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Abstract: Currently, the existing condition-based maintenance (CBM) diagnostic test practices for
ultrasound require the tester to interpret test results manually. Different testers may give different
opinions or interpretations of the detected ultrasound. It leads to wrong interpretation due to de-
pending on tester experience. Furthermore, there is no commercially available product to standardize
the interpretation of the ultrasound data. Therefore, the objective is the correct interpretation of an
ultrasound, which is one of the CBM methods for medium switchgears, by using an artificial neural
network (ANN), to give more accurate results when assessing their condition. Information and test
results from various switchgears were gathered in order to develop the classification and severity
of the corona, surface discharge, and arcing inside of the switchgear. The ultrasound data were
segregated based on their defects found during maintenance. In total, 314 cases of normal, 160 cases
of the corona, 149 cases of tracking, and 203 cases of arcing were collected. Noise from ultrasound
data was removed before uploading it as a training process to the ANN engine, which used the
extreme learning machine (ELM) model. The developed AI-based switchgear faults classification
system was designed and incorporated with the feature of scalability and can be tested and replicated
for other switchgear conditions. A customized graphical user interface (GUI), Ultrasound Analyzer
System (UAS), was also developed, to enable users to obtain the switchgear condition or classification
output via a graphical interface screen. Hence, accurate decision-making based on this analysis can
be made to prioritize the urgency for the remedial works.

Keywords: artificial neural network; condition-based maintenance; decision-making; extreme learn-
ing machine; fault diagnosis; graphical user interface; switchgear; ultrasound

1. Introduction

Many switchgear failures are caused by gradual degradation [1,2] of the devices, such
as the insulators [3–7], switches [8–13], and connectors [14–20]. At the preliminary stage,
these electrical faults, as shown in Figure 1, can produce noises that are detectable in the
frequency range (20 kilohertz (kHz) to 100 kHz) by an ultrasonic detection system [21,22].
Hence, an ultrasonic inspection system can be used appropriately to ensure electrical faults
are detected early enough to prevent catastrophic or unexpected failure. An ultrasonic de-
tection system allows the inspectors to instantly hear the generated signal that undoubtedly
cannot be ordinarily seen [23–26].

The common electrical faults of the switchgear are the corona [27–34], tracking [27,35],
and arcing [34,36–38], as shown in Figure 1. Furthermore, the switchgear might be experi-
encing more than one specific fault at the same time. The corona activity can be sufficiently
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advanced to the tracking stage on an insulation board resting on a bus. The likely conse-
quence of the specific fault, is that carbon deposits and a light brown discoloration of the
insulation board possibly will be noticed by the maintenance personnel. The undetected
corona can typically lead to further deterioration of the insulator and lead to tracking and
eventually arcing.

Figure 1. The mechanical and electrical faults of the switchgear.

The principal concept of condition-based maintenance (CBM) is to use equipment
deterioration information extracted and featured from sensing and data processing to
minimize the downtime of the system by prognostics and diagnostics [39–43]. To do so, a
CBM framework for machinery equipment consists of several key steps (data acquisition,
data pre-processing, feature extraction, health assessment, prognostic, and diagnostic).
In other words, CBM is a maintenance procedure where maintenance operations are
conducted on the existing assets. The state of the asset is examined via performance data
(often collected by various instruments or/and sensors), tests, and visual inspections. The
collected data can be analyzed to know the condition of the equipment such that the
maintenance can be executed before failure.

The focus in this article is on the CBM method by using the airborne ultrasound test
(AUT) for a medium voltage (MV) switchgear. Figure 2 is the testing equipment for AUT.
Airborne ultrasound is used to identify the surface partial discharge (PD). In short, PD
is an inadequate electrical failure among conductors. In addition, the corona is a type of
PD, where it is happening on the surface of the conductor because of the ionization of air.
Corona can be produced without current flow and reveals voltage problems. The major
dictating factor for its presence is a high potential in the electrical field.
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Figure 2. Airborne ultrasonic test equipment.

Machine learning has been widely applied for various purposes in switchgear systems
for fault diagnosis [30,44–55] as well as prediction [56–58] and maintenance [44]. To be
precise, the focus of machine learning is based on neural networks [46,47,50–52,54,56],
support vector machine (SVM) [45,49], and extreme learning machine (ELM) [30], and
have been widely used in switchgear system fault diagnosis. Literature studies state that
by using extreme learning machine (ELM) the learning speed can be instantly quicker
than conventional feed-forward neural network (FFNN) learning algorithms, while also
achieving improved generalization performance [59–65]. It was able to come up with a
universal approximation using random biases and input weights. Hidden neurons were
not needed in this case; instead, the weights needed to learn about the link between the
output and hidden layers. In addition, ELM tends to reach the smallest training error but
also the smallest norm of considerable weights [66–72]. Therefore, the proposed learning
algorithm undoubtedly tends to have a more precise, good generalization performance for
FFNNs [63,64,67,70,72,73]. Intrinsically, ELM has been selected as an artificial intelligence
tool for this article.

The objective of this article is to develop ELM classification models for detecting and
classifying various types of switchgear faults. In addition, The ELM model for switchgear
faults identification is able to provide accurate switchgear fault classification in both the
time domain and in the frequency domain after the training and validation process. Lastly,
a graphical user interface (GUI) is developed to enable users to obtain the switchgear
condition or classification. The article is categorized as follows. In Section 2, the methods
are presented. In Section 3, the data collection for switchgear’s fault is explained. Section 4
discusses the expert rule to enhance the accuracy of the classification output of this arti-
cle. Section 5 provides the results and the discussion. The proposed GUI for detecting
switchgear’s fault is shown in Section 6. Finally, Section 7 concludes the article.

2. Methods

The key focus is switchgear health condition identification via potential faults classifi-
cation with an AI tool. Electrical fault and mechanical fault ultrasound data in ultrasound
audio format were carefully analyzed to accurately determine the specific types of faults.
In Figure 3 is shown the flow chart diagram of the digital signal processing (DSP) and ELM
for the faults classification system.

Raw distribution data were gathered from the power utility company (PUC) from
seven states in Peninsular Malaysia, namely, Kedah, Kuala Lumpur, Melaka, Selangor,
Perak, Negeri Sembilan, and Johor. The MATLAB program read each data/input up to
10,000 bits. The program was set to read for the first 10,000 bits. If the data were less than
10,000 bits, the program read all the data. The data that were more than 10,000 bits were
not analyzed.

In this stage, the AI was developed by using ELM for ultrasound fault classification
since it is the most suitable for this research. MATLAB software was used to facilitate the
programming for ELM. In order for the sound to be processed by MATLAB, the raw data
were converted into a matrix format for the plotting and manipulation process. This was
done by using the function “wavread”. Visual Basic (VB) software was utilized to make
the software more user friendly by interacting via a graphical user interface (GUI).
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Figure 3. Flowchart diagram of the research method.

In this article, raw data were collected from the test results obtained by using AUT
equipment. The ultrasound data were recorded using the file format audio layer-3 (known
as mp3), moving picture experts group (MPEG), or waveform audio (known as wav). Data
transformation is a data pre-processing technique that transforms or consolidates the data
into a format that is more appropriate for a specific machine learning algorithm. The data,
which were in the wav and mp3 file formats, were converted into a matrix format to suit the
MATLAB software criteria.
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The data analysis and correlation process is to determine the sampling rate of the
data and to choose the best baseline for the sampling rate. Based on the data gathered,
it was decided that 11,025 bits is the baseline. If the data have two or more sampling
rates, it underwent a process called data normalization to get a mutual relationship or link
with others.

Normalization basically is like doing scaling in data transformation, but only that the
data normalization scaling is done on the “individual sample to the unit norm”. Normal-
ization also represented the minimum and maximum values (0, 1) and was applied to the
input. The program was designed to enable identifying the waveform based on the time
domain and frequency domain in feature selection and extraction. In noise suppression, the
system will eliminate the first 1000 bits of data to cut unnecessary noise due to interference
during the test equipment setup.

The kernel is to help us do certain calculations faster, which otherwise would involve
computations in higher-dimensional space. Kernel methods are for pattern analysis in
machine learning. The general task of pattern analysis is to find and study general types
of relations (principal components, rankings, clusters, classifications, and correlations) in
datasets. The kernel’s trick in simplest form is to transform the data into another dimension
that has a clear separating margin between the classes of data. In this article, ELM was
selected as a kernel because it only uses one hidden layer and give a fast result.

A few parameters were defined to be feed into the single hidden layer in the ELM
system, such as the number of nodes and data amplitude range for the time domain and
frequency domain. The first value for the parameters is to be keyed into the coding, starting
from a small value of the node and the amplitude range in the initialization process.

Some data were used to simulate for training to check the consistency of the output.
The training data were used to simulate the parameters in ELM. The activation function
was initialized, which started from a small value. Data were keyed into the programming
to get the desired output and compared to the actual output.

2.1. Meet Termination Criterion

A decision was made at this stage whether the result is accepted or not based on the
criteria. The accepted criteria were 85% and above. If the accuracy was more than 85%,
the system executed the termination, from where it went to the next stage of the program;
i.e., the ELM model. If the accuracy did not meet the criteria, which was less than 85%,
the program went back to the kernel selection process, where the user needs to reconsider
the whole processor and may have to look into the value of the parameter initialized and
repeat the whole process until the criterion is met.

2.2. ELM Model

Once the criteria were met as mentioned above, the parameters, namely, weight,
amount of hidden layer nodes, and value of each node in the hidden layer, were saved and
remembered in the ELM model.

2.2.1. Training Phase

PD Detector was used to collect the data. Input data, X is shown in Equation (1), based
on the concept of ELM.

X =


x11 x12 . . . x1M
x21 . . . . . . . . .
· · · . . . . . . . . .
xN1 . . . . . . xNM


N×M

(1)
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M is the number of hidden neurons and set to 10,000 and number of data samples N,
yielding Equation (2).

X =


X11 X12 . . . X110,000
X21 X22 . . . X210,000

...
...

. . .
...

XN1 XN2 . . . XN10,000


N×10,000

(2)

The target output vector, T, is shown in Equation (3).

T =


t1
t2
...

tN

 (3)

The next step was initialization. The number of activation functions was defined to be
a positive numeric value. The common choice for the activation function was the gaussian
sigmoid activation function or radial basis function (RBF). Therefore, the activation function
is applied into the hidden layer where the activation function is the sigmoid activation
function and RBF, shown in Equations (4) and (5), respectively. Assign the bias, b, and the
input weight matrix, a, randomly.

H1 =
1

1 + e−(ai .xT
j +bi)

(4)

H1 = e{−bi ||xj ,−,ai ||2} (5)

In addition, all nodes were applied with the sigmoid and RBF functions. Then, the
hidden layer matrix was computed using Equation (6).

Hidden Layer =


H1
H2
...

HN


N×L

(6)

The activation function in this article was chosen for the programming of the classifier,
which is the sigmoid function, where L is the number of neurons in the hidden layer.

The output weight matrix, W, is equal to H–1 Y. Unfortunately, the inverse matrix can-
not be solved because H is probably a non-symmetry matrix. Therefore, a Moore–Penrose
pseudo inverse matrix method was employed to evade this problem using Equation (7).

W = (HT H)−1 HT Y (7)

where Y is the targeted output.
Use the same training data to calculate the accuracy rate after the W is computed.

Equation (8) was used to compute the output matrix, Y = (y1 y2 . . . yN)T.

Y = signum(HW) (8)

signum(v) =

{
1 i f v ≥ 0
−1 else

(9)

The formula to calculate the accuracy rate of training data is shown in Equation (10).
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Accuracy Rate =
(

Number o f training data that coreectly classi f ied
Number o f training data, N

× 100%
)

(10)

The final step was to save L, a, b, and W for the validation and prediction phases.

2.2.2. Validation Phase

Respective target output vector, D, and input vector, W, with the training pairs with P
validation samples were collected, as shown in Equation (11).

W =


w11 w12 . . . w1M
w21 . . . . . . . . .
. . .
. . .

. . . . . . . . .

wP1 . . . . . . wPM


P×M

D =


d1
d2
. . .
dP


P×1

(11)

L, a, b, and W were loaded from a previous phase.
The calculation for hidden layer matrix, H, with a sigmoid activation function, is

defined in Equations (12) and (13), respectively.

H =

 G(a1, b1, w1) . . . G(aL, bL, w1)
: . . . :

G(a1, b1, wP) . . . G(aL, bL, wP)


P×L

(12)

G(ai, bi, wj) =
1

1 + exp(−(ai ·wT
j + bi))

(13)

The new output matrix, Ynew = (y1 y2 . . . yp)T was computed using Equation (8).
The accuracy rate of the validation data is shown in Equation (14).

Accuracy Rate =
(

Number o f validation data that coreectly classi f ied
Number o f Validation data, P

× 100%
)

(14)

2.2.3. Prediction of the New Input Data

L, a, b, and W were loaded from the training phase. We loaded the new input data,
z, and recalculated the hidden layer matrix, h, with a sigmoid activation function using
Equations (12) and (13), where w is replaced with z. The output, y, was calculated using
Equation (8). Note that, based on the input data, y is denoted as the classified switchgear
health condition.

2.3. GUI Classification

The inputs and programs of the AI development process were embedded into the GUI
using the aid of Visual Basic (VB) software, to make it more user-friendly.

2.4. Data Post Processing

This is the process where the final result on the interpretation of ultrasound is shown
(normal, corona, tracking, arcing, or mechanical).
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3. Switchgear Data Collection

Research work was carried out to identify a multi-dimensional classification through
the time and frequency domain of switchgear ultrasound data samples. Classification is
to be carried out to classify the faults into a mechanical or electrical category and further
analyze the pattern of the electrical faults into corona, arcing, tracking, etc. Engineers may
have different interpretation from the data obtained from the measurements. Hence, the
proposed intelligent solution is essential, in order to mimic the expert, avoiding unnecessary
error in the decision-making. In order for the ultrasound data to be processed by MATLAB
R2017a, the raw data were retrieved by using the function “audioread” and “audioinfo”.
The “audioread” function was used to analyze the WAVE file and the “audioinfo” function
was also used to get information about the audio file. The extracted sample audio info is
shown in Table 1.

Table 1. Basic information of the sample sound.

Audio File Basic Information Sampling Rates

Arc.wav

NumChannels: 1
SampleRate: 11,025 bit/s
TotalSamples: 68,900 bits
Duration: 6.2494 s
BitsPerSample: 16 bps

â 44,100 bits per second.
â 22,050 bits per second.
â 16,000 bits per second.
â 11,025 bits per second (Selected

as base frequency)

Corona.wav

NumChannels: 1
SampleRate: 8000 bit/s
TotalSamples: 53,991 bits
Duration: 6.7489 s
BitsPerSample: 8 bps

Tracking.wav

NumChannels: 1
SampleRate: 8000 bit/s
TotalSamples: 52,000 bits
Duration: 6.5000 s
BitsPerSample: 8 bps

Good Bearing.wav

NumChannels: 1
SampleRate: 11,025 bit/s
TotalSamples: 48,551 bits
Duration: 4.4037 s
BitsPerSample: 16 bps

Bad Bearing.wav

NumChannels: 1
SampleRate: 11,025 bit/s
TotalSamples: 55,301 bits
Duration: 5.0160 s
BitsPerSample: 16 bps

From Table 1, it can be noticed that the files comprise several sampling rates. In order
to uniformly analyze and classify the ultrasound sample, the ultrasound samples in the
time domain were down-converted to a uniform sampling rate, which was 11,025 bps.

In order to realign the data timeline, the higher sampling rate data need to be down-
sampled. For the example, the data with a sampling rate of 44,100 bits per second is to be
extracted in a multiplier of four.

After the data sampling, all the data in the time domain were collected. Then, the
front part of the data needs to be truncated as highlighted and shown in Figure 4. This is
due to the front part of the audio info being meaningless, as the technician just switches
on the ultrasound device and not placing the device at the correct location. Besides that,
the ultrasound pattern is repeated in the specific time window. Thus, the extracted data is
starting from the number 1000 with a time frame of 10 Kbits (total of 10,000 as input data),
as shown in Figure 5. The sample data numbers 1 to 4 in Figures 4–6 is corona, tracking,
arcing, and mechanical.
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Figure 4. Time domain data extracted.

Figure 5. Final time domain data extracted.
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Figure 6. Frequency domain data representation.

The same process was applied for all five sets of data, which were:

• Arching—54 sets;
• Corona—41 sets;
• Mechanical—17 sets;
• Tracking—39 sets (available 314 data sets for single-channel wave file);
• Normal—13 sets.

These sets of time-domain data were then fed into the ELM for time-domain model
training.

Subsequently, the fast Fourier algorithm was used to transform and map the time-
domain functions into frequency-domain representations by using the one-dimensional
fast Fourier transformation in MATLAB function (fft). The transformed data are shown in
Figure 6.

4. Expert Rule

In order to enhance the accuracy of the classification output results, the expert rule
was developed based on the time domain ultrasound amplitude, as shown in Table 2.

Table 2. The expert rule based on the time domain ultrasound amplitude.

Fault Type
Ultrasound Amplitude

Min Max

Normal ≥−0.015 ≤0.015
Corona ≥−0.2 ≤0.2
Arching ≥−0.8 ≤0.8
Tracking <−0.8 >0.8

5. Results and Discussion
5.1. Data Pre-Processing

The list of equipment and the sampling rates are tabulated in Table 3.
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Table 3. List of equipment and sampling rates.

No. Equipment Sampling Rate (Bits/Second) File Format

1. UltraTEV Plus
11,025

mp316,000
22,000

2. UltraTEV Plus 2

11,025

wav16,000
22,000
44,100

3. Ultraprobe 9000

8000

wav11,025
16,000
22,000

4. Ultraprobe 10,000

8000

wav
11,025
16,000
22,000
44,100

5.2. Raw Data Collection

The total data gathered were 841 from various cases, as shown in Table 4.

Table 4. Types of faults and number of cases.

No. Types of Faults Cases

1. Normal 314
2. Corona 160
3. Tracking 149
4. Arcing 203
5. Mechanical 15

5.3. Data Analysis and Correlation

The initial data were captured as a whole and required to be filtered to obtain the
actual sound that reflects the actual condition by eliminating the surrounding interference.
It was done by removing the first sampling. The ultrasound test results obtained previously
were validated by doing an investigation at the site during the outage. Examples of the
actual case studies at the PUC substation sites are shown in Table 5.

Table 5. Case studies in PUC distribution.

No. Date Substation Affected Area Finding/Remarks

1. 17 March 2018 PMU Iaduks 33 kV,
Johor Bahru

Breaker
compartment

Corona

• Misalignment at finger arm breaker of red phase
primary disconnecting switch (PDS).

• Sign of embrittlement and Verdigris.
• Normalized time domain amplitude = 0.2266.

2. 22 March 2018

PE Sekolah
Kebangsaan Aur Atok

11 kV,
Kedah

Feeder Kg Lintang,
Back panel

Surface Discharge

• Hair crack on the cable bushing.
• Normalized time domain amplitude = 0.9375.

3. 11 March 2018 PMU Aysamet 33 kV,
Selangor

Cable
Compartment,
Yellow phase

bushing

Arcing

• Sign of punctured on the bushing near to the CT.
• Normalized time domain amplitude = 0.7131.
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5.4. ELM Classification

ELM model development was run with the settings of the number of features, hidden
nodes, and output type in corona, arcing, tracking, normal, and mechanical.

5.4.1. Corona

For corona, there were two types of domains (time domain and frequency domain)
for fault classification.

Time Domain

A total of 160 data samples were used and divided into 80% training, 15% validation,
and 5% testing for the classification model creation for time domain corona fault classifica-
tion, as shown in Table 6. The accuracy and error rate of the classification are 87.5% and
12.5%, respectively. These results indicate that the developed ELM classification model has
a high accuracy in classifying the switchgear corona fault.

Table 6. Time domain ELM classification result—corona.

Time Domain

Training Validation Testing

No Sample 128 24 8
Accuracy Rate 90.63% 87.5% 87.5%

Error Rate 9.37% 12.5% 12.5%

Feature Number 10,000
Hidden Neuron 1200
Output Number 1

Corona’s time domain classifier was used to classify the test datasets as either positive
(P) or negative (N). This classification produces four outcomes—true positive (TP), true
negative (TN), false positive (FP), and false-negative (FN), as populated in Tables 7–9—for
the confusion matrix of the corona time domain classification output.

Table 7. Confusion matrix for training phase—time domain corona fault classification.

Training Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 26 3

Non-Corona 9 90

Accuracy Rate 90.63%
Error Rate 9.37%

Table 8. Confusion matrix for validation phase—time domain corona fault classification.

Validation Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 1 1

Non-Corona 2 20

Accuracy Rate 87.5%

Error Rate 12.5%
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Table 9. Confusion matrix for testing phase—time domain corona fault classification.

Testing Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 1 1

non-Corona 0 6

Accuracy Rate 87.5%
Error Rate 12.5%

The accuracy, Acc, was calculated as the total number of two correct classifications
(TP + TN) divided by the total number of a dataset (P + N), which is represented in
Equation (15).

Acc = TP+TN
TP+TN+FN+FP × 100%
= TP+TN

P+N × 100%
= 26+90

29+99 × 100%
= 90.63%

(15)

The four outcomes of a binary classifier from the training phase are as follows:
True-positive (TP): correct positive classification = 26;
False-positive (FP): incorrect positive classification = 9;
True-negative (TN): correct negative classification = 90;
False-negative (FN): incorrect negative classification 3.
The error rate (ERR) was calculated as the number of all incorrect classifications

divided by the total number of the datasets, using Equation (16).

ERR = FP+FN
TP+TN+FN+FP × 100%
= FP+FN

P+N × 100%
= 3+9

29+99 × 100%
= 9.37%

(16)

The accuracy and error calculations were repeated for the validation and the testing
phase, as shown in Tables 8 and 9.

Frequency Domain

A total of 160 data samples were used and divided into 80% training, 15% validation,
and 5% testing for the classification model creation of the frequency domain corona fault
classification, as shown in Table 10. The accuracy and error rate results of the classification
are 87.5% and 12.5%, respectively. Tables 11–13 shows the confusion matrix for the training,
validation, and testing phase.

Table 10. Frequency domain ELM classification result—corona.

Frequency Domain

Training Validation Testing

No Sample 128 24 8
Accuracy Rate 89.84% 83.33% 87.5%

Error Rate 10.16% 16.67% 12.5%

Feature Number 5000
Hidden Neuron 150
Output Number 1
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Table 11. Confusion matrix for training phase—frequency domain corona fault classification.

Training Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 21 3

Non-Corona 10 94

Accuracy Rate 89.84%

Error Rate 10.16%

Table 12. Confusion matrix for validation phase—frequency domain corona fault classification.

Validation Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 3 2

Non-Corona 2 17

Accuracy Rate 83.33%

Error Rate 16.67%

Table 13. Confusion matrix for testing phase—frequency domain corona fault classification.

Testing Phase

Classified Class

Corona Non-Corona

Actual Class
Corona 2 0

Non-Corona 1 5

Accuracy Rate 87.5%

Error Rate 12.5%

5.4.2. Summary

Tables 14 and 15 show the summary classification output of different switchgear faults
(corona, arcing, tracking, normal, and mechanical). From the summary of the classification
output in Tables 14 and 15, the minimum error rate was 0% and the maximum error rate
was 16.67%. Meanwhile, the minimum accuracy was 83.33% and the maximum was 100%.
The results show that the developed ELM classification models have a high accuracy in
detecting and classifying various types of switchgear faults.

As for the output matrix for all classification faults, the accuracy for arcing and corona
faults classification in the time domain was slightly lower as compared to tracking in the
time domain and other faults in the frequency domain. This could be due to the cleanliness
of the input data, as all the datasets provided with their labels could not be verified as
valid. Among all these five classes, arcing and tracking phenomena are pretty close to each
other and hence there is a possibility that the data labels done by personnel in the field for
these two phenomena are not accurate.
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Table 14. Summary classification output of different switchgear faults in accuracy rate.

Accuracy Rate (%)

Training Validation Testing

ARCING
Time Domain 93.75 95.83 87.5

Frequency
Domain 93.75 91.67 100

CORONA
Time Domain 90.63 87.5 87.5

Frequency
Domain 89.84 83.33 87.5

MECHANICAL
Time Domain 96.09 91.67 100

Frequency
Domain 96.09 95.83 100

TRACKING
Time Domain 96.88 95.33 100

Frequency
Domain 96.88 91.67 100

NORMAL
Time Domain 100 95.83 100

Frequency
Domain 100 95.83 100

Min 89.84 83.33 87.5
max 100 95.83 100

Average 95.391 92.449 96.25

Table 15. Summary classification output of different switchgear faults in error rate.

Error Rate (%)

Training Validation Testing

ARCING
Time Domain 6.25 4.17 12.5

Frequency
Domain 6.25 8.33 0

CORONA
Time Domain 9.37 12.5 12.5

Frequency
Domain 10.16 16.67 12.5

MECHANICAL
Time Domain 3.91 8.33 0

Frequency
Domain 3.91 4.17 0

TRACKING
Time Domain 3.12 4.67 0

Frequency
Domain 3.12 8.33 0

NORMAL
Time Domain 0 4.17 0

Frequency
Domain 0 4.17 0

Min 0 4.17 0
max 10.16 16.67 12.5

Average 4.609 7.551 3.75

To test the capability of the proposed algorithm it was compared with other ap-
proaches, as shown in Table 16. The proposed ELM is comparable (if not superior) to the
other approaches.
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Table 16. Benchmark compared to other approaches for diagnosing a switchgear’s fault.

Approaches Classification Accuracy Rate (%)

ELMARCING 95.83
ELMCORONA 87.5

ELMMECHANICAL 91.67
ELMTRACKING 95.33
ELMNORMAL 95.83

Random Forest [74] 87.5
Decision Tree [74] 22.9

Decision Stump [74] 50
Decision Table [74] 58.3

Multilayer Perceptron [74] 51
Optimized Feature Space—Support Vector

Machine (GFS-SVM) [48] 90

Original Feature Space—Support Vector
Machine (OFS-SVM) [48] 69.2

Optimized Feature Space—Random Forest
(GFS-RF) [48] 86.3

Original Feature Space—Random Forest
(OFS-RF) [48] 77.92

Optimized Feature Space—Density-Based
Spatial Clustering of Applications with Noise

(GFS-DBSCAN) [48]
98.3

6. Graphical User Interface (GUI) for Ultrasound Analyzer System (UAS)

The developed ELM model was embedded in the Visual Basic.net program. The
ELM program was named the Ultrasound Analyzer System (UAS). Figure 7 is the GUI of
the UAS.

Figure 7. Ultrasound Analyzer System (UAS).

Whenever new testing data were fed into the intelligent UAS, the system determined
the condition of the switchgear based on the fault severity, as shown in Table 17. The yellow
box showed the result that will be selected by an intelligent ultrasound system whenever
the test data meet the criteria of multiple faults.

After obtaining the ELM output result, the ELM output was combined with the expert
rule output to get the final result of the intelligent UAS. The finalized result is shown in
Table 18.
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Table 17. Results based on severity.

Classified Results
Time-Domain Frequency-Domain

Corona Arcing Tracking Mechanical Corona Arcing Tracking Mechanical

Arcing and
Mechanical 1 0 0 1 0 1 0 0

Tracking 1 1 1 0 0 1 0 0
Corona and
Mechanical 1 0 0 1 1 0 0 1

Tracking 0 1 0 0 0 0 1 0
Tracking and
Mechanical 1 0 1 1 1 1 0 0

Arcing 1 1 0 0 0 1 0 0

Table 18. Final output from the Ultrasound Analyzer System for a switchgear.

ELM Output Expert Rule Output Final Output

Scenario 1 Normal Any Normal
Scenario 2 Corona Any Corona
Scenario 3 Tracking Tracking Tracking
Scenario 4 Tracking Arcing Arcing
Scenario 5 Arcing Tracking Tracking
Scenario 6 Mechanical Any Mechanical

7. Conclusions

This article presented the establishment of advanced data analysis procedures for
switchgear mechanical fault and electrical fault identification. The data analysis and fault
identification were implemented by employing an artificial intelligence algorithm, namely,
Extreme Learning Machine (ELM). The analysis of the switchgear’s data was carried out
in two principal domains, which were the time domain and frequency domain. From the
summary of the classification output in Tables 13 and 14, the minimum error rate was 0%
and the maximum error rate was 16.67%. Meanwhile, the minimum accuracy was 83.33%
and the maximum was 100%. The results showed that the developed ELM classification
models have a high accuracy in detecting and classifying various types of switchgear faults.
In addition, the ELM model for switchgear faults identification is able to provide accurate
switchgear fault classification in both the time domain and in the frequency domain after
the training and validation process.

The developed AI-based switchgear fault classification system was designed and
incorporated with the feature of scalability and can be tested and replicated for other
switchgear conditions. A customized GUI, Ultrasound Analyzer System (UAS), was also
developed to enable users to obtain the switchgear condition or classification output via a
graphical interface screen.

Based on the positive findings of using ELM for ultrasound analysis and switchgear
fault identification, it is anticipated that the thermal image of switchgears can be useful and
complement ultrasound analysis for switchgear fault identification. It is envisaged that a
switchgear condition health monitoring and mitigation system can be further enhanced
with thermal imaging for determining switchgear faults.
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