be
considered as boundary conditions. For this reformulated problem, a solution is sought
again only one internal point C2 (Figure 5b). After finding the solution, the boundary
conditions are redefined to points C2 and B, and a solution is sought for C3 (Figure 5c).
This procedure is continued as necessary until a solution is found for all internal points of
the system. The advantage of the recursive solution is the simplicity of the apparatus used
(and consequently of finding an exact—i.e., not approximated by iterations—value of the
solution). On the other hand, a possible error is “chained” for the following points and can
more fundamentally affect the overall solution results.

 

2 

 

 
Figure 4. MEE scheme for three internal points (four elements).
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Figure 5. MEE scheme for three internal points (4 elements)—illustration of the proposed solution process: (a) the first
phase of the process—solution for internal point C1; (b) the second phase of the process—solution for internal point C2;
(c) the third phase of the process—solution for internal point C3.

5. Method Verification

To verify the system, we used day No. 126 (6 May) as an example, because in the
conditions of Central Europe, it has a relatively long period of daylight: sunrise is about 4:51
and sunset about 19:04. The value of the reliability coefficient for the approximation of the
all-day curve by a single quadratic function was R2 = 0.933. Therefore, it was appropriate
to use the division of the day into several time periods—in accordance with the description
provided in Section 4.1. We used three time periods (from 4:51 to 9:00, from 9:00 to 15:00,
and from 15:00 to 19:04). We will present the response of the MEE system to the middle of
the given time periods, i.e., from 9:00 to 15:00. The boundary conditions for this period
were as follows:

Point A: 9:00, 0.92595772 kW/m2 (9; 0.92595772)
Point B: 15:00, 0.925957 kW/m2 (15; 0.925957)

Following Section 4.1, we adjusted these conditions so that the “DC” component (with
respect to the global coordinate system) was removed, i.e., we shifted the time by −9 h and
the radiation intensity by −0.92595772 kW/m2 (so that point A was located at the beginning
of the coordinate system):

Point A: 0:00, 0 kW/m2 (A(x) = 0; A(y) = 0)
Point B: 6:00, −0.00000072 kW/m2 (B(x) = 6, B(y) = −0.00000072)
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For this case, the approximation using the quadratic equation results as follows:

y = −1
2

0.0152533x2 + 0.04575978x. (8)

From the above equation, it is clear that y stands for the insolation intensity and x for
time. The accuracy of this approximation, expressed by the value of R2, was approximately
0.9991 (see Table 1 in Section 4.1). The following example will show what the response of
the system will be at time x = 3 (absolute time corresponds to the high noon, i.e., 12:00). At
the beginning, it should be noted that the original curve according to Equation (8) showed
the energy effect S = −0.002093936, and for the set x = 3, the value y = 0.06863949. It was
thus a division of the time axis into two elements. The first element E1 was defined on the
X-axis from 0 to 3, the second element E2 from 3 to 6. On the edges of the task defined in
this way, the boundary conditions are firmly defined—points A and B, and inside the task,
there is a single internal point C1—its position in time is given by setting x = 3. We are
therefore looking for optimal values of radiation intensity at point C1:C1(y).

For the assumed linear approximation within each of the two elements, the following
equations were needed:

E1 : y = e1x + f1,

E2 : y = e2x + f2.
(9)

The coefficients e1, f 1, e2, f 2 was calculated as follows:

e1 = c1(y)−A(y)
c1(x)−A(x) ,

f1 = A(y)− e1 A(x),

e2 = B(y)−c1(y)
B(x)−c1(x) ,

f2 = C1(y)− e2C1(x).

(10)

The situation is shown in Figure 6. Only the value of C1(y) was unknown in the
previous set—we knew the values of all other quantities (boundary conditions were defined,
and we had chosen the time for C1(x) equal to 3. We can experiment with the value of
C1(y). We evaluated the energy effect for the waveforms according to Equation (9)—see
Section 2. For example, for the value C1(y) = 0.05, we obtained the value of the energy effect
S = −0.0014546. The whole dependency is provided in Table 2.

 

3 

  
(a) (b) 

 
(c) 

 

 
Figure 6. Linear approximation of the problem.
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Table 2. Dependence of the energy effect S on the value of C1(y).

C1(y)
[kW/m2]

S
[Wh/m2]

0.03 −0.0010728
0.04 −0.0012970
0.05 −0.0014546
0.06 −0.0015456

0.0686395 * −0.0015704
0.07 −0.0015698
0.08 −0.0015274
0.09 −0.0014184

* Value achieved by the method of finding the minimum of the function.

Table 2 shows that for C1(y) values approaching gradually from 0.03 to 0.06, the value
of S continued to decrease, and after a further increase in C1(y), the value of S began to
increase. The solution sought is, therefore, the global minimum of the function, which was
close to C1(y) = 0.07 (see Figure 7). We implemented a simple solution using the MS Excel
Solver add-on. The Solver found the value C1(y) = 0.0686395 (marked with an asterisk in
Table 2). For this result, the minimum value of the energy effect was Smin = −0.0015704.
Two remarks should be made here. 

4 

 

 

Figure 7. Example of the solution for global minimum of the energy effect.

Firstly: of course, it is not necessary to calculate all the values in Table 2—these are
listed only to illustrate the principle of the method. In our calculations, we only used the
Solver that immediately delivered the required result.

Secondly: we chose to use the Solver as an add-on to MS Excel with respect to its
universal availability and ease of use. It is possible to use any other commonly available
software and obtain the same results. Alternatively, it is possible to program your own
application to search for the minimum of the function (or more correctly: to search for
the minimum of the functional, since the function defined by us is composed of nested
functions). Graphical representation of the data from Table 2 is provided in Figure 8.
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Figure 8. Demonstration of the minimum energy effect values. Distribution of the effect depending
on C1 position.

The Effect of the Number of Elements on the Calculation Accuracy

To demonstrate the accuracy of the calculation, we used the knowledge of the ac-
tual course, or more precisely, the value of the energy effect S for the actual course
(S = −0.002093936), which acquires its global minimum for this course. The influence
of the number of elements on the accuracy of the calculation presented by us took into
account the deviation of the value of the energy effect for a specific solution from the
global minimum valid for the actual course. It follows from the above procedure that
the accuracy of the energy effect calculation was approximately 75% for the two elements
(−0.0015704/−0.002093936 × 100%). The logical solution was to increase the number of
elements (i.e., divide the timeline into multiple intervals). The results are presented in
Table 3 and Figure 9.

Table 3. Dependence of accuracy on the number of elements.

Number of Elements
[-]

S
[Wh/m2]

S
[%]

2 −0.001570476 75.00
4 −0.001963062 93.75
6 −0.002093936 97.22
12 −0.002079394 99.31
24 −0.002090300 99.83

 

5 

 

 

 

Figure 9. Effect in dependence on the number of used elements (value of 100% was used for the
original waveform effect).
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The solution procedure for a larger number of elements is described in Section 4.3.

6. Discussion on Results and Challenges

We added basic information about the speed of calculation when using analytical
formulas and when using our method. We performed a series of calculations in MATLAB
2020a installed on a machine with Intel® Core™ i7-8550U CPU @ 1.80 GHz (8 CPUs),
~2.0 GHz, and 16,384 MB of RAM. We made a calculation for the equivalent of analytical
Equation (5) and compared it with the calculation of our proposed linear system of Equation
(4). For a better assessment of the calculation properties (calculation time), we always
performed 20 calculation cycles, from which the average calculation time for one cycle was
subsequently derived. When calculating the analytical equation, the time of one cycle was
equal to 0.449 ms. The calculation of one cycle of a linear system took 0.095 ms, which is
an almost 80% savings in computational time. Here comes another question concerning the
number of points needed for the reconstruction of the solar curve. Our proposed numerical
solution requires five computational cycles (for the required accuracy of 97.22% achieved
by dividing the investigated area into six elements, i.e., five nodes—see Table 3 in the article;
the dependence of the accuracy of the solution on the number of used nodes/elements can
be seen in Figure 9; the decision on the satisfactory precision is up to the designer himself).

These five calculation cycles took 5 × 0.095 = 0.475 ms. For five calculations of the
analytical equation, the system needed 5 × 0.449 = 2.245 ms. An equation based on the
sine and cosine functions was used, for example, also by [40].

Nevertheless, there also exists an approach based on a simplified exponential equation
that uses only one trigonometric function [41]. For such a case, the calculation time for one
cycle was up to 5.769 ms. So, compared to this approach, the calculation we propose saves
up to 98% of the computational time.

Our proposed procedure was based on the principles of the MEE numerical method.
In addition to the previous results presented in this article, it is possible to extend the
method, for example, by adding one of the following functions.

6.1. Influence of Adaptive Meshing

The research presented by us was based on an even distribution of the X-axis (time
axis). The MEE is, in principle, independent of the uniformity of this division. It is,
therefore, possible to proceed to adaptive meshing without any further modifications. This
can be done on the basis of two facts: the decision of the designer or the evaluation of the
weight function (energy effect function S). The first option assumes the knowledge of the
designer in the given field, on the basis of which he decides to adjust the density of the
network. The challenge consists in the second option, where it is necessary to build a SW
solution for evaluating the S effect and the subsequent change in network density.

6.2. Higher-Order Elements

We used linear interpolations within an element, i.e., first-order elements. In principle,
it is possible to insert higher-order elements (e.g., polynomial) into the system, but also
elements based on other functions (sine or cosine, etc.). We believe that, unlike solutions
for electromagnetic and other fields, such an extension lacks its significance. By increasing
the order of elements, we get into a situation where the computational complexity of the
numerical method will approach the complexity of the analytical solution.

6.3. Subsequent Operations Such as Integral, Derivatives, etc.

In the Introduction section, we gave an overview of authors who performed further
processing of insolation curves in various ways. This was our motivation: to provide
authors of similar focus with a new tool that will make the required calculations easier.
The aim of the article was not to offer a ready-made “out-of-the-box” solution but rather to
define a calculation procedure that will be more efficient than previous solutions.
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6.4. Nonlinear Weighting Functions

Further extensions in the form of nonlinear weighting functions—it aims at a possible re-
duction in the number of elements while maintaining accuracy, but at the expense of increased
calculation demands. The same applies here, as we stated, for higher-order elements.

7. Conclusions

The novelty of the presented approach consists mainly in offering new tools for nu-
merical reconstruction of insolation curves. We consider this a useful aid for other authors
working in the field of solar radiation. An overview of the authors’ work, where such a tool
could contribute to the efficiency of their solution, is given in the Introduction section.

Another significant contribution/novelty consists in the design of solution procedures
according to Section 4.3 (part B). Based on the MEE behavioral analysis, we demonstrated
that, unlike the FEM or BEM methods, which offer a solution that meets weighting criteria
on average across the observed area, our method tends to find the original value in each
defined (and also in a single) node.

Among the novelties, we also include the analysis of the course of the energy effect
in a given specific insolation environment (Figure 8), from which it follows that there is
a global minimum of the solved task. This proves the previous statement that MEE tends
to reach the original value in each defined (even in a single) node.

We have determined the basic possible and applicable criteria for the “accuracy” of
numerical reconstruction of insolation curves—this is the energy/weight function S.

As another basic novelty, we presented an analysis of the course of the energy effect
S depending on the number of elements (Figure 9). A perfect match occurred for a theo-
retically infinite number of nodes in the system but matches over 90% of the system were
reached using five nodes (six elements in Table 3).

The original numerical solutions presented in this article are intended to help in the
further processing of complicated functions of solar radiation. They can use relatively
simple procedures to replace the original functions and allow other authors to apply the
required mathematical operations to the daily course of solar radiation in a computationally
simpler form.

In addition, the practical use of the presented solution is not limited only to solar
radiation, as there are many natural and technological processes of similar nature that
require precise determination of values in time.
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