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Abstract: The development of artificial intelligence (AI) based techniques for electricity price fore-
casting (EPF) provides essential information to electricity market participants and managers because
of its greater handling capability of complex input and output relationships. Therefore, this research
investigates and analyzes the performance of different optimization methods in the training phase of
artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for the accuracy
enhancement of EPF. In this work, a multi-objective optimization-based feature selection technique
with the capability of eliminating non-linear and interacting features is implemented to create an
efficient day-ahead price forecasting. In the beginning, the multi-objective binary backtracking search
algorithm (MOBBSA)-based feature selection technique is used to examine various combinations of
input variables to choose the suitable feature subsets, which minimizes, simultaneously, both the
number of features and the estimation error. In the later phase, the selected features are transferred
into the machine learning-based techniques to map the input variables to the output in order to
forecast the electricity price. Furthermore, to increase the forecasting accuracy, a backtracking search
algorithm (BSA) is applied as an efficient evolutionary search algorithm in the learning procedure of
the ANFIS approach. The performance of the forecasting methods for the Queensland power market
in the year 2018, which is well-known as the most competitive market in the world, is investigated
and compared to show the superiority of the proposed methods over other selected methods.

Keywords: electricity price forecasting; artificial intelligence; adaptive neuro-fuzzy inference; system
feature selection; backtracking search algorithm; competitive market

1. Introduction

Modern power system planning encompasses diverse resources to incorporate the
increasing demand subject to numerous techno-economic and environmental constraints.
Price forecasting is of paramount importance to all aspects pertaining to power system
operation, which is emulated by the abundance of researchers working on operation-
related issues [1]. Several methodologies have been put forth by researchers that differ
in data processing, model selection, calibration and testing phases. Profuse literature is
available on load forecasting due to years of extensive research and application, while the
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availability of the literature related to price forecasting is relatively limited. The reason
being is that the wholesale competition was either limited or absent because the electricity
markets were structured as monopolies. Electricity markets have been evolving recently
due to the research in the field of price forecasting gaining attraction, resulting in an
evolved competitive market [2]. Countless markets are structured as oligopolies, where the
controlling elements are the market’s dominant influencing level of prices. The necessity
of extensive research on price forecasting approaches is validated by the fact that the
market continues to grow more competitive as the importance of price forecasters keeps on
increasing [3].

Forecasting of electricity price’s role is vital during decision making on investments
and the transmission system extension. The method of forecasting should be precise to
guarantee that the decision is effective. However, high-precision forecasting is relatively
complex, as a number of exclusive features must be considered. These comprise non-
linearity, high volatility, multiple seasonality, average reversion and price increase [4].
Furthermore, the non-friendly properties of the price duration line make it even harder
to be forecasted [5]. Market clearing price (MCP) is described as volatility, as its hourly
determination remains in a shifting and contentious circumstance [6]. A set of multiple
parameters influences the evolution of the MCP. Influential parameters are demand, fuel
costing (e.g., coal, gas), the capacity of hydropower, the merit order of manufacturing,
market players’ strategies and grid congestion. In addition, weather patterns and seasonal
factors may affect the load level. Contrarily, the price rates of electricity are dependent
on a significant and distinctive set of parameters [7]. Some of these criteria may not be
accessible to scholars because they are listed and controlled by market competitors. Thus,
to achieve a robustness forecasting solution, tests should be conducted at the series of input
combinations. The inputs, model parameters, calibration and practical executions must be
selected meticulously. This research concentrates on price forecasting of the day-ahead,
mainly based on atypical data. Therefore, based on the recently published papers, the
study shows that feature extraction from the data set (typical data) given is executed by
the improved feature selection algorithm, which generates the maximum impact towards
the price forecasting efficiency [8]. Regardless of the utilization of metaheuristic methods
to generate major improvement in prediction techniques, a certain number of limitations
remain. These include the need for a predefined comprehension of the composition of
the current connection within the variables of the fitness function in the algorithm that
should be gained priority, high sensitivity of the selected parameter’s value from the initial
stage and abundance of parameter control. Even though the combination of optimization
techniques provides encouraging results, the resolution of metaheuristic methods at a
particular point of integration remains a significant issue. Moreover, due to the inherent
complexities of a combinatorial optimization approach, there is a continual attempt to
tune control parameters in a proper manner. Thus, in the training stage of the artificial
intelligence process, various optimization algorithms can be explored to enhance the
precision of forecasting [9].

ANFIS, ANN (artificial neural network), SVR (Support Vector Regression) and a
combined hybrid of these methods has accomplished a tremendous breakthrough in
providing precision in the forecasting of electricity. Nevertheless, additional efficient
methods to facilitate electricity price precision are still needed [10]. In addition, for any
deregulated power market, the method applied should be able to provide rational forecast
prices for a better bidding strategy for generating companies. To ensure it is capable of
producing highly reliable results, the accuracy of the electricity price forecasting system
needs to be checked. In contemplation of performing this test, the most volatile system must
be chosen and validated by means of a detailed statistical analysis. Until now, a rigorous
statistical study in the field of electric price forecasting has not yet been performed. Earlier,
only a few indices were utilized in electrical price forecasting, namely RMSE, MAE and
MAPE. Therefore, the precision of the proposed methods is not completely assessed [11].
Compendious reviews of the latest price prediction approaches and techniques are available
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in [12–14]. Meanwhile, stochastic models, artificial intelligence models and models of
regression are most of the approaches published through extensive reviews that can be
found in [3]. In [15], MLPs are barely implemented to predict, whereas in [16], they are
merged with some other time series models. The literature indicates that electricity demand
and price prediction can be carried out by utilizing ANN to deal with some approaches.
Moreover, ANN is also combined with several data mining methods to identify specific
training days [11]. The quality feature of the MLP is that it could be implemented within
the hour-ahead timeframe [17], whereas most of the other existing studies are only related
to the forecasting of day-ahead. The key role of the MLP merging with the hybrid model
intends to enhance the forecast, which is through the classical time series model (i.e.,
ARIMA) derivations. An investigation on the ANN model in comparison with other
models, for instance, AR and ARIMA, is established in [18].

A non-linear mapping of the original data into high dimensional space is provided by
SVMs [19], in which a linear function is utilized to determine the boundaries of the new
space. Unlike MLPs that have the potential to operate within local minima of their objective
function, SVMs can provide a global solution to a problem. During load forecasting, this
feature has been applied in [20]. In addition, the estimation on the predictions interval
quantifies the uncertainty corresponding to the prediction on targeted numbers with the
approximation ranges based on the SVM model [21]. Furthermore, another model for
EPF has been proposed by combining the operation of ANNs and Fuzzy Logic (FL), such
as adaptive neuro-fuzzy inference system (ANFIS) [22]. However, a predefined rule is
the benchmark used by the ANFIS method for forecasting. For the new circumstances, it
becomes incapable in the process of learning and self-adaption. By integrating a fuzzy
system and an ANN model, this limitation was somewhat tackled in [23]. The main
characteristic of a typical neuro-fuzzy model is the capability to adapt, which has made the
ANFIS model a widespread predictor to forecast different ranges from the short-term to
the long-term price of electricity in any deregulated market. The implementation of the
latest AI development for EPF in the literature is depicted in Table 1.

Table 1. Review of the developed artificial smart techniques implemented in literature for the prediction of EPF.

Model Year Applied for Characteristics MAPE

SVM + GA [9] 2016 Ontario

A real-time cost of Hourly Ontario Electricity Price
(HOEP) in Ontario mainland (HOEP and demand are
considered as selected features for forecasting analysis.)
is predicted hour by hour for 6 test weeks

9.22%

Environmentally adapted
generalized neuron model [24] 2017 NSW

The test cycle on the Australian electricity market is a
one week test on the basis of historical price and
demand data

2.28%

Hybrid ANN-artificial
cooperative search

algorithm [25]
2019 Ontario

The test cycle on the Ontario electricity market is about 4
months by taking the consideration of different season
conditions on the basis of historical price and
demand data

1.1%

ANFIS-BSA [26] 2019 Ontario

The test cycle on the Ontario electricity market is about 1
week by taking the consideration of different season
conditions on the basis of historical price and demand
data for the year 2017

0.79%

Optimized heterogeneous
LSTM [27] 2019 PJM

The autocorrelation analysis is conducted to determine
price data based on LSTM and EEMD and is used to
decompose the electricity price sequence

2.51%

Cuckoo search, singular
spectrum analysis and

SVM [28]
2019 New South

Wales

This work considering the dynamic behavior of price
series and to find optimum features by defining one
threshold in different seasons

4%

Extreme learning machine [29] 2020 New York City

Real-time data of the market in 2017 in different seasons
has been simulated in order to predict the electricity
market. Data were converted to four previous hours and
were taken into account to forecast the current price

1.44%
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Table 1. Cont.

Model Year Applied for Characteristics MAPE

Similar day-based neural
network [30] 2020 PJM

The was work conducted based on the availability of the
selection of 45 framework days of 2006 of PJM, and three
similar days based on the Pearson correlation
coefficient model

4.67%

Spatiotemporal deep
learning [31] 2020 PJM

The zone prices of all 21 zones in the PJM market and the
nodal price of the target location were used as inputs to
the CNN model

12.37%

Deep learning hybrid
framework [32] 2020 PJM

The point prediction module combines different deep
learning techniques, such as DBN, LSTM and CNN, to
extract non-linear features

0.06%

Combined SSA, ANN and
LSSVM [33] 2020 Australian

market
Combined model using 48 data items from the previous
Monday to the following Monday 7.58%

Dimension reduction strategy
and rough ANN [34] 2020 Ontario and

Canada

Grey correlation analysis is applied to select efficient EPF
and deep neural networks with stacked denoising
auto-encoders to denoise data from different sources

5.64%

Gan-based deep reinforcement
learning [35] 2021

New England
Electricity

market

The proposed approach uses generative adversarial
networks to collect synthetic data and increase the
training set, and to enhance the forecasting system
considering more features, such as temperature and load
data, as inputs

Not
reported

Hybrid deep neural
network [36] 2021 New York City Hourly electricity price data from 2015 to 2018 are tested

using VMD, CNN and GRU for four seasons 0.73%

Multi-head self attention and
EEMD framework [37] 2021 New England

LMP, hourly system load with temperature and dew
point information, has been used as the input variable to
the hybrid model

Not
reported

LSTM-NN [38] 2021 PJM

Features are selected by a combination of entropy and
mutual information, and wavelet transform is used to
eliminate the fluctuation behavior of electricity load and
price time series

0.63%

Combined integration via
Stacked Pruning Sparse

Denoising Auto Encoder [39]
2021

Australian
electricity

market

The proposed method has been used to decrease the
noise of the data set and Tensor Canonical Correlation
Analysis to select features with low correlation ranks

5%

Ensemble approach [40] 2021 Austria
A bootstrap aggregated-stack generalized architecture
has been implemented to facilitate participants with
renewable energy resources in real-time

5.13%

The contributions of this paper are as follows:

• In this work, investigation over the day-ahead price forecasting is based on the price of
electricity (PoE) data and demand of electricity (DoE) data in different time intervals.
Therefore, within the available data set, this work has developed a feature selection
technique to extract the features with the highest impact on price prediction accuracy.
The feature selection method is a combination of two techniques, namely ANFIS and
MOBBSA. To select non-dominated features, subsets from different combinations of
input variable MOBBSA are used, while the performance of every selected feature
subset is determined by ANFIS. Additionally, various well-known feature selection
methods based on multi-objective methods, such as MOPSO, NSGAIII and NSGAII,
are simulated for EPF as a benchmark.

• Since electricity price and demand are inherently correlated, prediction of these param-
eters in a deregulated market, such as the Australian electricity market, is a challenging
task in a smart grid environment. Therefore, to enhance the forecasting accuracy, a
novel prediction approach is required, and to meet this requirement in this work, dif-
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ferent optimization techniques are implemented to improve the forecasting accuracy
in the training phase of an AI-based approach. Based on the studied research in price
forecasting, to improve the forecasting accuracy of ANFIS, BSA is applied to tune the
membership functions of ANFIS so that the error can be minimized. Based on the fore-
casting accuracy, the improvement rate of different robust metaheuristic algorithms as
comparisons is verified in the training phase of ANFIS and ANN methods.

• Finally, the proposed method is evaluated through the comprehensive statistical
analysis. It is observed that the developed model via a data-driven approach complies
with all the necessary constraints. As such, it is suitable to be implemented for
future EPF.

To evaluate the accuracy of electricity price forecasting, the Queensland electricity
market has been considered as one the most unstable markets in the world. In Queensland,
the Australian Energy Market Operator (AEMO) provides opportunities for a wide range of
forecasting and planning trends to power suppliers and consumers in order to submit their
offers for sale and bids to buy the electrical energy. Then, an Independent System Operator
(ISO) is a utility or option in the market that arranges the price offers of the generators
and the bid price of the consumers. In this open market, a single wholesale market for
electricity is well known as a National Electricity Market (NEM). This infrastructure is
responsible for purchasing and selling electrical energy between interconnected regions,
generating units and also the retailers. The Queensland competitive market is considered
as an electric grid that can deliver electricity in a controlled smart way from points of
generation to active consumers. It is done by promoting the interaction and responsiveness
of the customer as well as offers a broad range of potential benefits for system operation
and expansion and for market efficiency. Therefore, it becomes a massive challenge for EPF.
Since the pattern of electricity demand is changing based on seasonality; short-term EPF
would be more useful for real-time decision making in the deregulated electricity market
for the purpose of assessing price forecasting. Hence, to execute this work, feature selection
and a forecasting method are adopted to cater to short-term EPF, and data from different
seasons of this market are utilized for the verification of AI application for price prediction.

The remainder of the paper is organized as follows: section II summarizes the price
forecasting classification. In the same section, the process of the development of the
method is briefly explained. In section III, the typical price forecasting approaches, such as
ANN and ANFIS, are explained separately. The process of selecting the most influential
features for price forecasting is discussed in section V. After investigating the most popular
AI techniques, the recent techniques for price forecasting are simulated for the QLD
competitive market for different seasons. Finally, the last section concludes the paper and
recommends the potential future development of methodologies for accurate electricity
price forecasting.

2. General Framework for the Development of Price Forecasting Method

Forecasting of electricity prices is generally divided into short, medium and long
term [13] categories. Nonetheless, there is no particular boundary line in the literature to
distinguish them. Generally,

• Short-term: This significant subcategory is the most relevant for daily market op-
erations, and the forecast time varies from a few or several minutes to several
days upwards.

• Medium-term: The establishment of balancing sheet estimation includes medium
electricity price forecasting, such as the derivatives pricing (change structure), and
strategies of the risk management process, and the forecast duration starts from a few
days to a few months after. The development in the forecast of electricity prices is
generally based on the factor of price distribution on the future horizon rather than on
the actual point predictions.

• Long-term: The forecasting implementation of this scenario concentrates mostly on the
preparation of profitability investment analysis and planning; the prediction duration
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is carried out for a month, quartile or even years in the future. This type of forecasting
has generated useful information, which is appropriate to evaluate the potential site
or generating facility-based fuel sources.

Precise forecasting is a prerequisite for key players and decision-makers in the electric-
ity market to develop an optimal strategy that includes the improvement of socio-economic
benefits and risk reduction. Short-term forecasts attract substantial attention and are ex-
tensively utilized for economic dispatch and power system control in electricity markets.
Therefore, removing impediments in the short-term forecasting of electricity prices will play
an instrumental role in managing power systems to meet the growing demand, keeping
in line with economic growth that is imperative for sustainable development of different
competitive electricity markets.

The proposed electricity price forecasting strategy is presented in Figure 1. After
collecting data on historical prices and demand, it is required to prepare constrained data
through significant feature selection. Therefore, in the first step, an enhanced feature
selection is utilized via hybrid filtering and embedded techniques to assess the quality of
features for the forecasting process. In the first stage, MI is applied to reduce the time of
training due to the availability of data with a high dimension. In the next stage, MOBBSA is
applied to select the features that represent the most important information of the original
set. In step 2, the robust forecasting technique, based on combined ANFIS-BSA, is designed
for day-ahead price forecasting in the highly volatile Queensland market. In this study,
two types of ANFIS are developed. During the feature selection, in order to evaluate
the selected input variable for forecasting purposes, as well as during forecasting, the
electricity price is used to improve the forecasting accuracy. In the second step, BSA and
other well-known optimization techniques are utilized to tune the membership function
parameters to improve the price forecasting accuracy.
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Figure 1. The recent development process for EPF integrated with feature selection.

The electricity price is represented as a function of the demand for electricity in a
deregulated electricity market. During the process of electricity price prediction, it can be
determined that the electrical energy prices in time, t, depend not only on the demand of
electricity, but the previous values also affect the prices. The usual relationship between
electricity demand and price from the previous values is stated in the following equation:

PoE(t) = f
(

PoE(t− 1), PoE(t− 2), PoE(t− 3), . . . , PoE(t− NLPoE),
DoE(t), DoE(t− 1), DoE(t− 2), DoE(t− 3), . . . , DoE(t− NLDoE)

)
(1)

where the demand and price of electricity at time t are represented by DoE(t) and PoE(t),
respectively, whereby the assumption has been made for them as a t interval time series.
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The number of lag sequence for the electricity price is represented by NLPoE, and similarly,
the electricity demand lag sequence is represented by NLDoE.

In this research, by considering dual sets of historical input data, the hybrid ANFIS-
BSA can be carried out to forecast Queensland electricity price (PoE) hourly. In 2018,
historical data sets of input consisting of PoE and hourly Queensland DoE were found
in [41]. In order to implement the dependent and independent variables normalization,
Equation (2) has been applied based on the wide-ranging historical data. Data normaliza-
tions main feature is the adaptation of unrefined data encountered on various scales to a
conceptually familiar scale, relatively early to the processing of data by

Z(t) =
Z(t)−min(Z)

max(Z)−min(Z)
(2)

where Z and t are described as the normalized value, the value that should be normalized
and hourly interval, respectively.

Assume that only one week with exogenous variables hourly lagged values
(NLEP = NLED = 168) are applied for the prediction of electricity price, which represents
336 exogenous variables lagged. If any of the above exogenous variables are used in the
forecasting phase, the learning process may be slowed down, performance deteriorated
and training data will cause overfitting. Since these aspects are of utmost significance in
the process of electrical energy price prediction, it should pick only those features that have
a major impact on performance.

The primary goal selection of the featured method is purposely to determine the
importance of input features with the consistency aspect for the best subset selection in
the original feature set of the suitable information. Due to the principle of dimensionality,
numerous predictors may lead to a lower performance of extracted models. The core
principle for using a feature selection technique has to be the removal of redundant or irrel-
evant features from a data set with various features, with no significant loss of predictive
precision. A search strategy with a measurement metric is used for seeking candidates
and for rating the performance of these candidates in a feature selection algorithm. The
simplest function selection algorithm is to evaluate every potential feature subset to find
one that reduces the error rate that provides the feature space with a thorough search,
but it is computationally intractable [42]. Therefore, to discover all potentials, integration
is implemented by a comprehensive assessment measure. Meanwhile, to determine the
feature quality with a significant impact on the effective algorithm for the feature selection
integration, a search strategy is utilized.

Based on the combination of searching techniques with well-known learning algo-
rithms (assessment metric) to construct a model, three classes of feature selection methods
are formed, namely wrappers, filters and embedded devices [43]. A predictive model
based on wrapper (the search driven by accuracy) methods is implemented for feature
subset evaluation. Every candidate function subset is applied to wrapper methods to train
a model that is assessed on a holdout set. The error rate evaluation of the model for a
testing set has generated the score for each subset of participants. As the wrapper for each
candidate subset technique provides training to a trendy predictive model intended for
the expenses of computationally intensive tasks for that particular type of model, they will
regularly offer the best-performing feature set.

In filter (information gain) methods, a proxy measure is used instead of an error rate
to score a candidate subset of the feature. The selection of proxy measures comprises the
pointwise information, the product-moment correlation coefficient and mutual information
for faster assessment of efficiency feature set. The MI technique is already extensively
used in electricity market price prediction [44]. Nevertheless, this technique encounters
challenges because of the lagged values of the candidate inputs given by the electricity
market, which consist of load demand, price and other variables. Therefore, it is hard to
acquire both individual and joint probability distributions of the candidate inputs [11].
In addition, it should be pointed out that the price of electricity is also recognized as a



Energies 2021, 14, 6104 8 of 28

time-variant signal. Hence, it is not necessary to use a long history of candidate inputs,
as market circumstances fluctuate most of the time. As such, due to the shortage of
information values, it may deceive or give a less accurate price forecast process [11].

The wrapper methods are much more computationally intensive compared to filter
methods, but wrapper methods have used a specific type of learning algorithm to obtain
a subset of features for performance evaluation. Due to the learning algorithm lacking
in filters, this has caused less prediction performance generated in comparison with the
wrapper method set performed by the filter methods with a feature set, which is normally
a common method. Commonly, the filter type method is utilized to discover variables’
relationships, and instead of including an explicit best feature subset, the rank of features
is more preferred. Hence, the hybrid feature selection method can be created by utilizing a
filter to do a wrapper pre-processing step. A selection in this hybrid method for the most
suitable features of bigger sets of data, based on the dimensionality reduction method by
filter method type, allows the wrapper to do the proper selection.

Another subset of features, known as embedded methods, has the best contribution
to precision during the process of designing the model. Embedded methods must not
distinguish between the feature selection component and the training process, as the
selection of the features and model construction steps are accomplished concurrently.
Although computation is less comprehensive using the built-in methods compared to
aggregation methods, this method has major limitations with certain features towards the
base model, being sensitive to its structure. Hence, the approach is normally accurate to
their learning algorithms. Dissimilar categories of the embedded method are classification
trees, known as random forests and regularization approaches. The most generic version of
the embedded feature selection method is the regularization approach, which is often called
the penalization approach. The penalization approach inserts more constraints to the model
development, which simplifies the model by penalizing the model for higher intricacy.

3. Electricity Price Forecasting (EPF) Techniques

In assessing electricity price forecasting, there are two general techniques; hard and
soft computing techniques. There are various studies on hard computing approaches
with various objectives, such as transfer function model, autoregressive integrated moving
average (ARIMA), wavelet-ARIMA and mixed model. This approach needs an accurate
model of the system to utilize the algorithm in finding the optimal solution considering
physical phenomena. Although the accuracy of this approach is found to be high, it
needs a large number of information and is computationally outrageous. There are also
several studies on soft computing approaches in electricity price forecasting. Some recent
approaches include artificial neural networks (ANN) and adaptive neuro-fuzzy inference
system (ANFIS). Generally, this approach does not need any system modeling since it
develops an input-output mapping based on historical data. Therefore, these approaches
are computationally more efficient, and it has higher accuracy as well as higher resolution
subject to correct inputs [13]. Therefore, the main focus of this paper is to review the
methods and techniques that have been developed and introduced adopting soft computing
models, namely AI techniques.

3.1. Artificial Neural Network

Artificial neural networks (ANN) are one of the promising technologies found in
the last few decades that are used extensively in numerous functions in various fields.
In the 1980s, the ANN approach, basically a mathematical model, was introduced for
the very first time. An artificial neural network, simply known as a neural network, is
developed based on the architecture and activity of biological neural networks in the brain.
Numerous numbers of artificial neurons are gathered, and together, they construct an
artificial neural network. Each neuron is connected to other neurons through synaptic
weights (or directly weights). A simple biological neuron has four main parts—a cell
body (soma), axons, dendrites and synapses. The dendrites help to take input signals
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into the cell body. Axons’ responsibility is to transfer the signals from one neuron to the
others. On the other hand, the dendrites of one cell and the axon of another cell meet at a
point called a synapse. An artificial neural network consists mainly of; weights, bias and
activation functions. Generally, an artificial neural network can be divided into two main
parts; neurons and connections between network layers where the neurons are located. A
typical ANN consists of three main layers, such as input layer, hidden layer and output
layer. The ANN uses the concept of multilayer perception (MLP) that is the most popular
ANN method among researchers. However, the outputs (Yn) of ANN are determined from
Equation (3) as follows:

Yn = fn(
m

∑
i=1

WniXn + bn) (3)

where Xn presents the input values, Wni stands for the connection weight values among the
input, hidden and output layers. bn and fn are the bias and transfer functions, respectively.
From the above model and equation of ANN, the main challenge is found in handling
the unknown variable-transfer function. The responsibility of the transfer function is to
determine the characteristics of an artificial neuron.

3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Based on the early defined rules, fuzzy logic methods cannot learn as well as adapt to
a new condition by themselves. To succeed, the authors of [45] have mixed two different
methods with each other and made a hybrid method named ANFIS, which is nothing but
a mixture of Fuzzy Inference System (FIS) and ANN. The methodology named ANFIS can
be acknowledged as a characterized system that can be matched with ANN. In ANN, the
output parameters of the fuzzy system can be adaptive to train the system parameters
of the fuzzy membership function. The benefit of FIS and ANN is processed by ANFIS.
Different types of drawbacks are being analyzed through different difficult procedures of
neural networks where all of the networks are being bypassed by linguistic variables of the
FIS system. On the other hand, the neural inference system solves the problem by creating
the ability to learn, as well as adapting themselves to a new condition. Hence, complicated
non-linear mappings can be assumed by the competency of this method by applying the
fuzzy system with ANN learning. Furthermore, it is acknowledged as a comprehensive
estimator of long-lasting, medium and short forecasting [46].

The main reason to develop a system such as ANFIS is to adopt a system with a tunable
membership function (MF), as well as a set of fuzzy rules during a phase of training. Two
individual parameters can be optimized to implement the learning steps:

• Parameters of antecedent (the MF parameters)
• Parameters of consequent (the fuzzy system output function)

Here, the characteristic is linear in the following parameters. The linear least-square
is applied to optimize the predecessor parameters that look very similar to neural net-
works’ backpropagation algorithm in conjunction, where gradient descent is applied
for optimization.

Usually, the ANFIS is constructed by five individual stages. Among those, each
of the stages has a node function. From the earlier layers, the next layer gets an input
node [47]. The sequential layers of ANFIS can be arranged as fuzzification (if-part) in layer
1, production part in layer 2, normalization part in layer 3, defuzzification (then-part) in
layer 4 and lastly, total output generation part in layer 5. There are dual inputs that are
independent variables (x and y) and a single output, which is a dependent variable (fout)
included in the composition of ANFIS.

Dual diverse kinds of fuzzy inference systems are generated by alternating the fuzzy
rules (if-then) of the consequences set with the procedure of defuzzification. This system is
called Mamdani-based FIS and Sugeno-based FIS.

In numerous regards, the Mamdani-based FIS approach is similar to the Sugeno
approach. A comparative fluffy deduction is prepared for both sorts by the implementation
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of the fuzzifying process upon the input information and the fluffy administrators. The
foremost distinction between Sugeno-based FIS and Mamdani-based FIS is that the manner
of the fluffy inputs has changed over to a fresh yield. In Mamdani-based FIS, for computing
the fresh yield, the fluffy yield is employed in the defuzzification strategy, whereas in
Sugeno-based FIS, the weighted normal strategy is utilized. The idea of disposing of
Mamdani interpretability and expressive control is the aim of the strategies due to the
reason that the standard consequence of the Sugeno strategy is not fluffy. Sugeno has a
quicker interim time compared to Mamdani-based FIS; rather than the time-devouring
defuzzification, it prepares the connection to the weighted normal strategy. Due to the
instinctive nature of and operation of this view, it has led to the complex strategy of
Mamdani, with the choice-back application thought to be linked. Additionally, Sugeno and
Mamdani-based FIS’s show more contrast between them due to the fact that Sugeno has no
yield participation capacities compared to Mamdani FIS yield participation, so the Sugeno
strategy gives a yield that is either a direct (weighted) numerical expression or is steady.
The Mamdani strategy provides a yield that is a fluffy set. Sugeno has more adaptability
in the framework plan than Mamdani-based FIS, as demonstrated by the more efficient
frameworks that can be achieved if the ANFIS device is coordinated with [48].

Conceding ANFIS is linked with Sugeno-based FIS, the composition of the fuzzy
IF-THEN rules of Sugeno-based FIS of the first-order are known as the ANFIS rules, and
are indicated as:

Rule 1: If x is A1 and y is B1 then z is f1(x, y; p1, q1, r1) = x p1 + y q1 + r1
Rule 2: If x is A2 and y is B2 then z is f2(x, y; p2, q2, r2) = x p2 + y q2 + r2

where Ai and Bi are sets of the fuzzy, fi (x, y; pi, qi, ri) is known as the first-order polynomial
function that defines the Sugeno-based FIS outputs, x and y are two separate facts, and z is
an ANFIS model output.

Inside the ANFIS mainframe, the layers of the distinctive comprise of distinctive hubs
work. The nodes (hubs) within the same layer of this network perform functions of the
same type. The layers are described more in detail as follows:

Layer 1: In this layer, the inputs are x and y to hub i, etymological names are Ai and Bi,
enrollment capacities for Ai and Bi fluffy sets are µAi and µBi, separately, and the enrollment
review of a fluffy set is known as q1. i is regarded as the yield of hub i within a layer that
indicates the degree to which the specified input (x or y) fulfills the evaluation. In ANFIS,
the MF (enrollment work) for a fluffy set can regularly be any parameterized participation
work, such as universal Chime molded work, Gaussian, trapezoidal or triangular.

Layer 2: Each hub in this layer may be a settled hub that yields the item of all the
approaching signals. In this layer, through an increase of input signals, the terminating
quality of each run is decided.

Layer 3: Each hub in this layer may be a settled hub. Throughout this layer, the
terminating quality given in the past layer is normalized by computing the proportion of
the ith rule’s terminating quality to the entirety of all rules’ terminating qualities.

Layer 4: Each hub is adaptive with a node feature in this layer.
Layer 5: This layer has one settled hub that computes the large yield of ANFIS by

summation of all approaching signals.
Lastly, the hybrid learning algorithm has been utilized by ANFIS to tune the parameter.

At the same time, for updating the input MF parameters (antecedent parameters) and
training the consequent parameters in layer 1, respectively, the backpropagation algorithm
and the least-squared method have been used.

Based on recent research in AI techniques, it was concluded that the simulation results
of the Queensland market in 2018 in different seasons are based on the hybrid ANFIS-BSA.
Therefore, BSA is explained as the most recently developed optimization technique in the
training phase of ANFIS and is compared with well-known optimization techniques to
prove the proposed method can be applied for any deregulated electricity market.
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4. Multi-Objective Backtracking Search Algorithm (MOBSA)

In multi-objective optimization problems, the Pareto (French economist) optimality
method is applied to generate a set of solutions to the objectives instead of looking for
a single solution. The set of optimal solutions is needed because a single point may not
optimize all the objective functions at the same time due to a conflict sometimes arising
among the objectives. There are two feasible optimal solutions determined by the Petro
optimality technique, which are designated by ε = (ε1, . . . , εN) and ∂ = (∂1, . . . , ∂N),
respectively. In order to accomplish the solutions, two sets of objective functions are
used; f (ε) = ( f1(ε), . . . , fm(ε)) and f (∂) = ( f1(∂), . . . , fm(∂)), developed as shown in
Equation (4). Solution (∂) is accepted only as an optimal solution over solution (ε) when
a mathematical condition ( f (ε) < f (∂)) and Equation (4) are satisfied simultaneously.
Hence, solution (ε) is called the non-dominant solution, corresponding to the solutions
incorporated in the Pareto optimal set. The depiction of the Pareto optimal set (containing
the objecting functions and decision variables) is designated as Pareto front [49–56].

∀i ∈ {1, . . . , m} : fi(ε) ≤ fi(∂)
∃j ∈ {1, . . . , m} : f j(ε) < f j(∂)

(4)

The Pareto optimal set of a multi-objective BSA scheme is shown in Figure 2, in
which the first and second objective functions are named f1 and f2, respectively. The
figure consists of the gray colored dominated and red circled non-dominated solutions of
the Pareto optimality. The two samples (A and B) are collected from the non-dominated
solutions, as represented in Figure 2.
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The Pareto front produces a group of optimal outcomes regardless of generating a
unique optimal solution in the BSA optimization analysis. In fact, no single solution should
be neglected over other solutions in the Pareto front as they are all considered crucial parts
of the optimization technique. It may be an impossible task to attain greater development
in the determined objectives if any one of them is eliminated from the optimization process.
Consequently, trade-offs of the solutions are expected and satisfied with a most convincing
solution while manipulating the multi-objective optimization problems.

A standardization mechanism is designed to provide an estimated common scale in
the objectives that are originally designed for distinct scale factors in the multi-objective
algorithm. To evaluate a precise solution (least valued solution) from the Pareto set, other
normalized outcomes have to be accumulated and measured with the common scale.

The backtracking search algorithm (BSA) is the latest evolutionary algorithm with
a simple structure. It has the capability to solve multimodal functions and different
numerical optimization problems. In BSA, two advanced crossover and mutation operators
are proposed to generate the trial population. These operators are unique and different
from other evolutionary algorithms (e.g., GA and DE) in terms of their structure. It only
has one control parameter, and it is insensitive to the initial parameter value. As such, it
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overcomes the drawbacks of metaheuristic methods that have a lot of control parameters,
are sensitive to the initial value of these parameters, premature convergence and time-
consuming computation. The overall optimization process of BSA in the selection of
features and price prediction is obtainable, which has six stages: initialization, selection-I,
mutation, crossover, boundary control and selection-II [57].

In the case of multi-objective BSA schemes, several numbers of optimal solutions are
generated as a Pareto optimal set, rather than dealing with a unique solution. To compute
well the generated dominant and non-dominant solutions and to bring improvements in the
existing algorithm, a sophisticated mechanism is included based on the superiority idea of
the Pareto technique [58]. In an initial stage, there should be a generation of a considerable
number of offspring (T) by using the parameters of the crossover and mutation processes in
the multi-objective BSA algorithm. Hence, a comparative study is taken place depending
upon the notion of Pareto dominance between the individual members (ith) of the offspring
and the population (Pi). In this comparison analysis, the individuals of the population are
replaced by the offspring ones due to (Ti) led by (Pi) in the optimization process. In the next
stage, it is important to transform the BSA algorithm into the multi-objective functioned
method to reach the global minimum optimization. A Pareto optimal mechanism set
is developed to store many dominant and non-dominant solutions as an alternative to
exporting a global minimum approach. To establish the concepts of the external elitist
archive and crowding procedure, there are many steps that need to be accomplished in
the multi-functioned BSA algorithm, which are shown in Figure 3 and described in the
following order.

Step 1: The optimization parameters are the same size as the main arbitrarily devel-
oped population (P), as referred to in (5).

Step 2: Now, there is a need to figure out every member of the primary population
with their fitness strengths. After identifying the categories of different populations, only
non-dominant solutions should be stored in the external archive.

Step 3: Equation (6) is used to compute the historical archive of the parent participants
in this BSA optimization algorithm.

Step 4: The archived members of the non-dominant solutions are updated in every
consecutive repetition of the optimization procedure by following the “if-then” rules
in Equation (7).

Step 5: A mutation technique is implemented to determine a single offspring from
only one population stored in the historical archive, which is manipulated by Equation (9).

Step 6: To Equation (10), eventually, a unique solution of the offspring (T) can be
achieved using a crossover strategy in every consecutive iterative operation from the trial
population previously stored in the archive.

Step 7: After the crossover analysis is completed, an already produced member
of the offspring population should be replaced by an alternative one if it breaches the
threshold condition (stated in Equation (11)) of the non-dominant set size in the external
elitist archive.

Step 8: The entries (ith) of the produced offspring (Ti) have to be changed by the
members (ith) of the parent (Pi), when Ti exceeds Pi in number.

Step 9: Then, reorder the solutions in the elitist archive based on the commands
explained in Step 4.

Step 10: The area of objective functions is split after measuring the crowding inter-
spaces of the solutions in the external elitist archive. Then every single solution is stationed
in a specific destination based on the parameters of their objectives. When there is no more
space to store a newcomer of the non-dominant solutions into the external archive, an
arbitrarily chosen solution from the densely populated area should be eliminated to give
access to the new incoming solution.

Step 11: If the redistribution process does not meet the optimization requirements,
apply the formula g = g + 1 and start repeating the optimization process from Step 4.
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5. Selection of Forecast Model Inputs via Multi-Objectives

In this section, feature selection is developed based on the filtering and wrapper
techniques to determine the most effective input for the forecasting of the Queensland
deregulated electricity market. The wrapper method for a particular model type always
provides the most important features, but their efficient research algorithm in the evolving
training phase is required. The sequential search-based metaheuristic technique for feature
selection is recommended for the purpose of adding or eliminating the features before
the efficiency of the model is improved, as the exhaustive search is normally impractical.
During the local optima point, the sequential search has a probability of turning out to
be stagnated. Thereby, to search for a different feature subsets space, the metaheuristic
algorithm, also known as the randomized search algorithm, is suggested. The application
of metaheuristic algorithms for feature selection has included random searching procedures
to avoid becoming trapped in a local optima point. The multiple metaheuristic algorithms,
which are GA, SA, ACO and PSO, have been used in the context of feature selection [42].

The formulation of the objective optimization problem of the feature selection is
done in metaheuristic algorithms; therefore, the number of appropriate features must be
predefined and continually locate the features subset along with a number of static features.
Typically, the selection of features has dual main-diverging purposes; simultaneously
minimizing both measurement error and the number of features. Consequently, multi-
objective problems formulated from the selection of features consist of two key goals,
which are optimizing the model effectiveness and considering the number of features to be
minimized, and a decision is a trade-off of these two objectives. The multi-objective topic is
a formulation of feature selection that corresponds to a non-dominant set of feature subsets
in order to fulfill multiple requirements.

The investigation through NSGA-III, NSGA-II and multi-objective particle swarm
optimization (MOPSO) is carried out to attain the Pareto front of feature subsets [58,59], yet
a still more effective search approach is required to enhance the solution to feature selection
issues [60]. There are some issues experienced by the existing multi-objective feature
selection algorithms where the obstacles are referring to the computational cost, which is
too high, more parameter control, and are also very sensitive to the initial value of the BSA
parameter, whereby it is considered to be less costly to computationally implement instead
of other metaheuristic techniques with just a single control parameter [54]. A Binary-Valued
BSA (BBSA) in [61] is proposed for solving the discrete form parameter optimization.

Nevertheless, BBSA is being used as an effective search algorithm for the selection of
features in [60]; it handles the role of a single objective issue and is not specifically applied
to tackle multi-objective problems of feature selection. Numerous variations of Multi-
Objective BSA (MOBSA) were established in [54,62]. Statistical analyses in [54] indicate
that MOBSA is becoming a promising strategy of optimization to solve high-dimensional
multi-objective problems among multiple established multi-objective evolutionary algo-
rithms (e.g., MOPSO, NSGAIII and NSGA-II). Hence, this work proposes an algorithm
for solving multi-objective problems of feature selection based on BBSA that can be a
potential algorithm for obtaining a non-dominant subset Pareto front. The evolutionary
training procedure can utilize any learning algorithm (e.g., ANN, SVM, ANFIS) for solving
BSA-based multi-objective problem algorithms to assess the quality of individual candidate
feature subsets. Due to its rapid learning ability to estimate non-linear functions, ANFIS
has been known as a universal estimator [60]; thus, it is incorporated in the proposed
wrapper-based multi-objective feature selection method as an evaluation metric method.
In particular, ANFIS deploys an effective hybrid learning technique, which integrates the
least-square method with the gradient descent. The least-square method contributed to
the speed of the training [63]. Thus, ANFIS has the capabilities to develop the predictive
model after only a few epochs of training. The models have been designed for different
combinations of features selected by Multi-Objective BBSA (MOBBSA), as the least-square
approach is computationally effective, a single/few runs of the least-square technique is
used to train them, and then to establish the model, a subset with non-dominated features
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with the best performance quality is preferable. Prior to implementing a feature selection
to gain the most prominent subsets with maximum validity variables of input and minimal
of EPF short-term redundancy, dependent variables, as well as the independent variables,
are put into two sets randomly: 70% as training sets and 30% as test sets. ANFIS models
are constructed by the training set with various input variables subsets, whilst the test set
provides access to the vigor and utility generated models.

MOBBSA is utilized to appear within a diverse mix of variable inputs as the technique
of multi-objective feature selection progresses and the selection of the non-dominant subset
of features advances, while ANFIS is used as a metric of evaluation to observe the work
accomplishment of each subset of each feature. Each MOBBSA individual represents
one input variable during the applied learning method (ANFIS) training process. The
establishment of a feature selection method retains non-dominant feature subsets in an
external elitist archive, which concurrently minimizes the root mean square error (RMSE) by
using the principle of Pareto dominance on the test set and a variable number of the input
to achieve the solution in global optima points. The MOBBSA upgrade from BSA currently
only has a single control parameter, called “mixrate”, responsible for restricting the number
of individuals’ involved in the crossover phase. Therefore, about 100% of the population
has been determined with a maximum mixrate value (i.e., 100% of the population size) has
been considered for the implementation of the feature selection approach by including each
and every individual in the crossover stage. The alternative potential to the Mamdani-based
FIS is the Sugeno-based FIS to build the framework of ANFIS for the purpose of feature
selection since this type of model is ideally suitable for modeling non-linear functions by
interpolating with numerous linear functions. Based on the research done [64], the author
provided scatter partitioning into the training process to enhance the feature selection
process. The main part of scatter partitioning, which is known as subtractive clustering,
becomes a key point to create the ANFIS for feature-based selection.

The reciprocal information of the input characteristics is evaluated, and insignificant
and redundant traits are filtered to create a lower input subset. Then the technique of
feature selection is implemented into the reduced subset to identify a smaller set of features
with high predictive precision. The feature selection technique has suggested that during
the initial stage, the reciprocal details of the input and output features amongst every
individual variable are tabulated based on MI formulation in [25]. The indication of mutual
information with much higher values leads to a higher reliance on each output and input
variable. The sorting process of input features is in descending order, which is based on
specifically computing the mutual information.

In order to reduce the running time of feature selection, two-stage feature selection is
proposed in this work. Input features exhibiting a lesser amount regarding the significant
influence toward the output and allowing lesser value due to the reciprocal information
than the relevancy threshold (TH) is eliminated. Due to filtering the purposes of the
redundant features, the significance threshold must be considered as TH = 0.46. Therefore,
after filtering procedures, the most important qualities of 69 features are selected. Out of the
69 candidates chosen, 27 features with the most significance and the highest dissimilarity
are identified by MOBBSA as inputs for the next predictive procedures. Moreover, for
the effectiveness of the evaluation phase in the proposed multi-objective feature selection
method, the comparison with the MOPSO, NSGAIII and NSGAII has been carried out. A
thorough analysis to find the optimal solution for subsets of input variables along with
their computational time is achieved using the multi-objective feature selection methods
and tabulated RMSE values, which represent their subsequent performances in Table 2.
According to the obtained results, for the similar results to the test, the suggested feature
selection technique is better than other techniques since it generates less error in estimation
and feature numbers.
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Table 2. The multi-objective feature selection methods select the optimal subsets of input variables by studied, RMSE and
computational time value, which represent their subsequent performances.

MOBBSA +
ANFIS

MOPSO +
ANFIS

NSGAIII +
ANFIS

NSGAII +
ANFIS

MOBBSA +
ANN

NSGAIII +
ANN

MOPSO +
ANN

NSGAII +
ANN

PoE(t-1) PoE(t-1) PoE(t-1) PoE(t-1) PoE(t-1) PoE(t-1) PoE(t-1) PoE(t-1)
PoE(t-2) PoE(t-2) PoE(t-2) PoE(t-2) PoE(t-2) PoE(t-2) PoE(t-2) PoE(t-2)
PoE(t-3) PoE(t-3) PoE(t-3) PoE(t-3) PoE(t-3) PoE(t-4) PoE(t-3) PoE(t-6)
PoE(t-23) PoE(t-23) PoE(t-23) PoE(t-23) PoE(t-23) PoE(t-23) PoE(t-71) PoE(t-23)
PoE(t-24) PoE(t-25) PoE(t-47) PoE(t-24) PoE(t-24) PoE(t-47) PoE(t-73) PoE(t-24)
PoE(t-25) PoE(t-47) PoE(t-48) PoE(t-48) PoE(t-25) PoE(t-96) PoE(t-96) PoE(t-48)
PoE(t-47) PoE(t-48) PoE(t-49) PoE(t-49) PoE(t-48) PoE(t-120) PoE(t-97) PoE(t-120)
PoE(t-48) PoE(t-49) PoE(t-71) PoE(t-72) PoE(t-49) PoE(t-121) PoE(t-120) PoE(t-144)
PoE(t-72) PoE(t-71) PoE(t-72) PoE(t-73) PoE(t-73) PoE(t-144) PoE(t-121) PoE(t-168)
PoE(t-95) PoE(t-72) PoE(t-96) PoE(t-96) PoE(t-94) PoE(t-167) PoE(t-144) PoE(t-169)

PoE(t-120) PoE(t-96) PoE(t-97) PoE(t-97) PoE(t-120) PoE(t-168) PoE(t-145) PoE(t-192)
PoE(t-167) PoE (t-119) PoE(t-120) PoE(t-120) PoE(t-167) PoE(t-169) PoE(t-167) PoE(t-193)
PoE(t-168) PoE(t-168) PoE(t-123) PoE(t-121) PoE(t-168) PoE(t-192) PoE(t-168) PoE(t-335)
PoE(t-169) PoE(t-169) PoE(t-145) PoE(t-144) PoE(t-169) PoE(t-336) PoE(t-169) PoE(t-337)
PoE(t-191) PoE(t-192) PoE(t-168) PoE(t-145) PoE(t-191) PoE(t-337) PoE(t-335) PoE(t-503)
PoE(t-336) PoE(t-334) PoE(t-192) PoE(t-168) PoE(t-192) PoE(t-504) PoE(t-336) PoE(t-504)
PoE(t-504) PoE(t-335) PoE(t-334) PoE(t-169) PoE(t-336) PoE(t-505) PoE(t-337) DoE(t)

DoE(t) PoE(t-336) PoE(t-335) PoE(t-192) PoE(t-504) DoE(t) PoE(t-504) DoE(t-1)
DoE(t-1) DoE(t) DoE(t) PoE(t-193) DoE(t) DoE(t-1) PoE(t-505) DoE(t-4)
DoE(t-2) DoE(t-1) DoE(t-1) DoE(t) DoE(t-1) DoE(t-3) DoE(t) DoE(t-12)

DoE(t-23) DoE(t-2) DoE(t-2) DoE(t-1) DoE(t-2) DoE(t-24) DoE(t-1) DoE(t-24)
DoE(t-24) DoE(t-24) DoE(t-24) DoE(t-2) DoE(t-24) DoE(t-25) DoE(t-3) DoE(t-25)
DoE(t-25) DoE(t-25) DoE(t-25) DoE(t-24) DoE(t-25) DoE(t-71) DoE(t-24) DoE(t-48)
DoE(t-167) DoE(t-167) DoE(t-72) DoE(t-25) DoE(t-72) DoE(t-72) DoE(t-72) DoE(t-72)
DoE(t-168) DoE(t-168) DoE(t-96) DoE(t-72) DoE(t-96) DoE(t-95) DoE(t-96) DoE(t-96)
DoE(t-169) DoE(t-169) DoE(t-120) DoE(t-96) DoE(t-120) DoE(t-96) DoE(t-120) DoE(t-120)
DoE(t-335) DoE(t-335) DoE(t-169) DoE(t-120) DoE(t-144) DoE(t-144) DoE(t-144) DoE(t-144)

DoE(t-336) DoE(t-335) DoE(t-144) DoE(t-168) DoE(t-168) DoE(t-168) DoE(t-168)
DoE(t-168) DoE(t-336) DoE(t-192) DoE(t-192) DoE(t-335)
DoE(t-336) DoE(t-335) DoE(t-504)

RMSE

17.35 17.59 17.61 17.96 18.70 18.75 18.87 18.94

Computational Time

98.6523 112.4573 110.6785 119.3236 128.0335 142.4235 140.3657 157.2518

6. Sequential Steps to Obtain AI-Based Models for Short-Term EPF

Figure 4 represents the sequential steps to obtain AI-based models for short-term EPF
are carried out for all models, which are as follows:
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Step 1: To evaluate the efficacy of the applied methods for EPF in different seasons,
one month in each season was considered (i.e., February (summer), May (autumn), August
(winter) and November (spring)) due to seasonality effects.

Step 2: Designing the training phase entails the derivation of algorithms responsible
for connecting the input variables to the output variables, and Equation (2) is used to
normalize the input and output variables to make the learning process swift.

Once the selected features (PoE and DoE) are finalized, the most influential features
will transfer as the input variables for the next forecasting process. In order to evaluate
the forecasted price, a data set beyond the training data set, known as the testing data
set, is employed. The reliability of the generated model can be determined utilizing the
considered scores in the testing process.

Step 3: To predict the electricity price (PoE) precisely, ANFIS-BSA is implemented by
minimizing the cost function, illustrated as follows:

F =
N

∑
t=1

∣∣∣PoE(t)observed − PoE(t) f orecasted

∣∣∣ (13)

where the actual and predicted electricity prices are PoE (t)observed and PoE(t)forecasted, respec-
tively, and N represents the number of observations.

Step 4: The purpose of designing a testing phase is to evaluate model performance on
results of AI approaches applied to datasets having no function in building models.

Once the selected features (PoE and DoE) are finalized, the most influential features
will transfer as input variable for next forecasting process. In order to evaluate the fore-
casted price, a data set beyond the training data set known as the testing data is employed.
Reliability of the generated model can be determined utilizing the considered scores in
testing process.

MAPE% =
1
N

N

∑
t=1

∣∣∣PoE(t)observed − PoE(t) f orecasted

∣∣∣
PoE(t)observed

× 100 (14)

RMSE =

√√√√ 1
N

N

∑
t=1

(PoE(t)observed − PoE(t) f orecasted)
2 (15)

U =
RMSE√

1
N

N
∑

t=1
(PoE(t)observed)

2 +

√
1
N

N
∑

t=1
(PoE(t) f orecasted)

2

(16)

U-statistic always generates binary results [0, 1], where zero represents higher fore-
casting precision, and one represents the estimation is as inaccurate as a naïve guess.

The appropriateness description of a given data series obtained through models is
ensured through the whiteness test, also known as the Durbin–Watson test [65], acquired
after a confirmatory analysis. The objective of the confirmatory analysis is to confirm the
whiteness of estimated residuals (e(t)), which confirms the non-correlation between them.

RACF =

N
∑

t=2
(e(t)e(t− 1))

N
∑

t=1
(e(t))2

(17)

To prove the effectiveness of the proposed model, the Akaike Information Criterion
(AIC) for different months is calculated [66] as (18). AIC deals with the trade-off between
the goodness of fit of the model and the simplicity of the model. In other words, AIC deals
with both the risk of overfitting and the risk of underfitting.

AIC = n× log(
√

RMSE) + 2k (18)

where n represents the number of observations, k represents the number of coefficients
optimized by a model and RMSE is the root mean square error.
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7. Simulation Results and Discussion

The electricity price forecasting process and development of the whole feature se-
lection techniques were coded in MATLAB (R2019a) and run on a personal computer,
with a core-2 quad processor of 2.6 GHz clock speed and 4GB RAM. Regarded as one
of the most volatile electricity markets, the implementation of ANFIS-BSA in this study
is to improve the precision of Queensland mainland Electricity Price Forecasting (EPF).
In this section, substantial features are established by emerging multi-objective BSA and
ANFIS as inputs for prediction investigation. Additionally, an assessment of the efficacy of
ANFIS-BSA for short-term EPF accurateness purposes is performed by comparison with
the well-known AI techniques: ANN, ANFIS, ANN-GA, ANN-PSO, ANFIS-GA, ANN-BSA
and ANFIS-PSO. There are two types of variables, dependent and independent variables.
They are divided into two subdivisions, where the hourly data of the first three weeks is
used for the training of design phase and that last week of each month is utilized for the
testing phase of the models, which are obtained from the analysis. The adopted methods
with the control parameters are typically based on identical methodologies that have been
effectively utilized for energy price or demand forecasting in the literature, as there is no
unanimity in the optimal values of the AI-based method settings of the parameters.

A backpropagation MLP as an ANN model, which adopts a feed-forward structure
trained with a backpropagation (BP) learning model, is used. This network is usually
referred to as a universal estimator because of its simple solution network and faster
computational steps, which enables it to have conducted training over a large input of data
sets. Several criteria, for example, architecture network, learning algorithm and transfer
function impact the effectiveness of developed models by ANN. As recommended in [67],
two hidden layers are adopted for short-term EPF to form an MLP model. The layers
include Levenberg–Marquardt PB learning and the logarithmic sigmoid transfer function.
The formation of the ANFIS structure is based on the selected Sugeno-type FIS instead of
the Mamdani-type FIS (Fuzzy Inference System). The reason for selecting the Sugeno-type
is that it is able to model non-linear systems based on the interpolation of multiple linear
models. As suggested in [68], the selected membership function here is Gaussian, and
ANFIS is set up by subtractive clustering (radii = 0.8). Based on the recent studies, different
ANFIS models are computed in this work. The results in Table 3 show that subtractive
clustering (SC) outperformed the other models of ANFIS.

Table 3. Comparison of different ANFIS models for different months.

Performance
Indexes (ANFIS)

November August May February

GP FCM SC GP FCM SC GP FCM SC GP FCM SC

RACF
Training 0.0007 0.0005 0.0003 0.0008 0.0006 0.0005 0.0049 0.0048 0.0047 0.0031 0.0029 0.0028
Testing 0.0009 0.0008 0.0006 0.0018 0.0016 0.0012 0.0032 0.0028 0.0027 0.0018 0.0016 0.0015

Absolute
error

Training 31.5827 29.5825 26.5822 30.6788 28.6787 25.6785 28.3229 24.3228 21.3226 22.8533 20.8531 18.8529
Testing 19.5481 16.5479 12.5477 21.2569 19.2567 17.2565 18.1251 15.1249 12.1247 10.3838 8.3836 6.3834

RMSE
Training 4.1336 2.1332 0.1327 7.2493 5.2481 0.2478 6.1169 3.1166 0.1164 5.0887 2.0886 0.0883
Testing 3.1219 1.1216 0.1205 4.1888 3.1886 0.1882 4.0725 2.0723 0.0721 2.0817 1.0816 0.0811

U-
statistic

Training 0.0658 0.0657 0.0654 0.0922 0.0918 0.0916 0.0518 0.0517 0.0514 0.0469 0.0468 0.0467
Testing 0.0558 0.0555 0.0548 0.0879 0.0878 0.0876 0.0393 0.0392 0.0391 0.0419 0.0418 0.0417

MAPE
(%)

Training 9.1889 8.1887 5.1884 8.3792 7.3788 6.3778 9.5249 8.5246 4.5245 8.6251 6.6248 4.6237
Testing 7.5241 6.5231 4.5217 7.6222 6.6216 5.6212 7.4342 6.4331 4.4328 7.4897 5.2878 4.0798

The method recommended in [69] is GA, which was implemented by the genetic
algorithm optimization toolbox (GAOT) with the involvement of scattered crossover and
mutation of Gaussian. All the control parameters, such as crossover rate and mutation rate,
are set to be default as suggested in [70], and the population of the GA is set to 100.

In this study, a standard form of PSO algorithm is also implemented, in which 100 is
set for the population number. Value 2.0 is selected for both acceleration factors (c1 and
c2). A decaying inertia weight ω with a range between 0.9 and 0.4 is selected, as stipulated
in [71] with the increase of the running time.
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For a cross-over process participation, the control parameter of BSA sets the number
of individuals within the population varies in the range of 0% and 100%. Nevertheless, the
variation of this parameter is not influenced by the performance of BSA. Thus, to achieve
the best solutions, the individuals with the maximum value were selected. The adjustable
parameters of the whole technique are presented in Table 4.

Table 4. User-defined parameters for applied techniques.

Techniques Adjustable Parameters Setting

ANN(MLP)
Hidden layer

Transfer function
Learning algorithm

2
Logarithmic sigmoid

Levenberg-Marquardt PB

ANFIS(SC)
Cluster radius 0.8
FIS structure Sugeno-type

Membership function Gaussian

GA

Population
Selection function

Elite count
Crossover
Mutation
Migration

Size:100, Type: Double vector, Creation function: Uniform
Stochastic uniform 5.0

Fraction: 0.8, Function: Scattered
Function: Gaussian, Scale: 1.0, Shrink: 1.0

Direction: Forward, Fraction: 0.2, Interval: 20

PSO
Swarm population

w
c1 = c2

100
[0.4, 0.9]

2

BSA
Number of individuals 100

Control parameter rate (P) 100%

For February, May, August and November 2018, the performance of machine learning
methods applications for the EPF of QLD with their computational time are summarized in
Tables 5–8, respectively. The accomplished values of RACF validate the estimated residual
whiteness in the asserted confidence range for different months for all established models.
Regarding Table 5, the precision of the QLD electricity market forecasting method can be
achieved by adopting the mean rank approach, which was intended for the indicator based
on multi-criteria evaluations. ANFIS-BSA > ANFIS-PSO > ANFIS-GA > MLP-BSA > MLP-
PSO > MLP-GA > ANFIS > MLP is the ranked order (absolute error, RMSE, U-statistic and
MAPE) for the applied methods of EPF for forecasting effectiveness based on multi-criteria
decisions for each indicator, considering the mean rank of the methods.

Table 5. Comparison performance indexes of multiple metaheuristic techniques corresponding to the forecasting accuracy
for EPF in February 2018 in QLD.

Performance Indexes
Methods

MLP MLP-GA MLP-
PSO

MLP-
BSA ANFIS ANFIS-

GA
ANFIS-

PSO
ANFIS-

BSA

RACF
Training 0.0013 0.0006 0.0026 0.0021 0.0028 0.0007 0.0009 0.0003
Testing 0.0015 0.0018 0.0007 0.0006 0.0015 0.0019 0.0023 0.0005

Absolute
error

Training 19.2059 18.9638 18.9977 18.6238 18.8529 18.5327 18.1481 17.7113
Testing 7.1035 6.5630 6.6027 6.2471 6.3834 6.2285 5.4873 5.2846

RMSE
Training 0.1246 0.0926 0.0974 0.0862 0.0883 0.0847 0.0787 0.0673
Testing 0.0973 0.0842 0.0843 0.0814 0.0811 0.0777 0.0738 0.0621

U-
statistic

Training 0.0624 0.0578 0.0516 0.0453 0.0467 0.0432 0.0388 0.0256
Testing 0.0478 0.0472 0.0454 0.0422 0.0417 0.0408 0.0378 0.0331

MAPE
(%)

Training 5.0563 4.8523 4.9322 4.5721 4.6237 4.4172 3.9823 3.8542
Testing 4.5624 4.3411 4.4503 3.9846 4.0798 3.7671 3.2207 3.0785

Computational Time 77.4532 76.9853 75.5236 74.3264 63.2352 62.9211 61.2014 60.3252
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Table 6. Comparison performance indexes of multiple metaheuristic techniques corresponding to the forecasting accuracy
for EPF in May 2018 in QLD.

Performance Indexes
Methods

MLP MLP-GA MLP-
PSO

MLP-
BSA ANFIS ANFIS-

GA
ANFIS-

PSO
ANFIS-

BSA

RACF
Training 0.0012 0.0014 0.0029 0.0147 0.0047 0.0113 0.0046 0.0015
Testing 0.0143 0.0003 0.0017 0.0019 0.0027 0.0036 0.0004 0.0039

Absolute
error

Training 22.8950 21.7276 21.6552 21.4531 21.3226 20.8263 21.1213 20.4314
Testing 12.2535 12.1624 12.1833 11.7235 12.1247 11.5578 12.1156 11.3342

RMSE
Training 0.1411 0.1322 0.1312 0.1226 0.1164 0.0817 0.0812 0.0763
Testing 0.0865 0.0847 0.0835 0.0785 0.0721 0.0714 0.0648 0.0547

U-
statistic

Training 0.0652 0.0566 0.0546 0.0525 0.0514 0.0457 0.0374 0.0352
Testing 0.0577 0.0512 0.0402 0.0366 0.0391 0.0365 0.0344 0.0327

MAPE
(%)

Training 4.8784 4.7504 4.6557 4.6263 4.5245 4.4381 4.3341 3.4621
Testing 4.4424 4.3512 4.2769 4.2634 4.4328 4.0567 4.2620 2.7756

Computational Time 76.5342 75.3824 75.3343 74.3972 64.3846 63.4102 62.3753 60.3655

Table 7. Comparison performance indexes of multiple metaheuristic techniques corresponding to the forecasting accuracy
for EPF on August 2018 in QLD.

Performance Indexes
Methods

MLP MLP-GA MLP-
PSO

MLP-
BSA ANFIS ANFIS-

GA
ANFIS-

PSO
ANFIS-

BSA

RACF
Training 0.0016 0.0025 0.0021 0.0008 0.0005 0.0011 0.0028 0.0002
Testing 0.0017 0.0006 0.0015 0.0026 0.0012 0.0014 0.0028 0.0015

Absolute
error

Training 25.6465 25.3267 25.5615 25.2446 25.6785 24.2214 23.2596 21.0278
Testing 17.2563 17.2123 18.2275 17.1147 17.2565 17.0014 16.6772 14.5342

RMSE
Training 0.3661 0.2537 0.2147 0.2041 0.2478 0.1852 0.1837 0.1676
Testing 0.2048 0.1734 0.1922 0.1653 0.1882 0.1635 0.1613 0.1453

U-
statistic

Training 0.0975 0.0776 0.0803 0.0738 0.0916 0.0734 0.0728 0.0685
Testing 0.0932 0.0811 0.0873 0.0684 0.0876 0.0667 0.0623 0.0601

MAPE
(%)

Training 6.3276 5.8356 6.0013 5.7127 6.3778 5.7055 5.6645 4.4642
Testing 6.7728 5.6524 5.8897 5.5524 5.6212 4.5047 4.3357 4.2225

Computational Time 78.6574 78.2345 77.3886 77.3672 66.3756 65.3775 65.3473 62.3585

The rank (absolute error, RMSE, U-statistic and MAPE) for the entire set in May of 2018
is ANFIS-BSA > ANFIS-GA > MLP-BSA > ANFIS-PSO > MLP-PSO > MLP-GA > ANFIS
> MLP. In August, the accurateness of the forecasting methods based on multi-criteria
decisions that have been studied within the entire set are ANFIS-BSA > ANFIS-PSO >
ANFIS-GA > ANFIS > MLP-BSA > MLP-GA > MLP-PSO > MLP, ranked for every indicator
(absolute error, RMSE, U-statistic and MAPE) with the mean rank method application.
Meanwhile, in November 2018, the accurateness of the forecasting methods based on
multi-criteria decisions that have been studied within the entire set are ANFIS-BSA >
ANFIS-PSO > ANFIS-GA > MLP-BSA > MLP-PSO > ANFIS > MLP-GA > MLP, ranked for
every indicator (absolute error, RMSE, U-statistic and MAPE) with the mean rank method
application. Table 9 reports the AIC index with the better-fit model. For different months
of different seasons, the enhanced results indicate the better-fit estimation generated
by the optimized ANFIS methodologies as compared to previous researched techniques.
Additionally, for training the ANFIS, it is decided that BSA is the most effective optimization
algorithm, whereas ANFIS-BSA attained the better MAPE (%), U-statistic, RMSE and
absolute error, which is less than the values attained using other optimization algorithms.
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Figures 5–8 present the design phase and testing phase of performance tests that use ANFIS-
BSA during February, May, August and November, respectively, of each season’s execution.

Table 8. Comparison performance indexes of multiple metaheuristic techniques corresponding to the forecasting accuracy
for EPF in November 2018 in QLD.

Performance Indexes
Methods

MLP MLP-GA MLP-
PSO

MLP-
BSA ANFIS ANFIS-

GA
ANFIS-

PSO
ANFIS-

BSA

RACF
Training 0.0008 0.0009 0.0015 2.60E-04 0.0003 0.0016 0.0008 0.0017
Testing 0.0005 3.50E-05 0.0013 0.0006 0.0006 0.0015 0.0012 0.0006

Absolute
error

Training 27.6740 25.0021 25.2140 24.3145 26.5822 24.2364 24.2012 21.1121
Testing 12.6613 12.1456 12.3215 12.0138 12.5477 11.8823 10.5674 10.0022

RMSE
Training 0.1411 0.1022 0.1144 0.0934 0.1327 0.0814 0.0811 0.0776
Testing 0.1218 0.0885 0.1106 0.0918 0.1205 0.0876 0.0847 0.0725

U-
statistic

Training 0.0668 0.0622 0.0644 0.0557 0.0654 0.0524 0.0538 0.0376
Testing 0.5824 0.0504 0.0526 0.0473 0.0548 0.0478 0.0459 0.0326

MAPE
(%)

Training 5.2457 5.0031 5.1314 4.7810 5.1884 4.6734 4.7126 3.5762
Testing 4.8724 4.4875 4.6810 4.0026 4.5217 3.7320 3.6255 2.7123

Computational Time 78.5462 77.3824 76.7943 75.4262 66.5736 66.5462 66.3873 60.3465

Table 9. Comparison of different models based on the AIC index for different months.

Akaike Information
Criterion Index (AIC)

Methods

MLP MLP-GA MLP-
PSO

MLP-
BSA ANFIS ANFIS-

GA
ANFIS-

PSO
ANFIS-

BSA

February Training 94.50 93.15 93.38 92.82 64.93 64.74 60.41 63.69
Testing 100.46 100.25 100.24 100.19 72.18 72.12 72.04 71.78

MAY
Training 93.79 93.45 93.42 93.06 64.79 62.95 62.91 62.59
Testing 100.28 100.25 100.23 100.13 72.00 71.99 71.84 71.58

August Training 98.76 96.85 95.98 95.72 68.73 67.21 67.17 66.69
Testing 101.59 101.34 101.49 101.26 73.46 73.25 73.23 73.07

November
Training 94.22 92.61 93.17 92.16 65.91 63.47 63.45 63.23
Testing 100.80 100.31 100.65 100.37 72.78 72.29 72.25 72.01

The performance of the models developed by ANFIS-BSA is verified through external
validation using different statistical methods for the QLD competitive electricity market in
the preceding year of 2018. To assess the performance of the obtained model, the following
qualities were recommended [72–75]:

i. For |R| > 0.8 given by a model, the prediction and observation values have a
strong correlation.

ii. For 0.2 < |R| < 0.8 given by a model, the prediction and observation values have a
mild correlation.

iii. For gives |R| < 0.2 given by a model, the prediction and observation values have a
poor correlation.

The statistical factors of the ANFI-BSA model for EPF of Ontario in different months
of 2018 are tabulated in Table 10. The table demonstrates that the developed models meet
the entire requisite specifications. The precise models must be provided by ANFIS-BSA
during the validation phase because it is strongly relevant to QLD and the implementation
in the future of any competitive markets for short-term electricity price forecasting.
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Table 10. ANFIS-BSA model’s statistical factors for EPF in one month of winter, spring, summer and autumn 2018 for QLD.

Item Formula Condition
ANFIS-BSA Approach

Winter Spring Summer Autumn

1 R 0.8 < R0 0.9987 0.9933 0.9850 0.9998

2 K = ∑n
i=1(hi×ti)
∑n

i=1 hi
2 0.85 < k < 1.15 0.9976 0.9985 0.9962 0.9970

3 K′ = ∑n
i=1(hi×ti)
∑n

i=1 ti
2 0.85 < k’ < 1.15 1.0030 1.0011 1.0023 1.0008

4 m = R2−Ro
2

R2 |m|< 0.1 −0.0033 −0.0039 −0.0042 −0.0024

5 n =
R2−RO′

2

R2
|n|< 0.1 −0.0033 −0.0039 −0.0041 −0.0024

6 Rm = R2 ×
(

1−
√
|R2 − Ro2|

)
0.5 < Rm 0.9974 0.9923 0.9865 0.9980

where
Ro

2 = 1− ∑n
i=1(ti−hi

o)2

∑n
i=1(ti−

_
ti)

2 , hi
o = k× ti 0.8 < R0

2 < 1 0.9998 1.0000 1.0000 0.9996

RO′
2 = 1− ∑n

i=1(hi−ti
o)2

∑n
i=1

(
hi−

_
hi

)2 , ti
o = K′ × hi 0.8 < R0

2 < 1 0.9998 1.0000 1.0000 0.9996

8. Conclusions and Recommendations

An investigation has been carried out over price forecasting methodologies used in
recent studies related to the deregulated environment. As a result of the rapid transition
in the power market’s structure, prediction with a high degree of precision for upcoming
prices, which has the capability to maximize the profit margin, has become an irresistible
practice for market participants. It is a challenging task to consider the most influential
electricity input variables caused by the reliance on the multiple parameters of electricity
demand and electricity price. In order to overcome the challenges encountered in the
forecasting of electricity prices, various techniques have been proposed to attain a robust
model with high precision. The statistical techniques, artificial intelligence-based tech-
niques and hybrid approach have been clearly deployed for the short-term forecasting
of electricity prices. While most of the alternatives to electricity price forecasts in the
literature were implemented, there are limitations for such approaches. For example, the
main deficiencies in data-driven approaches are so many control parameters, and they are
extremely sensitive, making it very complicated to initialize these parameters. Although
multiple machine-learning techniques are often considered for electricity price forecast-
ing, in order to give a more precise electricity price forecast, the newest methodology is
still preferred. Moreover, long-term price forecasting was taken into account in most of
the aforementioned literature. The electricity demand trend relies on the seasons. Thus,
short-term price forecasting would become more efficient for real-time decision-making
on a deregulated electricity market. Feature selection is another important factor affecting
the efficacy and precision of the forecast. The selection of features significantly helps in
enhancing forecasting abilities and accuracy. Nevertheless, a determination has been made
that it is challenging to pick the most robust feature selection approach for the prediction of
electricity price regarding the non-linearity of the price signal. In the most recent reference,
the authors recommended the testing of a hybrid ANFIS-BSA method instead of Ontario to
test its robustness and efficacy. Therefore, the efficiency of ANFIS-BSA on the Queensland
electricity market is tested by the proposed method.

The suggested methodology for the selection of features evaluated not only whether
the price signal of non-linear dependencies on its variable of input is better compared
to the established multi-objective optimization methods, such as MOPSO, NSGAIII and
NSGAII, but also eliminating features redundancy commonly to select the different related
features. The classification of fewer input variables by the proposed combination of a
MOBBSA-ANFIS feature selection approach, on the other hand, allows better accuracy in
forecasting. The theoretical feature selection technique with the information of the non-
redundant features between a big set input of candidates also has the potential to choose
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the most appropriate minimum subset of the proposed strategies. Hence, the candidate
inputs are eventually chosen with minimal redundancy, and the output is highly relevant.

Finally, the backtracking search algorithm (BSA) is used as an efficient optimization
algorithm in the learning phase of the ANFIS approach to provide a more precise prediction
engine for forecasting the price of electrical energy. The predicted results are compared
with ANN and ANFIS models’ results, which are optimized by particle swarm optimization
(PSO) and genetic algorithms (GA) to determine the effectiveness and applicability of the
proposed approach for electricity price forecasting. The Hybrid ANFIS-BSA approach
provides a good forecasting accuracy, with an average MAPE of 3.07, 2.77, 4.22 and 2.71
in February, May, August and November, respectively, taking into account the results of
previous publications for different case studies as benchmark described in Table 1. The
verifications of the results of the simulations used the real sets of data based on the electricity
market of Queensland, which is amongst the most volatile electricity markets globally.
The BSA-optimized ANFIS strategy is worth being considered as a robust and useful
forecast mechanism in order to fulfill the actual needs of electricity market participants,
including the self-producers and traditional generation companies, the suppliers/retailers
and aggregators. These contributions will help market players efficiently bid, keep their
daily business productive and ultimately increase the revenue of the companies.
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Z Un normalized data yi 
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tive function 
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rule 
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iA
μ  Membership function for iA

fuzzy sets 
P(X) Probability function of X 

iB
μ  Membership function for iB  

fuzzy sets 
mixrate BSA Control parameter 

∂ and ε Solutions in Pareto optimal set H(X,Y) 
Variables X and Y joint proba-
bility distribution 

PoE (t)observed 
During time t electricity price ob-
served 

g + 1 Next generation 

PoE (t)forecasted 
During time t electricity price 
predicted 

lowj 
Lower search space limits of jth 
variable 

map Binary integer-valued matrix nPop Population size of host nests 

Mutant Initial form of trial population nVar 
Number of respective optimi-
zation variable 

Z Normalized data fi(x, y; pi, qi, ri) Output of the Sugeno type FIS
Z Un normalized data yi Minimum value of the jth objective function
:= Update operation Pg Productivity of ith individual
ARIMA Auto regressive integrated moving average NLPoE Number of lag order for electricity price
(Ai, Bi) Fuzzy sets g Transfer function
(x, y) Inputs to node i e(t) Estimated residuals whiteness
w Normalized firing strength of a rule H(X) Random variable X’s entropy
µAi Membership function for Ai fuzzy sets P(X) Probability function of X
µBi Membership function for Bi fuzzy sets mixrate BSA Control parameter
∂ and ε Solutions in Pareto optimal set H(X,Y) Variables X and Y joint probability distribution
PoE (t)observed During time t electricity price observed g + 1 Next generation
PoE (t)forecasted During time t electricity price predicted lowj Lower search space limits of jth variable
map Binary integer-valued matrix nPop Population size of host nests
Mutant Initial form of trial population nVar Number of respective optimization variable
N Standard normal distribution Pbest Previous best position
oldP Historical population permuting Random shuffling function
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yg Global minimum Q1,i Membership grade of a fuzzy set
rand Distributed random numbers T Generated offspring at the end of

crossover process
randi Random selection function U Uniform distribution function
upj Upper search space limits of jth variable σ Width of Guassian MF
wi Output signal and represent the firing F Wiener process

strength of a rule
a and b in BSA Randomly generated numbers DoE Electricity demand at time t
fout Final output of ANFIS model RACF Residuals autocorrelation function
c Center of Guassian MF RMSE Root mean square error
CE Conditional entropy MI Mutual Information
AI Artificial intelligence ANFIS Adaptive neuro-fuzzy inference system
PoE Electricity price at time t ANN Artificial neural network
BSA Backtracking search algorithm $/MW.h dollar per Megawatts hour
EPF Electricity Price Forecasting SC Subtractive clustering
NLDoE Lag order number QLD Queensland electricity market
MAPE Mean absolute percentage error MOPSO Multi-objective particle swarm optimization
NSGA Non-dominated sorting genetic algorithm MOBBSA Multi-objective binary-valued BSA
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