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Abstract: With the increasing penetration of intermittent renewable energy generation, there is
a growing demand to use the inherent flexibility within buildings to absorb renewable related
disruptions. Heat pumps play a particularly important role, as they account for a high share of
electricity consumption in residential units. The most common way of quantifying the flexibility is
by considering the response of the building or the household appliances to external penalty signals.
However, this approach neither accounts for the use cases of flexibility trading nor considers its
impact on the prosumer comfort, when the heat pump should cover the stochastic domestic hot
water (DHW) consumption. Therefore, in this paper, a new approach to quantifying the flexibility
potential of residential heat pumps is proposed. This methodology enables the prosumers themselves
to generate and submit the operating plan of the heat pump to the system operator and trade the
alternative operating plans of the heat pump on the flexibility market. In addition, the impact of
the flexibility provision on the prosumer comfort is investigated by calculating the warm water
temperature drops in the thermal energy storage given heat demand forecast errors. The results show
that the approach with constant capacity reservation in the thermal energy storage provides the best
solution, with an average of 2.5 min unsatisfactory time per day and a maximum temperature drop
of 2.3 °C.

Keywords: heat pump flexibility; demand-side response; energy management; optimization; forecast
uncertainty; comfort loss

1. Introduction

With the penetration of intermittent and fluctuating renewable energy generation
positioned to increase in the coming years, there is a growing need for low-cost and practical
Ancillary Services (AS) to absorb the renewable related imbalance between generation and
demand [1]. Demand Response (DR), the ability to control electrical energy consumption
based on power grid incentives, is emerging as a low-cost alternative to conventional fast-
ramping generation resources [2]. Additionally, the study in [3] foresees that a complete
electrification of the heating sector will eventually lead the heat pumps’ demand to reach
26% of the total electricity consumption in Europe. This places the heat pump dominant
in the field of DR. Furthermore, the study in [4] has proved that energy savings of up to
80% can be achieved with the implementation of an optimal control of the HVAC with
heat pumps. Therefore, special attention has been given to exploiting the applications
associated with heat pumps.

In the literature, several works deal with the assessment of the flexibility given by
building energy management systems. In [5], flexibility potential could be quantified by
generating deviation from the optimal plan by adjusting the objective function with regard
to energy consumption (low or high) solely in the timespan of flexibility. Meanwhile,
it used a cost curve to present the additional associated costs. Similarly, another study
performed simulations with a diversified thermostat set point of buildings to develop a
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novel demand response estimation framework [2]. In addition, the authors have performed
a multi-agent-based simulation of three building cluster types and studied the impact of
the available flexibility on the residual substation load. Although a high penetration of
heat pumps and photovoltaic systems can violate the transformer’s limits, a significant
improvement in the substation load can still be seen with the help of the Demand Side
Management [6]. Moreover, it has been found that the flexibility of a building energy
system is difficult to quantify using a single flexibility indicator. Therefore, the authors
have proposed that flexibility needs to be evaluated in three dimensions: time, power
and energy [7]. In addition, the key factors affecting the flexibility potential have been
investigated over the last three years. In general, the flexibility available is affected by
penalty signals, ambient temperature and the operations of the energy storage [8–10].

In particular, a number of studies have developed models to estimate the flexibility
potential of the heat pump. The authors in [11,12] have provided an overview of the
possible Demand Side Management applications in the field of heat pumps and evaluated
its efficiency in providing peak shaving and thermal comfort. In [13,14], a generic flexible
offer generation and evaluation process that extracts flexibility from heat pumps and
other household devices is presented and incorporated in a unified model. As indicated
in [1,15], an optimal control is imperative to obtain the maximum flexibility provided by
a building’s energy system. An approach has been proposed that allows for the various
available building datasets to be relied on to build the models required for optimization
tools or dynamic simulations [15]. In addition, an approach to estimate the time-dependent
flexibility potential of a heat pump system is proposed. It used a modified Optimal Power
Flow (OPF) to evaluate the feasibility of the flexibility provision [16]. Furthermore, case
studies have been performed to investigate the impact of the aggregation of heat pumps
and uncertainties inherent in forecasts and building parameters [17,18]. It is revealed that it
is beneficial to include domestic hot water (DHW) demand within the optimization model
to deal with the high unpredictability of the DHW consumption. However, uncertainty in
building parameters does not have a significant impact on the optimization of heat pump
operation. In contrast, Thermal Energy Storage (TES) is essential to offer flexibility in
the heat pump system, as indicated in [1,5,16]. Through active management and suitable
scheduling schemes of the HP and the TES, it is possible to provide flexibility for the
power system through sustainable energy buildings where the electricity supply is highly
volatile [19].

For the provision of flexibility, the aforementioned research has mainly focused on
the centralized coordination of controllable household devices. Meanwhile, the German
government has used various support measures to continuously adapt flexibility provi-
sion to market developments [20]. A flexibility market is a concept for the utilization of
flexibility, their efficient use and the assurance of a coordinated call-off [21,22]. Instead of
passive participation, energy consumers have higher flexibility to enable a market supply
that meets market conditions. In addition, the flexibility market allows for a “cellular”
approach, where the flexibility requirements are determined on the scale of individual
units, rather than a top-down approach based on an aggregate calculation of expected de-
mand and supply [20]. Moreover, local flexibility markets enable an economically efficient
solution to trade flexibility among distribution system operators and other participants
(e.g., aggregators). This will incentivize the flexibility provision [23,24].

Although many studies have proposed methods to quantify flexibility, they tend to
look at the response of the building or household appliances to external control signals from
the top down. This means these approaches estimate flexibility only from a macroscopic
perspective [1,13,17]. In addition, uniform prices and contracts for all flexibility provider
will hurt their motivation to actively participate in the flexibility provision [25]. However,
few studies have focused on the development of a tool to quantify the tradable flexibility
to address future needs regarding flexibility markets and considered the benefits of using
flexibility for prosumers. Moreover, user comfort may be affected by providing flexibility
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due to the unpredictability of DHW consumption [9]. However, this has not been discussed
very much to date.

This paper aims to find a simple yet effective method to quantify the flexibility
of domestic heat pumps without affecting the user comfort, while covering the gaps
mentioned in the previous paragraph. Unlike the demand response approaches that
consider mainly the reaction of residential units to external signals, the methodology in this
paper quantifies the flexibility of residential heat pumps based on the optimized operating
plan and the state of the TES and describes the flexibility in form of flexibility power and
energy for each time block. This nature enables the day-ahead trading on the flexibility
market. Furthermore, the capacity reservation in thermal energy storage is implemented to
avoid the negative impact of flexibility utilization on the prosumer comfort. It is expected
that the warm water temperature in the TES can be maintained above the set point at all
times. To validate this concept, a forecast-simulation methodology has been used to test its
effectiveness in dealing with the unpredictability of DHW consumption.

This paper is structured as follows. Section 2 provides the mathematical models
applied to represent the heating and electrical system as well as the optimization algorithm.
Section 3 introduces the methodology used to estimate the flexibility potential of heat
pumps in three steps. Furthermore, a number of solutions to deal with the DHW consump-
tion’s randomness is discussed in Section 4. Section 5 presents and discusses the obtained
results, while Section 6 discuss the main findings and conclude the paper, respectively.

2. Modeling and Optimization

In this section, the modeling approaches of the heating system and the optimization
algorithm using Mixed Integer Linear Programming (MILP) are introduced. All modeling
and calculations processes are carried out in the framework of open-source software
OpenTUMFlex. For more information, please refer to Supplementary Materials [26].

Figure 1 shows the general steps involved in flexibility generation. The flexibility
estimation process begins with the gathering of the heat demand time series and available
context information such as the technical parameters of the heat pump, electricity prices,
etc. The next step includes the preprocessing of the raw information into an adequate
format for analysis. The main steps include modeling the heating system required for
the generation of the optimal operating plans. Subsequently, the solver integrated in
OpenTUMFlex performs process scheduling and finds an optimal operating plan for the
heat pump. Finally, the flexibility estimation step includes the derivation of new operating
plan for the heat pump and the calculation of flexibility power and energy with regard
to necessary technical restrictions. The last two steps visualize the flexibility power and
energy in a graphical and table form and statistically evaluate the impact of unpredictable
DHW consumption on prosumer comfort.

Figure 1. The general flexibility quantification process of the heat pump in OpenTUMFlex.

2.1. Models

The model used to represent the heating system consist of two main components: the
HP, which generates heat, fulfilling the demands, and the TES, which serves as a buffer to
avoid the simultaneity of generation and consumption.
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2.1.1. Heat Pump

The heat pump is a component that uses electricity to generate heat. The ratio be-
tween the generated heat and electrical power is the Coefficient of Performance (COP).
Mathematically, it can be described as follows:

COP =
QHP

WHP (1)

Here, QHP and WHP represent the heat flow and electrical power. The higher the COP,
the more efficient the heat pump. In this paper, ground-source heat pumps (GSHP) are
considered. Their COP can be influenced by many factors. For GSHP, the COP is mainly
affected by ground temperature and the supply temperature of warm water. To ensure the
linearity of the model, the ground temperature and the supply temperature of the HP are
set as parameters for each simulation. Based on the experimental data of the heat pump
(Stiebel Eltron), the COP curve can be derived using the following formula:

∆T = Ts − Tenv (2)

COP = 0.0002∆T2 − 0.07∆T + 5.67 (3)

QHP
therm[kW] = 0.1916Tenv[

◦C] + 6.4 (4)

where Ts and Tenv are the supply and ground temperature, respectively. QHP
therm is the

thermal power of the heat pump depending on the ambient temperature, given an average
supply temperature of 60 ◦C. With regard to the operational behavior of the heat pump, it
is assumed the HP has two working states without any modulation: on/off. Thus, a binary
variable is used to describe the state of the heat pump operation:

QHP
t = xHP

t QHP
therm,t (5)

WHP
t =

QHP
t

COPt
(6)

In this equation, xHP
t is the binary variable indicating the operational state of heat

pump at a certain time step. The electrical power consumed WHP
t can then be calculated

by Equation (6).
There are also constraints avoiding the frequent switch on/off, which keeps the HP

off for Nmin,o f f time steps once it is turned off and the heat pump on for Nmin,on time steps
once it is turned on, as indicated in Equations (7) and (8). In this article, Nmin,o f f and
Nmin,on are both set to 4, which means 1-hour minimum duration for switch on/off given
each time step of 15 min.

(xHP
t−1 − xHP

t ) · Nmin,o f f ≤ Tmin,o f f − (xHP
t + xHP

t+1 + ... + xHP
t+Nmin,o f f−1) (7)

(xHP
t−1 − xHP

t ) · Nmin,on ≤ xHP
t + xHP

t+1 + ... + xHP
t+Nmin,o f f−1 (8)

2.1.2. Thermal Energy Storage

To provide flexibility and fulfill DHW and Space Heating (SH) demand, a heat storage
with a spiral-tube heat exchange will be used. The combined storage consists of an internal
heat exchanger to separate fresh water and heating water.

ETES
t = ETES

t−1 + (QHP
t −QSH

t −QDHW
t ) · ∆t (9)

SOCt =
ETES

t
ETES

cap
(10)

TTES
t = (TTES

max − TTES
min )SOCt + TTES

min (11)



Energies 2021, 14, 5709 5 of 19

where ETES
t is the energy stored in the TES, while QSH

t and QDHW
t are the heat load of SH

and DHW, respectively. Meanwhile, the State of Charge (SOC) is the level of charge relative
to its capacity. The warm water temperature in the TES can be estimated by Equation (11),
given that the TES is perfectly mixed.

2.2. Heating System
2.2.1. Heat Load

The heat load consists of SH and DHW. The heat load profiles for SH are derived based
on the Hotmaps Project database, which is part of the Horizon 2020 Projects. The datasets
have a temporal resolution of 1 h [27]. The year-specific profiles, generated based on the
synthetic hourly profiles for typical days, are used for further simulation.

Regarding the region of NUTS2, DE21 (Upper Bavaria) was selected as the region
where the case study was conducted. The specific heat demand refers to standard WSVO
95, which indicates a value of 100 kWh/(m2 · a). The heating area is assumed to be 140 m2.

As the yearly heat demand profiles only offer a temporal resolution of 1 h and the
normal time-step of flexibility estimation in OpenTUMFlex is 15 min, the heat demand of
1 h will be distributed linearly.

The software, DHWcalc, can provide the DHW consumption data. This model uses
four categories of DHW to describe different DHW use patterns [28]. Each category has
a specific occurrence probability and flow rate probability distribution. The assumptions
applied in [28] have been used in this study as well and are shown in Table 1:

Table 1. Categories of DHW consumption patterns.

Category Average Flow Rate Sigma Duration Portion
(L/min) (L/min) (min) (%)

short load 1 2 1 14
medium load 6 2 1 36

bath 14 2 10 10
shower 8 2 5 40

Where average flow rate V̇mean is the expectation of the distribution and sigma σ is the
standard deviation. Duration and portion are the assumed flow duration and share of flow
amount for each flow type, respectively.

According to the parameters given in Table 1 and the assumption of gaussian-distribution,
The probability of occurrence of each category of flow can be obtained by Equation (12):

P(V̇) =
1√
2πσ

e
−(V̇−V̇mean)2

2σ2 (12)

2.2.2. Assumption for Heating System

Considering the conclusion of [5], the thermal characteristics of the building are
neglected and the static heat load from Section 2.2.1 is implemented to represent the SH
load of the household. Therefore, a constant room temperature is assumed inside the
house. This implies that the thermal inertia of the building is not taken into account to offer
flexibility. These assumptions avoid exhausting the flexibility potential with regard to the
thermal inertia of the building and can be treated as a buffering mechanism for possible
comfort losses.

The supply temperature out of the heat pump was assumed as 60 °C, which avoids
sanitary problems n DHW and increases the maximum heat capacity of the TES. A conven-
tional heat pump cannot reach a supply temperature of 60 °C without a severe efficiency
drop. Thus, for a higher supply temperature, a medium-temperature heat pump was
considered. The reference and maximum temperature of the TES was set as 40 °C and
60 °C, which indicates that the SOC of the thermal energy storage is 0% and 100%, when
the warm water inside is uniformly 40 °C and 60 °C, respectively. The TES was assumed to
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be perfectly mixed to make it possible to quantify the comfort loss without an enormous
calculation burden.

As the time resolution of the software DHWcalc was set up at 1 min to describe each
type of draw-off, it does not fit the 15-min time interval in OpenTUMFlex. Therefore,
the DHW heat demand calculated from DHWcalc will be averaged into a 15 min time
interval to suit the formats in OpenTUMFlex. Regarding the DHW consumption forecasts,
a naive forecasting method was implemented by averaging the last 30-days’ historic data.
Subsequently, the thermal energy consumption within each time step can be obtained by
integrating the required heating power. Based on the TES capacity, the required minimum
SOC can be obtained for each time step. The minimum SOC considers both the trivial SH
heat load and the possible extremely high DHW consumption that has occurred in the last
30 days. Therefore, the TES, with this minimum SOC, is capable of fulfilling the SH and
DHW heat load simultaneously, even when forecast errors of DHW consumption occur.
Repeating this process for all time steps, the minimum SOC curve for the TES with 600 L
volume and 20 °C temperature spread can be estimated as the “min”, as shown in Figure 2.
In addition, the heat loads of SH and DHW are shown as well.

Figure 2. Load profiles for SH and DHW in winter and the minimum SOC requirement.

2.3. Optimization

This section presents an optimization algorithm to coordinate the operations of all
main household appliances. The objective of the optimization is to find a cost-optimal
schedule of each appliance while fulfilling all the constraints. In general, theses components
are considered in the HEMS: Electric Vehicle (EV), Photovoltaic (PV), Battery (BAT) and
Heat Pump (HP). The other electrical and heat loads are treated as inflexible loads.

With regard to electricity balance, the sum of electrical generation and consumption
must be equal. The relationship can be represented by Equation (13)

PPV
t + PGrid,in

t + PBAT,disc
t = PHP

t + PEV
t + PBat,char

t + PGrid,out
t + PLoad

t (13)

where power generation of each type is placed on the left side and power consumption
on the right side. PPV

t , PHP
t and PEV

t are the electrical powers consumed by PV, HP and
EV, respectively. PGrid,in

t and PGrid,out
t indicate the power import and export with the grid.

PBat,char
t and PBat,disc

t represent the charging and discharging power of the battery. Charging
and discharging cannot occur at the same time. PLoad

t is the inflexible load of the household.
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Similar to the electricity balance, the heat balance is constructed in the same way, such that
the thermal generation and consumption must be equal:

QHP
t + QTES,disc

t = QLoad
t + QTES,char

t (14)

On the left side of this Equation (14) is the thermal power of each heat generating
device, including the discharging power of the TES, while the heat load QLoad

t and the
charging power of the TES QTES,char

t is positioned on the right side.
For the TES, the optimal end SOC should be determined by extending the original

simulation time horizon. For instance, a 1.5-day simulation will be carried out first and
the SOC of the time point at 24 h will be used as the optimal end SOC for the next 1-day
simulation. To decrease the required computation time, the end SOC must be greater than
the optimal end SOC [29].

According to the constraints and the models, the solver can minimize the total energy
cost by scheduling the operation plan of each household appliance. The costs mainly cover
the fuel and electricity cost, which is dependent on the gas and electricity prices. Thus,
the objective function for this model can be formulated by Equation (15):

min
Pt ,Qt

∑
t

QBoiler
t

ηBoiler · c
Gas
t + (PGrid,in

t − PGrid,out
t ) · cElec

t (15)

where cGas
t and cElec

t are the predicted gas price and electricity price, respectively. Based
on the objective function, the solver will determine the optimal operation time of each
household appliance.

Since the objective function is linear and integer variables are utilized to represent the
operational states of the HP, this optimization problem can be categorized as Mixed Integer
Linear Programming (MILP), which can be easily solved by matured solvers (Cplex, GLPK
or Gurobi) within several minutes when the optimization is within 24 time steps. Figure 3
shows an example of the optimization results.

Figure 3. Optimization results of household appliances: electric and thermal power balance.

3. Flexibility Estimation

In this section, specific methods to estimate flexibility are introduced. Flexibility of the
heat pump can be regarded as the possibility of shifting the HP operation during the day.
Based on the optimal operation plan of the HP, potential deviations can be offered at each
time step. They are distinguished into two types. Positive flexibility means turning off the
HP in situations where it would otherwise run, while positive flexibility indicates that the
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heat pump is forced on when it would usually be turned off. The flexibility provision is
not arbitrary and requires many restrictions. They are usually divided into three types:

• Switch point;
• Remaining capacity of thermal storage system;
• Available regeneration time.

The first restriction implies that the flexibility can only be offered until the next switch
point. As Figure 4 illustrates, positive flexibility can only be provided when the heat pump
is on, as it cannot reduce the electrical load by changing the operation of the heat pump
when it is already off. Thus, positive flexibility can hold up until the next switch point.
In contrast, negative flexibility is available when the HP is off. Therefore, the duration limit
of flexibility regarding the first restriction can be formulated by Equation (16):

Tsw
Flex,t = ts,t − t (16)

Here, ts,t is the time step number until the next switch point, while t is the time step
by which the flexibility potential is estimated.

0 20 40 60 80 96
0%

20%

40%

60%

80%

100%

Tsw
Flex,neg,t

Treg
Flex,neg,t

Tcap
Flex,neg,tOptimal plan

Flexibility

available regeneration time

Time [h]

SO
C

[%
]

Figure 4. Restrictions with regard to flexibility estimation: switch time, capacity and regenera-
tion time.

Another restriction is the remaining capacity of the TES, because the heat pump cannot
keep charging or discharging when the thermal storage is full or empty. With regard to
positive or negative flexibility, the duration limit can be obtained by Equations (17) and (18),
respectively:

Tcap
f lex,pos,t =

SOCTES
t · ETES

cap

(QHP
avg + Qload

avg ) · ∆t
(17)

Tcap
f lex,neg,t =

(1− SOCTES
t ) · ETES

cap

(QHP
avg −Qload

avg ) · ∆t
(18)

where QHP
avg and Qload

avg is the average thermal power of the heat pump and heat load within
next two hours, which is the typical duration of HP flexibility. With respect to positive
flexibility, the duration limit indicates how many time steps the TES can afford without
the heat supply from the heat pump. Negative flexibility, however, requires a low SOC of
the TES. The higher the SOC, the smaller the remaining space for excessive heat generated
from the HP. Therefore, the remaining capacity of the TES is used to calculate the flexibility
duration limit of negative flexibility.

After delivering the flexibility, the system states will change and the original schedule
for the time becomes infeasible. Hence, the operation plans for each devices need reopti-
mization during the interval from the flexibility duration termination to the end of one
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day. The reoptimization aims to realize the same system states at the end of the day as the
original plan, such as the SOCs of TES. Therefore, it is imperative to generate enough time
steps for the regeneration of TES. Following the positive flexibility provision, the thermal
energy stored in TES decreases and more charging time is needed afterwards for the heat
pump to produce heat, so that it can nearly reach optimal SOC in the end. The same is true
for negative flexibility: if the remaining available regeneration time is insufficient to consume
the additional thermal energy that is generated, the SOC of the TES will exceed the required
amount by too much. As a consequence, the duration of flexibility with respect to the available
regeneration time is restricted by Equations (19) and (20), in the timestep number.

Treg
f lex,pos,t =

te

∑
t=t f +1

[QHP
t = 0] (19)

Treg
f lex,neg,t =

te

∑
t=t f +1

[QHP
t > 0] (20)

where t f and te are the last timestep of the delivered flexibility and the whole timespan.
Here, the Iverson Brackets, which take the value 1, for which the statement is true, are used
to count the the number of suitable timesteps.

As all the three types of restrictions for the flexibility duration are already known,
the final flexibility durations have to satisfy all of the above, so the minimum of these
values is taken:

THP
f lex,t = min(Tsw

f lex,t, Tcap
f lex,t, Treg

f lex,t) (21)

According to the flexibility duration, the flexibility power and energy, which are the
average power and the total energy delivered within the flexibility, can be obtained by
Equations (22) and (23):

PHP
f lex,avg,t =

∑
t f
t PHP

t
THP

f lex,t
(22)

EHP
f lex,t = PHP

f lex,t · T
HP
f lex,t · ∆t (23)

The flexibility power indicates how much power deviation controlling of the heat
pump can provide and the flexibility energy is the integral of the flexibility power within
the flexibility duration. This flexibility estimation process will iterate for every timestep
being considered, and acquire flexibility for the whole interval.

4. Methods Dealing with Stochastic Characteristic of Hot Water Consumption
4.1. Reservation of Minimum SOC

Since the day-ahead forecast of the heat load of SH is accurate enough, its forecast
error can be neglected. However, the heat load of DHW is strongly affected by the user
behavior and reflects an obviously stochastic characteristic, especially at the level of a
single residential unit. Consequently, unexpected situations could occur while delivering
the flexibility of heat pump, e.g., the temperature of warm water inside is not sufficient
for trivial usage. To avoid these unwanted situations, the approach of capacity reservation
is applied to cope with the unpredictability of DHW consumption. Using this approach,
a certain percent of the heat capacity of TES must be reserved as a buffer, in case of
unexpected user behavior and DHW consumption. The basic idea is to record the maximum
warm water consumption in the last 30 days for each time step and recognize it as the
possible worst case, which would also happen in the viewed day. This will ensure that
the temperature of TES would not decrease below 40 °C. Nevertheless, the reservation
of partial space in TES places additional constraints on the optimization of heat pump
operation and flexibility estimation, which will increase energy costs for the heating system
and reduce the available flexibility offered by the heat pump.
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For the concept that the household has one TES for both SH and DHW, three options
are considered to cover up the unpredictability of DHW consumption, in the form of the
required minimum SOC curve in Figure 5:

1. Dynamic: use the maximum DHW consumption for each 15 min from the last 30 days
to represent the potential risk of high consumption peaks;

2. Constant: use overall maximum DHW consumption from the last 30 days for the
period 7:00–24:00;

3. Parabolic: use the parabolic curve to cover the typical peaks of one day.

Figure 5. Minimum SOC curves: dynamic, constant and parabolic.

As seen from Figure 5, the first option generates a dynamic limitation curve, which
changes itself every time step. The dynamic curve finds the maximum DHW consumption
for each 15 min from the last 30 days and uses it to directly represent the potential DHW
consumption peaks. This means that the possibility that the required thermal energy for
DHW exceeds these thresholds is nearly 0%, even when forecast errors occur. Therefore,
the influence of stochastic user behavior on the DHW consumption would be weakened.
In comparison with the dynamic curve, the curve with constant values part of the time
uses the overall maximum value of DHW-15min-consumption within the last 30 days to
set a one-day minimum SOC value for TES from 07:00 to 24:00. The period from 00:00 to
07:00 is not taken into account because there is usually no heat consumption during this
time period. This option ensures additional safety margins by raising the limits for most
of the day. It also reduces the optimization complexity by simplifying the MILP problem.
Another option with the parabolic limit finds a compromise between the first and second
option. First, it gives a baseline for the whole day, which is a quarter of the maximum.
Further, the peak hours in the morning and evening will be dealt with separated maximum
values at these times, respectively. The amplitude and duration of the peak hours depends
on peak flow rates and the assumed possibility distribution. Finally, a parabolic curve is
used to reflect the importance of different times within the peak hours. Stricter restrictions
are given at times when peak DHW consumption is more likely to occur. This solution will
bridge the unexpected appearance of large DHW loads and keep user comfort unaffected.

4.2. Evaluation of Performance

Evaluation of the performances of different options require adequate evaluation
methods. As the main purpose of this article is to provide flexibility service by heat pump
without affecting the user comfort, the evaluation procedure concentrates on two factors:
total flexibility energy and unsatisfactory time. To simply the assessment of flexibility
potential, only the quantity of available flexibility is taken into account. For instance,
the evaluation sums up all the offered flexibility energy for the whole day, but neglects
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the average flexibility duration. Additionally, the positive and negative flexibility will be
treated equally. Therefore, the total flexibility energy is estimated with Equation (24):

E f lex,total =
te

∑
t=t0

|E f lex,t| (24)

With regard to the assessment of influences on user comfort, the unsatisfactory time
and temperature drops are applied to perform the negative effects of unforeseen DHW
consumption. Here, the reference temperature of TES (40 °C) is assumed to be the lowest
temperature that can still meet the comfort requirements of the user. Once the temper-
ature drops below 0 °C, its duration will be counted as unsatisfactory time. Meanwhile,
the magnitude of the warm water temperature drops will be described by an additional
parameter, temperature drop, with the assumption that every 5% SOC decrease below 0%
corresponds to 1 °C temperature drop. For the whole day, the overall temperature drops
are estimated by root–mean–square deviation (RMSD) while assuming the expected value
as 0 °C. The RMSD describes how far the actual temperature deviates from the minimum
required temperature and shows the severity of large temperature drops:

tunsat,day =
te

∑
t=t0

[Tdrop,t > 0] · ∆t (25)

Tdrop,day =

√√√√ 1
N

te

∑
t=t0

T2
drop,t (26)

5. Results and Discussion

In this chapter, the results of a case study will be demonstrated. The basic settings and
input data come from Section 2. The minimum run time and pause time of the HP is set at
2 h. The timespan of the simulation is 30 days (January). First, the general format of the
flexibility estimation results is introduced. Then, the three different options handling the
stochastic behavior of DHW consumption will be compared based on the aforementioned
performance evaluation methods.

5.1. Flexibility Offers

Following the estimation procedure introduced in Section 3, the flexibility potential
of the heat pump can be quantified properly. A one-day example is demonstrated with
Figure 6. Here, the total electricity consumption of heat pump is illustrated by the black
line. The value is always negative because, in the context of OpenTUMFlex, all the energy
consumed has negative values. Additionally, the blue and red lines, which are derived
from the black line, are the flexibility of the heat pump, which can potentially be utilized by
the system operator if needed. The horizontal width of the blue and red lines represents the
flexibility duration and the vertical height means the flexibility energy for each time step.
Comparing this diagram with the SOC curve below, their relationship is clearly visible.
When the heat pump is turned on, the SOC of TES will increase, as well as the absolute
value of cumulative energy. Afterwards, the flexibility of the heat pump will be estimated
by Equations (16)–(18). The heat pump cannot always offer flexibility up until the next
switch point because the TES becomes full or empty before the switch point if the flexibility
lasts longer. For instance, in the time period between 11:00 and 12:00, all the flexibility
offers are shorter than half an hour because of the DHW consumption peaks at 12:00.
Therefore, the flexibility can only be partially utilized during this period. The flexibility
power for each time step is shown in the lower diagram.
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(a)

(b)

Figure 6. Results of flexibility estimation (a) cumulative energy of HP electricity consumption (black),
positive flexibility offers (red), negative flexibility offers (blue) and flexibility power (b) actual SOC
profile, minimum SOC for capacity reservation.

Flexibility offers can also be summarized in tabular format, which facilitates the
trading process in the flexibility platform. A prosumer can use OpenTUMFlex to generate
flexibility offers in tabular form and upload it directly to the trading platforms. Table 2
provides an example of how the tabular format of flexibility offers looks like within the
period duration of 16:00–17:45. Here, the scheduled power consumption based on the
optimal operational plan, its corresponding positive and negative flexibility power and
energy can be clearly obtained.

Table 2. Tabular form of flexibility results (16:00–17:45): scheduled power, negative and positive
flexibility power, negative and positive flexibility energy.

Time Popt PNeg PPos ENeg EPos
(kW) (kW) (kW) (kWh) (kWh)

16:00 0 −3.39 0 −1.69 0
16:15 0 −3.38 0 −2.52 0
16:30 0 −3.38 0 −2.52 0
16:45 0 −3.41 0 −1.71 0
17:00 0 −3.41 0 −0.86 0
17:15 −3.38 0 3.38 0 1.69
17:30 −3.39 0 3.39 0 1.70
17:45 −3.25 0 3.25 0 2.47
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5.2. Comparison of Methods Dealing with Unpredictability

As mentioned in Section 4.1, three different options handling the unpredictability
of DHW consumption would avoid the negative effects of flexibility provision on user
comfort. The basic idea of these options is to set a lower bound of SOC of TES to deal
with the unexpected situation. To compare the performance of three different options,
a 15-day case study was performed. The simulations were divided into two sessions for
each option: forecast and validation. The optimal operation plan generated in the forecast
session needed to be reviewed in a validation session. In the forecast session, the DHW
consumption used its average value of the last 30 days, whereas the actual demand profile
of DHW was utilized in the validation session. The calculation of flexibility potential
and unsatisfactory time of the heat pump was performed for 30 days in a row, given
weather data history from the last 30 days, gaining relatively convincing results. In the
simulation round, the comfort loss was considered to occur when the SOC of TES fell
below 0%, because the supply temperature for SH and DHW became lower than 40 °C.
The unsatisfactory time and weighted average temperature deviation are summarized for
each option.

• Forecast: generate optimal schedule for heat pump day-ahead based on predefined
restrictions;

• Simulation: test if the generated optimal schedule of the heat pump can fulfill the
minimum comfort requirement in the viewed day.

In Figures 7–9 the results of the 1-day simualtion based on different options are
illustrated as an example. In the forecast session (a), both the SOC profile and the lower
bound of the TES SOC are demonstrated. In the simulation session (b), both the SOC profile
and the unsigned forecast errors are represented. This makes it easy to compare the SOCs
in these two sessions and observe when the forecast errors occur.

(a) (b)

Figure 7. Results of simulation with dynamic SOC limit: (a) Forecast (b) Simulation.

(a) (b)

Figure 8. Results of simulation with constant SOC limit: (a) Forecast (b) Simulation.
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(a)
(b)

Figure 9. Results of simulation with parabolic SOC limit: (a) Forecast (b) Simulation.

In Figure 7, the dynamic constraint used to cover the stochastic DHW usage is applied.
The red line indicates the SOCs over the day. It can be seen the SOCs of the TES stay always
in the required range, between the full state and the minimum bound determined by a
predefined dynamic curve. By applying these extra limits for the SOC of the TES, it is
expected that the reserved fraction of the thermal storage capacity can provide a “safety”
margin for prosumer comfort, which means that the warm water temperature in the TES
should not drop below a certain threshold even if there is a serious prediction error in the
DHW consumption. To test its performance, the simulation session is needed. Given that
the time schedule of the heat pump on the viewed day is unchanged, the real SOC curve of
TES can be obtained by simulating the heating system again with actual DHW consumption
instead of forecasts. Due to some unpredictable DHW consumption, as indicated by the
grey lines in (b), it can be observed that the SOC of TES drops below 0% between 10:00 und
14:00. This means the comfort loss occurs because of the relatively low SOC states of TES in
this period. This would appear once the DHW consumption on the observed day greatly
exceeds the long-term average, because the forecast of the DHW consumption uses the
average of the last 30 days. From (b), it is obvious that the largest forecast error occurs at
08:00. As a result, the SOC of the TES decreases by 30% after this time point, which further
leads to a temperature drop of the warm water in the TES below 40 °C.

Similarly, this procedure can be performed for the case with a constant bound of
SOC. The advantage of using a constant bound of SOC is that it provides a higher “safety”
margin to cope with the unpredictable DHW consumption. However, it reserves more
capacity in the TES and may cause losses in the flexibility potential, because the volume
of the TES offering flexibility is not exhausted. In Figure 8, a better performance can be
viewed when comparing (a) and (b), because the constant constraint avoids the low-SOC
situation and allows for an additional buffer for the prosumer comfort. Here, the SOC of
TES remain in the required range in the simulation session.

In addition, a combination of the first and second option would be meaningful as an
alternative solution for capacity reservation in the TES, namely a parabolic lower bound.
This option gives a moderate “safety” margin compared to the other options and is used to
find a better balance between the user comfort and the flexibility potential. According to
the simulation results, the scenario with parabolic limit shows no obvious improvement in
Figure 9.

The analysis above refers to this 1-day simulation and only gives a brief overview of
the impacts of different options. In the next section, the advantages and disadvantages
of each option will be analyzed quantitatively in a statistical way with the help of the
indicators discussed in Section 4.2.

5.3. Evaluation of Methods for Capacity Reservation

In order to quantitatively analyze the advantages and disadvantages of each option,
the indicators discussed in Section 4.2 will be used, including total flexibility energy,
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unsatisfactory time and temperature deviation. Additionally, the situations after using
flexibility will also be discussed. As when and how much flexibility would be required by
the system operator is unknown, the unsatisfactory time and temperature deviation after
using flexibility are only roughly estimated by assuming that each flexibility is equally
likely to be utilized by the system operator. The acquired values can still demonstrate how
flexibility usage will influence these indicators.

As shown in Figure 10, the unsatisfactory time denotes the negative impact of inaccu-
rate DHW consumption forecasts on customer comfort. Within the simulation results of
30 days, option 2 with constant SOC restriction has the best performance, with a maximum
unsatisfactory time of 75 min/day and mean value of 2.5 min/day, while others lead to
more unsatisfactory times in terms of magnitude and quantity. In addition, the distribution
of temperature drops in every 15 min time-block can be observed in Figure 11. They all
have about the same average value. Nevertheless, option 2 with constant SOC restriction
still has a small degree of variation, in which the most severe temperature drop is limited
to 3.7 °C.

Figure 10. Distribution and mean value of the unsatisfactory time for three different capacity
reservation options.

Figure 11. Temperature drops for three different capacity reservation options.

Table 3 summarizes the evaluating indicators. In general, all three options resulted in
better performance compared to the reference scenario. Among the solutions, option 1 with
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dynamic restriction provides slightly more flexibility potential, while option 2 with con-
stant restriction produces the least flexibility. Nevertheless, the differences in the available
flexibility energy among the three options are not particularly noticeable. As opposed to
this, the unsatisfactory time and temperature drop show a significant difference. The pro-
sumer will notice little comfort loss in the scenario with a constant SOC lower limit, as its
unsatisfactory time has a mean value of 2.5 min per day. In contrast, the results imply
that the prosumer will suffer from comfort losses for 41.0 min for the first dynamic option,
and 25.5 min for the parabolic one on a daily average. Simultaneously, these two options
have reached 2.9 °C and 2.7 °C of temperature drop, statistically. The mean value here is
slightly greater than these in Figure 10 because it also considers the outliers. Furthermore,
how the flexibility usage will influence these evaluating indicators is revealed. In general,
the influence of flexibility usage on the unsatisfactory time is not certain, although temper-
ature drops become greater. In summary, either option, as it stands, is effective in reducing
the impact of the stochasticity in DHW consumption. In the case of using option 2, there is
only an average of around 2.5 min per day when the water supply temperature becomes
too low, and the maximum temperature drop is within 2.3 °C. Therefore, the comfort of
the prosumer is only affected to a fairly small extent, when he prepares to offer flexibility
through this capacity reservation strategy.

Table 3. Comparison of three options dealing with the stochastic characteristics of DHW consumption
in total flexibility energy, unsatisfactory time and temperature drop.

Option EFlex tunsat Tdrop tunsat,Flex Tdrop,Flex
(kWh/d) (min/d) (◦C) (min/d) (◦C)

1 158 41.0 2.9 38.7 3.2
2 140 2.5 2.3 3.7 2.4
3 153 25.5 2.7 27.3 2.9

ref 158 51.5 2.8 48.6 3.0

To conclude the results from the case study, the three options suggest a slightly differ-
entiated flexibility potential. Nevertheless, the simple strategy with a constant SOC lower
bound for the TES performs best with regard to the unsatisfactory time and the temperature
drop and should be proposed to deal with the demand uncertainty in future research.

5.4. Comparison of Flexibility Utilization Approaches

From the previous studies, there are lots of approaches studying the demand flexi-
bility of heat pumps. In [8], the author uses a novel methodology, Flexibility Function,
to characterize the energy flexibility. It mainly investigates the demand response curve of
different types of buildings to penalty signals and uses indicators to quantify and evaluate
the cost-saving potential of using this method. This study gives a good perspective to
exploit the flexibility potential of buildings and districts with regard to diverse penalty
signals (price, CO2, etc.). However, it only estimates the flexibility from a macroscopic
perspective, leaving all control of the household appliances to the intelligent controller,
without accounting for the prosumer comfort. In [10], it focuses on proposing new control
strategies that maximize the gains from the demand side response. It uses complex model-
ing to make the results more convincing. At the same time, however, the complexity of
its models makes its application elsewhere difficult. In addition, it does not consider the
benefits of using flexibility for prosumers from an economic perspective. In [30], the time
series of the flexible power consumption of the heat pump is optimized with regard to
peak power reduction and load factor increase. Hence, its objective is to find an operating
plan of the heat pump that is optimal for grid operation. This methodology can estimate
the impact of demand responses of the heat pump on the grid, but requires a centralized
control of a pool of heat pumps. In addition, this approach is not feasible to generate
flexibility offers of individual residential units. Therefore, the research results cannot be
implemented directly in the flexibility trading.
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In contrast with these previous studies, this paper focuses on the decentralized man-
agement of the flexibility, instead of the centralized control or responses to penalty signals.
The prosumers themselves decide the operating plan of the heat pump by Home Energy
Management System and trade the alternative operation options of the heat pump on
the flexibility market. Therefore, it describes an approach to utilize the flexibility from a
microscopic perspective. Additionally, the methodology evaluate the demand flexibility by
indicators such as flexibility power, energy and duration with a time interval of 15 min.
This nature enables the trading on the flexibility market. Furthermore, this study inves-
tigates the warm water temperature drops inside the TES when offering flexibility and
reserves a fraction of the thermal storage capacity in coping with the risk of comfort losses.
The simulation results of 30 days denote that a constant SOC lower bound for the TES
results in the best performance.

6. Conclusions

This paper proposes an novel approach to quantifying the flexibility of heat pumps
combined with a thermal energy storage with regard to necessary technical restrictions. It
suggests the decentralized flexibility management, which allows the prosumers to manage
and utilize the residential flexibility actively. Furthermore, it analyzes the impact of offering
flexibility on the thermal comfort of prosumers for the first time, and incorporates a viable
solution to cope with the risk of unpredictable domestic hot water consumption. From the
results, it is revealed that the capacity reservation in the thermal energy storage using a
constant state of charge lower bound achieves the best performance. The simulations with
this solution indicate that there is an average of 2.5 min unsatisfactory time per day and
the maximum temperature drop never exceeds 2.3 °C given a predetermined operation
schedule of the heat pump. Therefore, the proposed methodology enables the day-ahead
flexibility trading on the local market to address future needs regarding flexibility markets
and increases the prosumer acceptance, offering flexibility by reducing their discomfort,
which contributes to energy transition in the long term.

All presented models algorithms are incorporated as an open-source tool in Open-
TUMFlex for the interested parties and provide them with the opportunity to integrate the
implemented methods for their research such as the investigation of the flexibility potential
in Home Energy Management System and the local flexibility market design. Within the
framework of OpenTUMFlex, the proposed flexibility quantification methodology will be
further developed and evaluated. Specifically, more data will be collected to cover more
types, such as air-source heat pumps from different manufacturers. The possibility of
applying non-linear optimization programming will have to be investigated to find a better
balance between model accuracy and computation time. Additionally, the development of
aggregation methods will contribute to the widespread use of the flexibility potential in
domestic heat pumps.

Supplementary Materials: The model OpenTUMFlex is open-source and accessible online at https:
//zenodo.org/record/4251512.
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Abbreviations

AS Ancillary Service
ASHP Air Source Heat Pump
BAT Battery
CHP Combined Heat and Power
COP Coefficient of Performance
DHW Domestic Hot Water
DR Demand Response
EV Electric Vehicle
HEMS Home Energy Management System
PV Photovoltaic
SH Space Heating
TES Thermal Energy Storage
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