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Abstract: Better accuracy in short-term forecasting is required for intermediate planning for the
national target to reduce CO2 emissions. High stake climate change conventions need accurate
predictions of the future emission growth path of the participating countries to make informed
decisions. The current study forecasts the CO2 emissions of the 17 key emitting countries. Unlike
previous studies where linear statistical modeling is used to forecast the emissions, we develop
a multilayer artificial neural network model to forecast the emissions. This model is a dynamic
nonlinear model that helps to obtain optimal weights for the predictors with a high level of prediction
accuracy. The model uses the gross domestic product (GDP), urban population ratio, and trade
openness, as predictors for CO2 emissions. We observe an average of 96% prediction accuracy among
the 17 countries which is much higher than the accuracy of the previous models. Using the optimal
weights and available input data the forecasting of CO2 emissions is undertaken. The results show
that high emitting countries, such as China, India, Iran, Indonesia, and Saudi Arabia are expected to
increase their emissions in the near future. Currently, low emitting countries, such as Brazil, South
Africa, Turkey, and South Korea will also tread on a high emission growth path. On the other hand,
the USA, Japan, UK, France, Italy, Australia, and Canada will continuously reduce their emissions.
These findings will help the countries to engage in climate mitigation and adaptation negotiations.

Keywords: CO2 emission; artificial neural network model; forecasting; simulation

1. Introduction

There is wide consensus among scientists and policymakers that global warming as
defined by the Intergovernmental Panel on Climate Change (IPCC) should be pegged at
1.5◦ Celsius above the pre-industrial level of warming in order to maintain environmental
sustainability [1]. The threats and risks of climate change have been evident in the form
of various extreme climate events, such as tsunamis, glacier melting, rising sea levels,
and heating up of the atmospheric temperature. Emissions of greenhouse gases, such as
carbon dioxide (CO2) are the main cause of global warming. The Kyoto protocol and the
subsequent Paris climate summit have urged the global North and South to cooperate
and bear the responsibility of reducing the CO2 emissions together on a partnership
basis. However, climate politics is often not in sync with all the agreements of the Paris
climate deals. Especially, since the United States (US) is not a signatory to the Paris
climate accords, the international cooperation sought between the industrialized and
industrializing countries is slow. Given this broad context of looming climate change threats
and the slow pace of actions on reducing CO2 emissions by the countries, more scientific
research must be undertaken to understand the exact nature of the threats. Knowing the
level of CO2 emissions by the high emitting countries in near future will provide actionable
insights on climate policy. Such information will aid in fostering the cooperation talks in the
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upcoming United Nations (UN) COP26 climate conference from 31 October–12 November
2021 in Glasgow, United Kingdom (UK).

Estimating CO2 has often been done in the context of a school of thought in research,
popularly known as the environmental Kuznets curve (EKC) hypothesis. This hypothesis
states that environmental degradation, such as air pollution (CO2, SO2, NO2, and SPM
emissions), water pollution, and solid waste generation follow an inverted-U relationship
with economic growth [2,3]. During the initial level of a country’s economic growth, the
environmental pollution increases due to rapid expansion in economic activities, however
after a threshold level of income per capita in the country is reached, the environmental
quality improves because of a higher share of public funds being devoted to improving
the environmental quality [4–6]. Despite the last three decades of empirical research in
an attempt to estimate the turning point of this EKC, there has still not been consensus
about a global turning point. However, there has been tremendous growth in terms of
methodological sophistication to estimate both time-series and panel data available for
various environmental pollutants and countries [7–12].

A detailed literature review has been undertaken covering the most recent published
papers to present the state-of-the-art advancements in EKC studies. Most of these studies
have highlighted the role of renewable energy in reducing CO2 emissions. Dong et al. [13]
examined the dynamic causal links among per capita carbon dioxide (CO2) emissions, per
capita GDP, per capita fossil fuels consumption, per capita nuclear energy consumption,
and per capita renewable energy consumption for China. They found that both nuclear
energy and renewable energy play important roles in mitigating CO2 emissions in both
the short and long run, while fossil fuels consumption is indeed the dominant reason
for promoting CO2 emissions. They observed that renewable energy has a higher CO2
mitigating effect than nuclear power. Kim and Park [14] from a study of 30 countries for
a period of 2000–2013, suggested that a developed financial market in a country helps
deploy more renewable energy and, in turn, can reduce CO2 emissions. Paramati et al. [15]
from panel data of G20 countries show that foreign direct investment (FDI) inflows signifi-
cantly reduces CO2 emissions in both developed and developing economies while stock
market growth reduces in developed economies. They also found that renewable energy
consumption substantially reduces CO2 emissions and increases economic output across
the countries in their panels.

In a study, Li et al. [16] used the data from China and Nigeria from 1991–2014 to
derive the energy efficiency measures in the mining and extractive related sectors. Using
several econometric time series methods, they concluded that energy efficiency in the
mining and extractive-related sector and the circular economy have not translated into
CO2 emission reduction in both countries. However, economic growth, energy use (non-
renewable energy), and clean energy substitution (renewable energy) are essential factors
in mitigating CO2 emissions. Lorente et al. [17] employed a carbon emission function to
investigate the relationship between economic growth and CO2 emissions in five European
Union countries, namely, Germany, France, Italy, Spain, and the United Kingdom, for the
1985–2016 period. They found an N-shaped relationship between economic growth and
CO2 emissions in the EU-5 countries. Further, they observed that renewable electricity
consumption, natural resources, and energy innovation improve environmental quality.
Using a panel of 20 organisations for economic co-operation and development (OECD)
nations for the period, 1870 to 2014, Churchill et al. [18] found support for the EKC
hypothesis for the panel as a whole with turning points in income per capita that lie
between $18,955 and $89,540 (in 1990 US$).

A study by Chen et al. [19] used the Chinese data for the period 1980–2014 and
explored the relationships among per capita CO2 emissions, GDP, renewable and non-
renewable energy production, and foreign trade. They found that there is a long-run
relationship among those variables. They also found that China does not follow the
EKC for CO2 emissions under the influence of economic growth, non-renewable energy
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production, and foreign trade. However, the addition of renewable energy production
variables supported the U-shaped EKC hypothesis in the long run.

Using data for 1995–2018, pooled mean group-autoregressive distributed Lag (PMG-
ARDL) estimator, and heterogeneous causality tests, Gyamfi et al. [20] failed to confirm
an N-shaped EKC in the emerging seven, rather they confirm the existence of an inverted
U-shaped EKC in the study countries. They suggested the increased use of renewable
energy to mitigate pollutant emissions in these countries. Using the data from a study of
BRICS economies for the period of 1980 to 2016, Khattak et al. [21] investigated the complex
interaction between innovation, renewable energy consumption, and CO2 emissions, under
the EKC framework. They found that innovation activities have failed to disrupt CO2
emission in China, India, Russia, and South Africa, except for Brazil. They also showed that
renewable energy consumption has mitigated CO2 emission in the BRICS panel, Russia,
India, and China but not in South Africa. Further, except for India and South Africa, they
observed the EKC hypothesis in all the BRICS economies. Employing a stochastic impacts
by regression on population, affluence, and technology (STIRPAT) framework to the data
for the period of 1990–2017 from West Asia and Middle East nations, Kihombo et al. [22]
probed the effects of technological innovation, financial development (FD), and economic
growth (GDP) on the ecological footprint (EF) controlling for urbanization. They observed
that a 1% upsurge in technological innovation decreases EF by 0.01%. However, a 1% rise
in FD boosts the level of EF by 0.0016%, inferring that FD stimulates ecological degradation.
They also showed the EKC hypothesis in the selected countries.

In India’s case, using data for a period of 1990–2015 and several time series econometric
models, Kirikkaleli and Adebayo [23] found a long-run cointegration relationship between
consumption-based carbon dioxide emissions and its possible determinants. They also
found that public-private partnership investment in energy makes a positive contribution
to consumption-based carbon dioxide emissions in the long run. Further, public-private
partnership investment in energy and renewable energy consumption also significantly
causes consumption-based carbon dioxide emissions at different frequency levels in the
country. Using annual data from six South Asian economies for a period of 1980–2016 and
autoregressive distributed lag (ARDL) regression, Murshed [24] examined the validity of
the greenhouse emissions-induced EKC hypothesis, controlling for liquefied petroleum
gas (LPG) consumption, FDI inflows, and trade openness. The analysis confirms the
authenticity of the EKC hypothesis for Bangladesh, India, Sri Lanka, and Bhutan. They
suggested fuel-diversification policies for the government’s of these countries. Using the
data for a period of 1995–2017 from 34 high-income countries from three continents (Asia,
Europe, and America), Khan et al. [25] explained the nexus of GHG emission with tourism,
financial development index, energy use, renewable energy, and trade. They observed a
country-level reciprocal connection of GHG with financial development in 11 countries,
renewable energy in 22 countries, trade openness in five countries, and tourism in 12
countries. Using two-panel data sets of 17 major developing and developed countries as
well as six geo-economic regions of the world during 1990–2014, Yao et al. [26] examined
the dynamic relationship between renewable energy consumption rate (RER) and the EKC
hypothesis. Using several econometric methods, they verified both the EKC and renewable
energy Kuznets Curve (RKC) hypotheses, indicating that a 10% rise in RER would lead to a
1.6% carbon emission reduction. Saleem et al. [27] used the data for a period of 1980–2015
from selected Asian countries and employing several econometrics models, found the
presence of an EKC hypothesis, where the impact of GDP growth and the square of GDP
growth on CO2 emissions are positive and negative, respectively. They also found that
lower-income economies do not support the EKC hypothesis.

Employing the second-generation panel cointegration methodologies and data for
1984–2016, Ahmad et al. [28] analyzed the linkages between natural resources, techno-
logical innovations, economic growth, and the resulting ecological footprint in emerging
economies. They observed the existence of slope heterogeneity across countries and cor-
relation amongst cross-sectional units. They also found a stable, long-run relationship
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between the ecological footprint, natural resources, technological innovations, and eco-
nomic growth. Another study in India by Usman et al. [29] studied the role of energy
consumption and democratic regimes in the environmental degradation function for a
period of 1971–2014. Using different time series econometric models, they confirmed the
EKC hypothesis and divulged that energy consumption increases environmental degra-
dation both in the long and short run. They suggested prioritizing energy conservation
policy to mitigate environmental degradation and spur economic growth. Using data from
25 manufacturing subsectors in 38 countries from 2000 to 2014 and using an endogenous
finite mixture model, Yang et al. [30] probed the effect of renewable energy in the EKC
relationship. They found that with the growing impact of renewable energy consumption,
nearly half of the sample countries and two-thirds of the subsectors have experienced
the transformation of the nexus between manufacturing growth and emissions. Bilgili
et al. [31] employed the panel quantile regression technique on a dataset from thirteen
developed countries over the period 2003–2018 to find an inverted U-shaped nexus be-
tween economic growth and carbon emissions only in higher carbon-emitting countries,
thus, confirming the EKC hypothesis. However, the U-shaped nexus is more predominant
in lower carbon-emitting countries. They also found that energy efficiency research and
development is more effective in curbing carbon emissions than fossil fuels and renewable
energy research and development.

The literature review shows that significant advancement has taken place in the study
of EKC in terms of the methods used. In particular, the dynamic time-series and panel
cointegration models with the use of structural breaks have produced credible evidence.
However, these dynamic time-series models used mostly the lag length to make the model
dynamic and estimate the long-run relationship. Moreover, the time series or panel data
estimations produce a single estimated parameter for the relationship within the whole
sample period. The long-run relationship between CO2 emissions and its predictors, such
as GDP per capita, renewable energy consumption, and trade openness may not have been
linear as the previous studies with statistical methods had tried to estimate. A few of the
studies used the structural breaks to account for the major shifts in the environmental
regulations and policies that may have affected the long-run relationship, but they finally
showed constant estimates in observing the effect of GDP on environmental degradation
for the whole time period. If the apparent nonlinearities existing in this relationship over a
period of time are considered explicitly, more accurate predictions can be made, which has
been done in the current study.

The current study aims to forecast the level of CO2 emissions for 2017–2019 at the
global level. CO2 emission is the key contributor to climate change and there is a global
consensus that the mean global surface temperature must be contained at 1.5 degrees
C above the pre-industrial level. Consequently, several countries have signed the Paris
agreement to reduce emissions within their national boundaries. Against this backdrop, it
is essential to forecast the CO2 emissions levels in the countries that emit a higher share.
Such forecasting will help the national governments to adjust their climate policies.

Forecasting of CO2 emissions at business as usual (BAU) scenario is a necessary
tool for major greenhouse gas emitting countries for two main reasons. First, the global
circulation models that are used to assess the physical impacts from climate change needs
emissions as inputs. Since the countries included in this study are responsible for 79% of
global emissions, forecasts of their emission level in the short run will be essential to gauge
the impacts of climate change at the global level. Second, the responsibility to reduce CO2
emissions as agreed at the Paris climate convention is proportional to the BAU levels of
emissions. Hence, accurate prediction of emissions will put the right value of resources
that these countries need to commit for the reduction of emissions. Since there is a trade-off
between emission reduction and economic growth, these countries will be anxious that
their emission levels are not underpredicted. Some of the countries may withdraw from a
multilateral climate treaty if they find that they are at an economic disadvantage due to
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their pledge to reduce emissions. Accurate prediction of the BAU emission levels holds
significance for a feasible action plan by the countries to reduce the global CO2 emissions.

Considering that there might be a nonlinear relationship between the indicators
of economic growth and the CO2 emissions, we develop a multilayer artificial neural
network (MLANN) model. A multilayer artificial neural network model is more efficient in
capturing the nonlinearity present in the time series data and provides higher accuracy in
forecasting the CO2 emissions based on the past values of the emissions and the economic
indicators, such as GDP, population density, and urbanization. Such forecasts for the near
future will provide insights into regulations on pollution control.

The contributions of the paper are:

(i) Formulation of CO2 emissions prediction as an optimization problem.
(ii) Development and performance evaluation of MLANN based model for prediction of

CO2 emissions.
(iii) Forecasting of the missing CO2 emission values for the years 2017–2019.
(iv) Analysis of the results and their economic impact.

The rest of the paper is organized as follows. Materials and methods are discussed in
Section 2. Section 3 deals with the development of a CO2 prediction model using MLANN.
Details of the simulation study are given in Section 4. It also contains data collection and
preprocessing, training and testing of the model. Section 5 presents results and discussion.
Finally, conclusion of the paper is presented in Section 6.

2. Materials and Methods

We have considered two types of countries—first, countries that emit 2% or more
share of global CO2 emissions and countries that emit less than 2% share. The selection of
countries in this study is based on the data compiled by the International Energy Agency
(IEA), which estimates carbon dioxide (CO2) emissions from the combustion of coal, natural
gas, oil, and other fuels, including industrial waste and non-renewable municipal waste.
The specific data used are reproduced from the website Each Country’s Share of CO2
Emissions | Union of Concerned Scientists (ucsusa.org) and are given below in Figure 1.

Table 1 describes the countries considered in this study under two groups—high
emission and low emission countries.

Table 1. High and Low emission countries.

Sl. No.
Group 1

High Emission Countries (with ≥2%
Share)

Group 2
Low Emission Countries (with 1%

Share)

1 China (28%) Brazil (1%)
2 U.S. (15%) South Africa (1%)
3 India (7%) Mexico (1%)
4 Japan (3%) Turkey (1%)
5 Iran (2%) Australia (1%)
6 South Korea (2%) United Kingdom (1%)
7 Saudi Arabia (2%) Italy (1%)
8 Indonesia (2%) France (1%)
9 Canada (2%)
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Figure 1. Share of CO2 emissions in high and low emitting countries.

The data on the output parameter, i.e., CO2 emissions and the input parameters,
such as GDP in constant US$ measured in 2011, trade as a percentage of GDP, and urban
population for all the countries are drawn from the World Bank database. The period of
the study is 1960 to 2016. The forecasting period is 2017, 2018, and 2019.

Figure 2 shows the GDP (constant in 2010 US$) for the countries considered in this
study, in 1990 and 2016. Although the period of study is from 1960 to 2016, we chose the
more recent years to compare the growth of the GDP. The countries shown in the X-axis are
ordered from the highest emission status to the lowest among the 17 countries. The Y-axis
shows the cumulative annual growth rate (CAGR) between 1990 and 2016. The countries
showing a high growth rate in GDP are expectedly China with a CAGR of 9.5%, India
with 6.2%, Indonesia with 4.8%, and Turkey with 4.4%. the countries that experienced low
growth rates are Italy with 0.7%, Japan with 0.96%, and France with 1.56%.
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Figure 2. The GDP figures and its growth for the selected countries.

Figure 3 shows the CO2 emissions of the 17 countries and their CAGR for the period
1990 and 2016. The countries that accounted for the highest growth in CO2 emissions
between 1990 and 2016 are China with 6.17%, India with 5.5%, Saudi Arabia with 5%, Iran
with 4.8%, Brazil with 4%, and Turkey with 3.7%. The countries that have managed to rein
in their emissions growth are UK with −1.16%, Italy with −1.1%, France with −0.88%,
the USA with 0.33%, Japan with 0.41%, and Canada with 0.9%. The growth trends in
Figures 2 and 3 suggest that the highly developing countries tend to emit more CO2 while
the already developed countries have slowed down their emissions. This evidence for the
period 1990–2016 is close to the assertions of the EKC.

However, future forecasts are needed to convince the developed countries to commit
more financial support for the developing countries to motivate the latter to sacrifice some
of their economic ambitions. The trade-off that the highly emitting developing countries,
such as China, India, and Brazil have to accept to reduce their CO2 emissions in order
to comply with their commitments at the Paris climate summit agreement, is substantial.
Unless they receive financial support from the industrialized countries as agreed upon
by the Paris climate summit, these countries are unlikely to reduce their emission levels.
We attempt to forecast the CO2 emission levels of 17 countries that account for nearly
79% of the global emissions. By using the highly complex and non-linear artificial neural
network (ANN) models that can accurately forecast the future emission values, we provide
actionable insights to the policymakers to engage in more active dialogues to achieve the
Paris agreement. Using the multilayer ANN model, we forecast the CO2 emissions for
Group 1 and 2 types of countries (Table 1) for 2017–2019.
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Figure 3. The CO2 emission (kt) and its CAGR for the selected countries.

3. Development of the Multilayer Artificial Neural Network (MLANN) Based CO2
Forecasting Model

Statistical models are not able to estimate the relationships accurately when the data
are uncorrelated, non-stationary, nonlinear and chaotic [32]. To overcome this problem
various intelligent models are proposed by the researchers. The MLANN is a nonlinear,
multi-layered, fully connected feedforward network that can model the nonlinearity of the
data appropriately [33]. The MLANN model is trained using past data and optimizes the
weights that will be used to forecast the CO2 emissions based on the inputs given. The
flowchart shown in Figure 4 is used for the development of a MLANN based prediction
model.

The complete structure of the MLANN based prediction model is given in Figure 5.
Let I, JandK represent the indices for the input, hidden and output layers respectively.
Where I = the number of inputs, J = the number of neurons in the hidden layer, and K
= the number of neurons at the output layer. In this CO2 prediction model the output is
one value, so for this study the value of K = 1. Let P be the number of input patterns
and let any ith input pattern is given as pi. Each input pattern is supplied to the MLANN
model sequentially, multiplied with the weights, sum together, and finally passed through
the nonlinear activation function (tanh) to produce the output at the first hidden layer.
This process is repeated for the next hidden layers and output layer. Let the estimated
output of the network is estk. The error value is obtained by comparing the estimated value
with the desired value or target value, tk. The backpropagation learning rule [33] given in
Equations (6)–(11) is used to update the weights and bias values of each layer. This process
continues until the squared error is minimum. The detailed equations of feed-forward
computation and rules to update the weights and bias are discussed below.
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Figure 4. Methodology of MLANN based CO2 prediction model.

Figure 5. A MLANN based CO2 emission prediction model.
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Refereeing to the above figure, the output of the kth output neuron estk is given [33] as:

estk = tan h(hk) (1)

where

hk =
J

∑
j=1

est1jwkj + wbk (2)

est1j = the output obtained at jth hidden neuron.
wkj = weights connecting jth hidden neuron and kth output neuron.
wbk = bias at kth output neuron.
In the same way, the output at neuron of jth hidden layer, est1j is computed [33] as—

est1j = tan h(hj) (3)

where

hj =
I

∑
i=1

piwji + wbj (4)

pi = ith input pattern
wji = weights between ith input and jth hidden neuron
wbj = bias at jth hidden neuron

The error value is obtained by comparing the output of the prediction model, estk
with the corresponding target value, tk. So,

ek = tk − estk (5)

The weights connecting the neurons of hidden and output layers, wkj are updated [33] by:

wkj = wkj + µ× δk × est1j (6)

where

δk = ek ×
(
1− est2

k
)

2
(7)

µ = learning parameter, (0 < µ < 1)

The bias weight is updated as:

wbk = wbk + µ× δk (8)

Similarly, the weights connecting the input and the hidden layer neurons, wji are
updated [33] as:

wji = wji + µ× δj × pi (9)

where

δj = δk × wkj ×
(
1− est1j

2)
2

(10)

The updating of bias weight of jth neuron in the hidden layer is done [33] as:

wbj = wbj + µ× δj (11)

The Equations (1)–(11) are the key equations used in the development of the MLANN
based CO2 forecasting model.
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4. Simulation study

The CO2 emissions prediction is formulated as an optimization problem. The model
is having three inputs and one output. The inputs are fed to the model and the obtained
output is compared with the available target value until the squared error is minimum.
Matlab 2016 package is used for the simulation of the problem.

(a) Data collection and preprocessing:

The data for 9 countries under Group 1 and 8 countries under Group 2 are collected
from 1960 to 2016 till which the comprehensive data are available in the World Bank
database. CO2 emissions are used as the output parameter for which the out-of-sample
forecasting has been done. The variables, such as GDP (in constant 2010 US$), trade ratio,
and urban population are used as the inputs in the MLANN model. The data has been
preprocessed as the first step in the modeling wherein the data for all the variables have
been normalized. During normalization, each value of the four variables is divided by the
corresponding maximum value so that all values can lie between 0 and 1. Normalized
data generally makes the learning process and the convergence speed faster. If all features
do not have similar ranges of values, then the gradients can move to and fro and take
a long time before they can attain the global minimum. To circumvent this problem in
the learning process, normalization of the data is necessary. Normalization of the data is
followed by preparation of training set and testing set. Randomly selected 80% of data are
used for training of the model and the rest 20% of data is used for testing of the developed
model. Simulation is carried out by varying the ratio of data division (70:30, 80:20, and
90:10) and an 80:20 ratio is selected finally as it gives the best result. Further, the three
missing values of CO2 emission for the year 2017–2019 are calculated using the optimized
weights of MLANN based model.

(b) Training of the model:

Out of the total of 57 patterns (1960 to 2016), the training set consists of 46 patterns that
are randomly chosen, and the remaining 11 patterns are used for testing of the calibrated
model. An input pattern of data consists of the values of trade ratio, urban population, and
GDP. The corresponding CO2 emission value is the target value for the training of the model.
A 9:3:1 structure is used for the simulation. It consists of two hidden layers with nine and
three neurons respectively. The connecting weights between the layers and the bias weights
are randomly initialized to lie between −0.5 to 0.5. The 9:3:1 structure is fixed after doing
experiments by varying different structures of MLANN as it gives minimum error value.
In each iteration, one input pattern is given to the model, and feedforward processing
is done to get the estimated output from the model. Feedforward processing involves
summing the weighted inputs, adding the bias weights, and then passing it through the
activation function or nonlinear function (tanh). The estimated output is compared with
the corresponding target value to obtain the error. The backpropagation (BP) training
algorithm is used to update the connecting weights and bias weights. The value of the
learning parameter is taken as 0.1. The same process is repeated until all training patterns
are exhausted. This completes one experiment. The experiment is repeated until the mean
squared error (MSE) is minimized. The MSE value for each experiment is stored and
plotted to observe the convergence characteristics. The final value of connecting weights
and bias weights are frozen for testing of the developed model.

(c) Testing of the model:

Once the training process is complete, the developed MLANN based model is ready
to be used for evaluation. The 20% of the testing patterns are applied to the model
sequentially and the estimated output is noted. The estimated output is compared with
the corresponding desired value and the mean absolute percentage error (MAPE), mean
absolute error (MAE) and root mean square error (RMSE) are tabulated in Tables 2 and 3
which indicate the performance of the model. The MAPE, MAE and RMSE are calculated
using Equations (12)–(14). Also, the comparison of the actual and estimated CO2 values
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during testing are plotted and exhibited in Figure 6a–i for Group-1 countries. For Group-2
countries, it is given in Figure 7a–h.

MAPE =
1
n

n

∑
i=1

|(t(n)− est(n)|
t(n)

× 100 (12)

MAE =
1
n

n

∑
i=1
|(t(n)− est(n)| (13)

RMSE = sqrt(
1
n

n

∑
i=1

(t(n)− est(n))2 ) (14)

MAPE =
1
n

n

∑
i=1

|(Outobs −Outest)|
Outobs ×100

where t(n) = target value

est(n) = estimated value

n = Number of testing patterns

Table 2. MAPE, MAE and RMSE values obtained during testing for Group-1 countries.

Sl. No. Name of
Country

No. of Total Data
Samples

Available

MAPE
Values(%) MAE RMSE

1 India 57 (1960–2016) 2.9287 0.0198 0.0235

2 China 57(1960–2016) 1.7896 0.0113 0.0150

3 Iran 57(1960–2016) 2.3610 0.0262 0.0277

4 South Korea 57 (1960–2016) 2.4803 0.0244 0.0324

5 Canada 57 (1960–2016) 2.9358 0.0244 0.0277

6 Indonesia 57 (1960–2016) 9.6898 0.0767 0.1077

7 USA 47 (1970–2016) 2.7168 0.0265 0.0308

8 Japan 47(1970–2016) 3.5206 0.0214 0.0264

9 Saudi Arabia 49 (1968–2016) 5.9153 0.0462 0.0535

Table 3. MAPE, MAE and RMSE values obtained during testing for Group-2 countries.

Sl. No. Name of
Country

No. of Total
Samples MAPE (%) MAE RMSE

1 Brazil 57 (1960–2016) 5.3345 0.0330 0.0412

2 South Africa 57 (1960–2016) 2.7524 0.0279 0.0379

3 Mexico 57 (1960–2016) 1.9266 0.0200 0.0224

4 Turkey 57 (1960–2016) 2.1538 0.0162 0.0209

5 Australia 57 (1960–2016) 3.4001 0.0367 0.0417

6 UK 47(1970–2016) 3.5419 0.0410 0.0502

7 Italy 45(1970–2014) 8.8015 0.0653 0.0769

8 France 55(1960–2014) 3.8158 0.0241 0.0333
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Figure 6. Cont.
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Figure 6. Comparison of the actual and estimated value of CO2 emissions using the MLANN for Group-1 countries during
the testing of the model.

Figure 7. Cont.
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Figure 7. Comparison of the actual and estimated value of CO2 emission using MLANN for Group-2 countries during
testing.

5. Results and Discussion

From Table 2 it is observed that the MAPE values for Group-1 countries lie between
1.78 to 3.52% except for Indonesia and Saudi Arabia. The MAPE value is 5.91 for Saudi
Arabia and 9.68 for Indonesia. The MAPE is an indicator of how close the predicted values
are to the actual values. The RMSE values lie between 0.01 to 0.05 for Group I countries
except for Indonesia. The MAE values lie between 0.01 to 0.07 for Group I countries.
The MAPE values for the Group-2 countries are given in Table 3 which shows that the
values lie between 1.92 and 3.8 except for Brazil and Italy. The value is 5.33 for Brazil and
8.08 for Italy. The RMSE values lie between 0.02 to 0.07 and the MAE values lie between
0.01 to 0.06 for Group II countries. As the MAPE values are less than 4% for most of
the countries considered in this study, the MLANN model is able to predict the values
reasonably accurately with less percentage of error except for a few cases. The comparison
of actual and estimated CO2 values obtained during testing is shown in Figures 6 and 7
for Group-1 and Group-2 countries respectively. In most cases, the actual and estimated
values are close to each other.

However, the gap between the actual and predicted values of CO2 emissions found
during the testing phase of the model for Indonesia, Saudi Arabia, Brazil, and Italy is due
to the wide fluctuations observed in their emissions data during the period of the study.
Although the MLANN model developed in this study is robust to the nonlinearities in the
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data, wide fluctuations may still increase the percentage of error as is the case for these
four countries.

The simulation study is carried out by varying the ANN structure. Different com-
binations of hidden layer and neurons are used to simulate the model and the results in
terms of the training and testing times, as well as the performance achieved, are obtained
and displayed in Table S1 in Supplementary Materials. For each country data, initially,
combinations of one hidden layer where five, six, seven and eight neurons are used, and
thereafter two hidden layers with the same variations of neurons are used for simulation.
From Table S1 in Supplementary Materials, it is exhibited that comparing the training time,
testing time, MSE in training, and MAPE in testing, the proposed structure of the MLANN
model is better in comparison to other combinations of hidden layer and neurons. Further,
the simulation is also carried out with different data division ratios and it is observed
from Tables S2 and S3 in Supplementary Materials, that the 80–20% ratio is suitable for the
proposed study as it gives the minimum MAPE value in all cases.

As suggested in Wu et al. [34], other machine learning methods, such as the support
vector machine (SVM) model is simulated and the resultant MAPE values are provided in
Table S4 in Supplementary Materials. It is observed that the MAPE values of all countries
of Group-I and Group-II are higher in comparison to the proposed MLANN model. We
have not added the methods of SVM and a detailed comparison between MLANN and
SVM in the main text since it will require substantial expansion of the manuscript.

Forecasting of CO2 Emissions

In this section, we present the forecasted values of CO2 emissions for the Group-1 and
Group-2 countries for the years 2017, 2018, and 2019 given in Tables 4 and 5 respectively.
These are out-of-sample forecasts of CO2 emissions based on the optimized weights from
the calibrated MLANN model and the values for inputs, such as GDP (in 2010 constant
US$), urban population, and trade ratio for 2017, 2018, and 2019. The data of CO2 emissions
for these years are not available, however, the data for inputs for these three years are
available for most of the countries considered in this study except for Iran, the USA, and
Japan. For Iran, input data is available only for 2017, and for the USA and Japan, it is
available for 2017 and 2018. Accordingly, the forecasts are done for these countries for the
years the input data are available. The EKC hypothesis stands on the empirical evidence
that the elasticity of income effect is larger than the combined elasticities of scale and
composition effects [35,36]. The literature review in this study has discussed many recent
articles that have either established the EKC relationship in the long run or failed to find
evidence for it. A few other studies have used a similar framework as EKC to forecast
the out-of-sample values of CO2 emissions [37]. Aufhammer and Carson forecasted the
CO2 emissions for the Chinese provinces for the single year of 2010 by using the estimated
coefficient values of different predictors of their ‘best’ model and the projected values of the
predictors, such as GDP per capita and population figures whose values were unknown
when they published this study. Two other noteworthy studies by [38] and [39] have used a
similar approach and forecasted the time path of CO2 emissions for the year 2100 and 2050
respectively. We improve upon these studies in two ways. First, we develop a sophisticated
neural network nonlinear model to calibrate the EKC relationship and obtain the optimized
input weights that are used to predict the CO2 emissions based on the predictors, such as
GDP, urban population, and trade ratios. These optimized weights provide a more realistic
time-series relationship between the emissions and the predictors. Secondly, we forecast
the CO2 emissions for high emitting and low emitting countries based on the known values
of the predictors, not their projected values.



Energies 2021, 14, 6336 17 of 23

Table 4. Forecasted CO2 emission values for the year 2017–2019 for Group-1 countries.

Sl. No. Name of Country Year CO2 Emission Values (in kt)

1 India
2017
2018
2019

2.3775 × 106

2.3858 × 106

2.3913 × 106

2 China
2017
2018
2019

1.0275 × 107

1.0279 × 107

1.0281 × 107

3 Iran 2017 6.4003 × 105

4 South Korea
2017
2018
2019

6.1217 × 105

6.1490 × 105

6.1616 × 105

5 Canada
2017
2018
2019

5.5083 × 105

5.5332 × 105

5.5369 × 105

6 Indonesia
2017
2018
2019

4.9101 × 105

4.9581 × 105

4.9984 × 105

7 USA 2017
2018

5.0148 × 106

4.8022 × 106

8 Japan 2017
2018

1.2187 × 106

1.2115 × 106

9 Saudi Arabia
2017
2018
2019

5.9955 × 105

5.9752 × 105

6.0329 × 105

Table 5. Predicted CO2 emission values for the year 2017–2019 for Group-2 countries.

Sl. No. Name of Country Year CO2 Values (in kt)

1 Brazil
2017
2018
2019

4.5462 × 105

4.7165 × 105

4.7525 × 105

2 South Africa
2017
2018
2019

4.8368 × 105

4.8349 × 105

4.8327 × 105

3 Mexico
2017
2018
2019

4.9500 × 105

4.9521 × 105

4.9517 × 105

4 Turkey
2017
2018
2019

3.6217 × 105

3.6326 × 105

3.6368 × 105

5 Australia
2017
2018
2019

3.9027 × 105

3.9094 × 105

3.9122 × 105

6 UK
2017
2018
2019

3.3021 × 105

2.9951 × 105

2.5307 × 105
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Table 5. Cont.

Sl. No. Name of Country Year CO2 Values (in kt)

7 Italy

2015
2016
2017
2018
2019

3.8895 × 105

3.9707 × 105

3.9028 × 105

3.8698 × 105

3.8842 × 105

8 France

2015
2016
2017
2018
2019

3.1387 × 105

3.1091 × 105

2.9378 × 105

2.7934 × 105

2.7095 × 105

Figure 8a,b depict the CO2 emission values for the Group-1 countries from 2010 to
2019. The emissions from 2010 to 2016 are the actual data obtained from the World Bank
database, whereas the values from 2017 to 2019 are the forecasted values. Figure 8a shows
that the forecasted emissions for both China and India have increased. China surpassed
the USA in 2005 and since then the rate of emission growth is substantially higher for
China. During the same period of 2005–2019, the USA’s emissions levels have dipped and
during the short period of 2017–2019, it shows a declining trend. This is a noteworthy
observation in the context of international climate negotiations. Although the USA is not
a signatory to Paris climate agreements, it has its internal pollution regulation mandates
that have yielded a reduction in CO2 emissions. On the other hand, China has taken great
strides in transforming its economic structure following a circular economy model [40].
Despite these reforms, the emission levels are expected to rise in the short-run horizon.
China’s past high emission levels and the high growth rate in emission will render it a high
emitting country in the near future despite its significant improvement in restructuring
the economic models. India is the third highest CO2 emitter in the world and the rate of
emission growth shows a rising trend for the country. The forecasted values for 2017–2019
signify the uphill challenge India is facing to comply with its commitments towards Paris
agreements as the emission levels are expected to rise during this period. Japan’s emission
levels are predicted to reduce further following its declining trend that started around 2007.

Figure 8b shows that the trajectory of CO2 emissions in Indonesia is quite volatile
which is the reason for a higher percentage error in our forecasts for Indonesia. The
forecasted values for the period 2017–2019 show arising rend for the country. The other
countries in the Group-1 category that shows a rising expected level of CO2 emissions
are Iran, South Korea, and Saudi Arabia. Whereas Canada’s emission levels have been
stabilized and it embarked on a declining phase of CO2 emissions since 2008. Figure 9a
shows the CO2 emission trajectory and the forecasted levels for the Group-2 countries.
Although the global share of CO2 emission in countries, such as Brazil, South Africa,
Mexico, and Turkey are either 1% or less than 1%, their expected emission level will rise in
the near future. Brazil, in particular, shows a high emission growth path which weakens
the country’s position in the future global climate summits, such as COP26. The reported
burning of large tracts of Amazonian forest in Brazil has been heavily criticized by the rest
of the globe. The country needs to be more proactive and engaged in complying with its
Paris agreement commitments. The expected trajectory of the CO2 emission growth path
for the industrialized countries, such as France, the UK, Australia, and Italy are shown
in Figure 9b. The emission levels in France and UK are continuously declining and are
expected to decline further. Italy and Australia have reached their peak levels of CO2
emission in 2006 and 2011 respectively. Since then, their emission levels have stabilized at
lower levels and are expected to decline further.
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Figure 8. The actual and forecasted CO2 emissions values for countries: (a) China, USA, India, and Japan; (b) Canada,
Indonesia, Iran, Saudi Arabia, and South Africa.
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Figure 9. The actual and forecasted CO2 emissions values for countries: (a) Brazil, South Africa, Mexico, and Turkey; (b)
Australia, UK, Italy and France.

6. Conclusions

The IPCC report [41] warns that the current level of national pledges on mitigation of
greenhouse gas emissions and adaptation to climate change are not enough to constrain
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global warming to the level agreed upon by the countries in the Paris Agreement. The
report urges the signatory countries to upscale and accelerates the implementation of
multilevel and cross-sectoral climate mitigation actions. To be able to do so, accurate
prediction of future CO2 emission path in business-as-usual conditions holds importance.
Such predictions would lead the countries to accelerate their mitigation and adaptation
measures. This study forecasts the CO2 emissions for the high and low emitting countries
by their global shares of emission, for the years 2017, 2018, and 2019. Among the high
emitting countries, China and India have been treading a high emission growth path,
whereas the US and Japan are on the declining trend. Following the EKC hypothesis
literature, we model the CO2 emissions as the output of the model and GDP in constant
2010 US$, urban population, and trade ratios as the predictors. Several past studies have
used the same variables to predict the EKC relationship, however, their methods had been
static and mostly linear. Considering that the relationship between CO2 emissions and
its predictors may be nonlinear in the long run, we develop a multilayer artificial neural
network model to estimate this relationship.

Based on the World Bank database of 17 countries, of which nine are placed in
high emitting (Group-1) and the remaining eight in the low emitting (Group-2) countries
spanning from 1960 to 2016, a MLANN model is developed. After the model simulation, it
is observed that the prediction accuracy of the in-the-sample data has been 96% leaving
4% to the prediction error. With this high level of prediction accuracy, the model is well
calibrated to forecast the out-of-the-sample emission growth path. The data for the input
predictors have been available for the years 2017, 2018, and 2019 but not for the CO2
emissions of the selected countries. Hence, we forecast the CO2 emissions of these years
based on the optimal weights and the input data. From the results, it is observed that
China despite its aggressive transformation of economic activities to a circular economy
model, is still on the path of increasing emissions in near future. Similarly, India will
continue to emit higher levels of CO2 in the short run that has been studied. Other high
emitting countries, such as Iran, Indonesia, Saudi Arabia, and South Korea are expected to
continue with their high CO2 emission growth path if they remain on the BAU economic
production-consumption trajectory. These countries need to restructure their economic
activities in more sustainable ways to reduce greenhouse gas (GHG) emissions. However,
the US and Japan are expected to further reduce their carbon footprint by emitting less
CO2 into the atmosphere. France, UK, Italy, Australia, and Canada are poised to stabilize
their emission levels at a low emission growth path and are on course to comply with the
Paris agreement. Finally, although low emitting countries, Brazil, South Africa, Turkey, and
have been on the rising path of GHG emissions. These countries prioritize their economic
growth over the reduction of CO2 emissions. Hence, they are not expected to comply with
the Paris agreement’s emission reduction goals.

Based on these results, it is incumbent upon the national policymakers and multilateral
policy supporting bodies, such as the UN, OECD, World Bank, and IMF to commit more
financial resources for the reduction of CO2 emissions. Most of the countries that we
studied that are on a high emission growth path are currently industrializing. Their goal
is to achieve higher economic growth, create more employment, and increase income per
capita. Hence, these countries are less likely to change their economic structure suitable
for a low carbon economy. The already industrialized countries who have achieved a
reduction in their national CO2 emission goals must come forward to support the countries
who are not close to achieving the pledges they made at the Paris climate conference. The
next multilateral climate summit which is scheduled to take place in the UK in October-
November 2021, known as COP26 will have to focus on issues of greater climate cooperation
and finance.

The MLANN model used in the study though has forecasted the CO2 emission quite
accurately in most cases, there are a few cases where the prediction error was high. This is
a limitation of the study. Future studies can use other ANN-based models like radial basis
function neural network (RBFNN), recurrent neural network (RNN), extreme learning
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machine (ELM), etc., to reduce the percentage of error. Further, the scope of this study
can be expanded by using the mean impact value (MIV) based method to select features
and by using the optimal lag order of input data as suggested by Lee and Ou [42] and Wu
et al. [43].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14196336/s1, The Tables S1–S4 are available as Supplementary Materials.
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