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Abstract: The identification of critical periods and business cycles contributes significantly to the
analysis of financial markets and the macroeconomy. Financialization and cointegration place a
premium on the accurate recognition of time-varying volatility in commodity markets, especially
those for crude oil and refined fuels. This article seeks to identify critical periods in the trading
of energy-related commodities as a step toward understanding the temporal dynamics of those
markets. This article proposes a novel application of unsupervised machine learning. A suite of
clustering methods, applied to conditional volatility forecasts by trading days and individual assets
or asset classes, can identify critical periods in energy-related commodity markets. Unsupervised
machine learning achieves this task without rules-based or subjective definitions of crises. Five
clustering methods—affinity propagation, mean-shift, spectral, k-means, and hierarchical agglomera-
tive clustering—can identify anomalous periods in commodities trading. These methods identified
the financial crisis of 2008–2009 and the initial stages of the COVID-19 pandemic. Applied to four
energy-related markets—Brent, West Texas intermediate, gasoil, and gasoline—the same methods
identified additional periods connected to events such as the September 11 terrorist attacks and the
2003 Persian Gulf war. t-distributed stochastic neighbor embedding facilitates the visualization of
trading regimes. Temporal clustering of conditional volatility forecasts reveals unusual financial
properties that distinguish the trading of energy-related commodities during critical periods from
trading during normal periods and from trade in other commodities in all periods. Whereas critical
periods for all commodities appear to coincide with broader disruptions in demand for energy,
critical periods unique to crude oil and refined fuels appear to arise from acute disruptions in supply.
Extensions of these methods include the definition of bull and bear markets and the identification of
recessions and recoveries in the real economy.

Keywords: energy commodities; financial crises; Brent; WTI; gasoline; clustering; t-SNE; machine
learning; COVID-19 pandemic

1. Introduction
1.1. The Motivation for this Research

Crises loom large in finance and macroeconomics. Defining transitions between
bull and bear markets, or between recessions and expansions, helps identify distinctive
financial or economic regimes. Commodity markets, especially those related to petroleum,
undergo their own fluctuations. Indeed, abrupt and abnormal movements within these
notoriously turbulent markets often signal trouble in other sectors of the broader economy.
Oil price volatility, in particular, experiences structural shifts. The intense financialization of
commodities, including crude oil and refined fuels, heightens the importance of identifying
shifts and disruptions in volatility across time.

This article proposes a novel method for identifying critical moments in commodity
markets, ranging from structural shifts to abrupt disruptions. It places special emphasis on
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markets for crude oil and refined fuels. Unsupervised machine learning can distinguish
crises from normal conditions. It can identify anomalies within an economic time series and
set those trading days apart for closer examination, as opposed to finding time time-varying
effects through conventional analysis.

Recent work by the authors has demonstrated the use of clustering and manifold
learning to arrange commodities into discrete markets for fuels, precious metals, base
metals, and agricultural commodities by climate [1]. In an extension of that work, this
article focuses more closely on the temporal domain of these markets. A suite of clustering
can identify critical periods affecting all commodity markets, such as the 2008–2009 global
financial crisis and the COVID-19 pandemic. These critical periods also affect markets
specific to oil and refined fuels. Even closer examination reveals additional periods of
special interest to energy-related markets. Most of those periods are shorter, acute supply
disruptions through extreme weather or acts of war.

As between the clustering of commodities and trading days, temporal clustering poses
the greater technical challenge and offers the greater practical reward. Discrete commodity
markets number in the dozens. A comprehensive span of financial history can cover
thousands of trading days. The configuration of commodities in metaphysical financial
space need not observe a particular order. By contrast, cogent, temporally defined market
regimes must represent contiguous or nearly contiguous blocs of trading days.

Certain branches of finance and macroeconomics seek to define cyclical peaks and
troughs. Many conventional definitions of bull and bear markets or recessions and ex-
pansions within the broader economy, however, rely upon arbitrary benchmarks or even
subjective judgment. If stock prices fall more than 20 percent from a recent peak, for
instance, many analysts are prepared to declare the onset of a bear market. A 10 percent
decline, by contrast, is labeled a “correction.”

Relative to these arbitrary, categorical distinctions, a mathematically informed treat-
ment of conditional volatility forecasts may identify contiguous or nearly contiguous
clusters of trading days. Although this article does not immediately pursue the possibility,
the methods that it applies may ultimately enable new ways to identify distinctive regimes
in financial markets or the broader economy. Though bull-and-bear market indicators and
peak-and-trough definitions of the business cycle will undoubtedly persist, data-driven
alternatives or complements may arise from unsupervised machine learning and related
forms of artificial intelligence.

Unsupervised machine learning also obviates disputes over the definition of local
maxima and minima across potentially expansive spans of financial history. These methods
serve as an extended metaphor for one of the greatest challenges in machine learning
and artificial intelligence: determining whether a model has been globally optimized, or
whether an optimization algorithm has converged locally.

By the same token, reliance on unsupervised machine learning presents challenges
unique to this set of methods. Unlike conventional regression-based methods or their
equivalents within predictive applications of supervised machine learning, unsupervised
methods such as clustering and manifold learning are not typically used to validate research
hypotheses. They struggle to perform either of the traditional tasks in economics. Other
methods outperform unsupervised machine learning in forecasting values and in enabling
causal inference. What unsupervised machine learning does excel in doing, however,
is revealing patterns within data itself, without reliance on labels, values, or research
hypotheses formulated by human analysts.

Mindful of the potential of unsupervised machine learning, as well as its limits,
this article targets questions that routinely arise in traditional research on commodities,
broader financial markets, and the real economy. This article answers those questions in
the narrower, more specific context of energy-related commodities. There is intense interest
in comovement and connectedness among commodities trading, financial markets, and
macroeconomic phenomena. These relationships are known to vary across time. At its most
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intriguing, time-varying conditional volatility supports hypotheses regarding cyclicality
and structural shifts in many branches of economics.

This article asks whether raw data consisting of nothing more than logarithmic returns
or conditional volatility forecasts can distinguish among ordinary trading days, acute
crises that bend the arc of energy commodities trading sharply but only temporarily,
and more enduring turning points that can credibly be described as turning points or
structural shifts. If unsupervised learning succeeds in this task on a limited slice of the
economic universe, then this article may support new approaches that can complement
traditional peak-to-trough methods of defining cyclicality in financial markets and the
broader business cycle.

1.2. A Section-by-Section Summary

Section 2 of this article reviews the literature on comovement and volatility spillovers
in commodity markets, particularly those involving energy. Section 2 also reviews the
literature on rules-based definitions of bull and bear markets and economic recessions.
This extended review of the relevant economic literature provides complete background on
volatility in crude oil and refined fuel markets. Section 2 ultimately explains why connec-
tions between commodities trading, financial markets, and the broader economy motivate
efforts to describe cyclicality and other manifestations of variability in the volatility of
energy-related markets over time.

Section 3 presents data sources and describes the unsupervised machine-learning
methods underlying this article. Conditional volatility forecasts based on a GJR-GARCH(1,
1, 1) process for 22 commodity markets from 2000 through 2020 constitute the primary data
source. The subarray containing volatility forecasts for four oil and fuel markets provides
the central focus. Logarithmic returns, for all commodities and the energy-specific subset,
constitute an additional source of data.

Section 4 aggregates results from five clustering methods—affinity propagation, mean-
shift, spectral, k-means, and hierarchical agglomerative clustering—as applied to a com-
prehensive market basket of 22 commodities and to a more focused basket of four energy-
related commodities: Brent, West Texas intermediate, gasoil, and gasoline. t-distributed
stochastic neighbor embedding, or t-SNE, helps visualize all clustering results.

Meaningful temporal clusters for broader commodity markets delineate the global
financial crisis and the COVID-19 pandemic. Focused clustering in energy-related markets
identifies several additional critical periods for crude oil and refined fuel markets. Section 5
presents and distinguishes those two sets of results.

Section 6 discusses the implications of this article’s findings for managers, investors,
and policymakers. Critical periods in energy-related markets demand a different approach
to hedging and risk management, not merely for commodity investors, but also for in-
vestors using commodities to neutralize other sources of risk. The role of energy-related
crises in macroeconomic policymaking also warrants careful consideration.

The identification of temporal regimes in commodity markets through clustering
suggests the generalizability of unsupervised machine learning to other markets and to
macroeconomic data. The second half of Section 6 describes these and other possible paths
for future research.

2. Literature Review

The economic literature germane to this article spans four distinct subjects:

1. Price volatility in oil and refined fuel markets;
2. Comovement and volatility spillovers between these energy-related commodities and

other commodity markets;
3. Similar connections between energy-related commodity markets, other financial

markets, and the real economy;
4. Methods for identifying cyclicality and other time-varying effects in commodity

markets, stock markets, and the real economy.
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This section addresses each body of literature in turn. A review of the relevant
literature on unsupervised machine learning is deferred until Section 3′s presentation of
materials and methods.

2.1. Price Volatility in Crude Oil and Refined Fuels
2.1.1. Oil Price Volatility

Commodity markets figure prominently in developmental economics and interna-
tional trade. Representing a quarter of global trade in goods, commodities provide the
most important source of income for some of the world’s poorest countries [2,3]. Be-
cause advanced economies rely so heavily on petroleum-based fuels for transportation
and many industrial processes, the wealth of developed nations also hinges on oil-based
commodities [4].

The pervasive financialization of commodities raises the premium on proper under-
standing of the price and volatility dynamics in these markets [5]. This is particularly
true of crude oil and fuels refined from it [6–9]. Producers and industrial customers have
the greatest stake, since oil price volatility directly affects investments in oil inventories,
production and transportation facilities, and physical capital based on oil consumption [10].
These sunk investments demonstrate why “costly reversibility” is a prime mover in the
economics of market structure and industrial organization [11–14].

Because of their intrinsic volatility and their dependence on global supply chains,
energy markets are especially sensitive to external shocks. The diverse factors affecting
oil prices include sociopolitical disturbances, shifts in the global supply and demand,
and technological and regulatory changes promoting demand for renewable energy [15].
Discrete events, “such as wars, the release of OPEC production quota decisions, oil stock
fluctuations and extreme weather,” also affect oil prices [16] (p. 256).

Chronic or acute, these factors are never stable. Structural breaks punctuate the time-
varying conditional heteroskedasticity of oil price volatility [17]. Although conventional
tools for forecasting oil prices and volatility abound [18,19], models that ignore struc-
tural breaks and other sources of temporal variability in volatility “will have very low
power” [17] (p. 555). This is yet another instance in which accurate forecasting relies upon
the more realistic assumption that volatility does not remain constant [20].

2.1.2. Refined Fuels: Gasoline and Gasoil (Diesel)

Because gasoline and gasoil are refined petroleum products, their price and volatility
dynamics depend heavily upon the economics of oil. These markets are nevertheless
subject to forces befitting their proximity to retail consumers. Gasoline and gasoil are
affected by time-varying consumer income [21] and the price elasticity of demand for
petroleum-based fuels among other retail-level energy sources [22]. Demand for gasoline
may be less elastic than typically assumed, especially in the short run [23].

Perhaps the most distinctive trait of the price behavior of refined fuels, particularly
gasoline, is its asymmetry [24–27]. The “rockets and feathers” hypothesis posits that
increases in crude oil prices are transmitted much more quickly to gasoline than de-
creases [28–30]. Data across the United States showed that retail gasoline prices increased
0.52 percent within the first week of an anticipated 1 percent increase in oil prices, but fell
0.24 percent within the first week of a 1 percent decrease [31].

Other sources describe asymmetry in gasoline pricing according to Edgeworth price
cycles, characterized by sawtooth-shaped time series consisting of many price decreases
punctuated by occasional upward jumps [32,33]. Straightforward measurements of gasoline
demand have shown that elasticity decreases as volatility rises [34,35]. Both the “rockets
and feathers” hypothesis and Edgeworth price cycles are consistent with this account
of volatility.

Other sources contest the presence of asymmetry in the relationship between oil and
refined fuel markets [36]. Asymmetry, if present for gasoline and gasoil in Europe, is
fleeting and appears over very short time horizons [37]. Asymmetry appears in Spain and
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Italy, but not in Greece, the United Kingdom, or the United States [38]. Time-varying effects
such as volatility clustering and structural breaks affect the degree of asymmetry in the
transmission of volatility from oil to gasoline [39]. Findings of asymmetry may depend on
the frequency at which volatility data is sampled [40].

One study reaches an intriguing conclusion: The “rockets and feathers” hypothesis
tells the dominant story of oil–gasoline asymmetry, but not the exclusive story [28]. When
oil prices are falling, on average, gasoline prices follow a contrary “boulders and balloons”
dynamic by which gasoline more swiftly tracks oil price declines than increases. The rever-
sal in the polarity of oil–gasoline asymmetry strongly suggests that volatility transmission
between crude oil and refined fuels varies over time. Indeed, the presence of opposite
tendencies, based on the timing of the broader business cycle, suggests that asymmetry,
persistence, and cyclicality in volatility must be understood in the context of other capital
markets and the macroeconomy [41,42].

Though literature on the price dynamics of gasoil is relatively sparse and inconclusive,
national fuel mix policies appear to account for some of this fuel’s differences relative to
gasoline [43]. The European Union [44] and the United Kingdom [45] both nudge their
transportation sectors to favor gasoil over gasoline. With mixed success, the United States
has maintained a heating oil reserve to stabilize prices for this variant of gasoil, widely
used to heat homes in the northeastern region of that country [46]. Home heating can be
expected to be one of the least elastic sources of demand for gasoil, at least over short time
horizons, for households that depend on this fuel.

2.2. Comovement and Volatility Spillovers within Commodity Markets
2.2.1. The Financialization of Commodities and Hedging Strategies

As a prime outgrowth of the coordination of commodity markets with other aspects
of global finance [5], comovement and volatility spillovers among commodities warrant
careful evaluation [47]. Commodity futures have become popular tools for diversifica-
tion [48,49]. Tools for managing financial risk in other capital markets apply directly to
energy-related commodity markets [50]. Commodities as safe havens can offset turbulence
from other asset classes, from equities to currencies [51]. The “universe of financial as-
sets,” spanning diverse “investment strategies,” heightens the importance of “risk transfer
between oil” and markets for other “global, large and liquid” assets [52] (p. 56).

Unstable energy prices often induce investors to hold other assets alongside energy
commodities. Hedging strategies and portfolio rebalancing enable investors to manage
comovement [53]. At a minimum, oil price shocks affect non-energy commodities [54–57].
A study of volatility in oil and refined fuel should therefore consider comovement and
volatility spillovers linking energy with other commodity classes, especially metals and
agricultural products.

2.2.2. Precious Metals

The traditional role of precious metals as hedges against inflation and economic
turbulence [58] casts those commodities in sharp relief against crude oil and refined
fuels [59–61]. Markets for oil are more volatile than markets for gold and silver [62].
Precious metals exhibit hedging and safe haven properties vis-à-vis energy [49,59,63,64].
Connections between gold and oil extend to other financial instruments [60,65].

Financial risk may not run equally between two markets. Among instances of volatility
spillover in commodity markets [66–68], the propensity of oil to transmit volatility to precious
metals poses the greatest challenge to investors in energy-related commodities [69–72]. As
the global financial crisis of 2008–2009 demonstrated, precious metal returns may be more
sensitive to disaggregated structural oil shocks [72].

2.2.3. Base Metals

Because oil prices heavily affect input costs for industrial processes using base metals,
connections between energy markets and metals extend beyond gold, silver, platinum,
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and palladium [73,74]. Although one study identified platinum, gold, and silver as net
transmitters of volatility to oil [60], such spillover may not persist across all periods and
market states. Indeed, traditional distinctions between precious and base metals may
not hold across all financial conditions. Tin, gold, nickel, lead, and aluminum transmit
return and volatility to oil markets. Copper, zinc, and platinum are net receivers—but only
“at certain specific moments” [75] (p. 12). Time-varying fluctuations became especially
pronounced during the global financial crisis [60] and the COVID-19 pandemic [75].

2.2.4. Agricultural Commodities

Energy markets also transmit volatility to agricultural commodities [3,71,76–79]. The
dependence of agricultural commodity markets on energy prices varies over time [80].
A structural break appears to have shifted the relationship between oil and agricultural
commodities after 2006 [81]. Sources differ in attributing the disruption to a change in
biofuels policy [76] or to a broader crisis in food crops [78].

The relationship may vary more subtly over time [80]. During periods such as the
financial crisis of 2008–2009, oil and agricultural commodity markets crash simultaneously.
Connectedness likewise strengthened during the COVID-19 pandemic [82]. Under normal
economic conditions, however, these markets move in opposite directions. This pattern
implies that hedging will fail in the very conditions when hedges would prove most
valuable. The counterbalancing effect also denies investors the opportunity to realize
excess profits in both markets.

These conclusions are neither universal nor inevitable. A different study focusing on
common crisis periods such as the global financial crisis and the pandemic rejects two key
conclusions of other studies [83]. Oil and crops have a bidirectional relationship in which
each class of commodities transmits volatility to the other with roughly equal probability
over long time horizons. As a surprising consequence, oil and agricultural prices remained
relatively stable throughout the pandemic.

Certain crops (particularly corn and soybeans) either compete directly against crude
oil as a renewable substitute or serve as a complementary product [84]. A third crop,
sugarcane, affects these markets because of its substitutability for corn [85]. Conventional
wisdom holds that high oil prices invite competition from corn-based ethanol and soybean-
based biodiesel [86].

This relationship, like many others, appears to depend on the state of the market:
Spillovers from oil to agricultural and biofuel markets are stronger when oil prices are
higher [87]. Conversely, concerns over the diversion of common-pool resources used in
agriculture from food to fuel production reach their peak during economic crises [88].

Closer scrutiny of the impact of biofuel policies on oil and gasoline price variability [89]
has not found conclusive evidence that energy markets spur volatility in corn [90] or that
policy-stimulated demand for biofuels has elevated prices or volatility in agricultural
markets [91]. The answer to the conundrum may lie in the limited economic impact of
biofuel policies. If such policies were abolished around the world, biofuel demand would
implode without materially affecting overall demand for agricultural commodities [92].

2.2.5. The Geopolitics of Energy-Related and Agricultural Commodities

The prominence of oil and export crops in many developing economies heightens
the economic, political, and diplomatic sensitivity of volatility spillovers involving those
markets [3]. Connectedness between these commodities bridge distant geographic markets,
such as Chinese crops and crude oil, whether around the world [93] or specifically in the
United States [94]. As a rule, however, research on the impact of oil price volatility on
developing countries that import rather than export petroleum remains limited [95].

A global study spanning 157 countries at different stages of development attributed
40 percent of income volatility to oil price fluctuation [96]. Though “the adverse effects
of [price] instability” are often “much more severe” in developing countries, those gov-
ernments can rarely afford “the extensive support programs that typify the agricultural
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sectors of the developed world” [97] (p. 1729). Dependence on natural resource extraction
is so often associated with stunted economic development that this paradox is known as
the “resource curse” [98–101].

Geopolitical tension from oil divides importing and exporting countries [102,103].
Importing countries must rely on insecure foreign sources of an economic lifeblood [104],
while global trade and politics drive fiscal policy and economic cycles in exporting coun-
tries [105]. The rapid emergence of China portends the revival of a Great Game among
global superpowers in central Asia and other oil-rich regions [106].

Again, however, the economic effects are asymmetrical. Economic reactions to energy
price shocks in exporting countries are greater and more persistent than in importing
countries [107]. In the long run, both oil-importing and -exporting countries stand to lose.
At least among OECD countries, oil price volatility stunts economic growth in net importers,
while oil price uncertainty hurts net exporters [108]. Furthermore, to the extent that oil
price volatility suppresses international trade and globalization, the ensuing reduction of
global welfare harms all countries [109].

2.3. Broader Financial and Macroeconomic Effects of Oil and Fuel Price Volatility
2.3.1. Financial Markets beyond Commodities

Oil markets transmit volatility to other capital markets, including equity markets [110,111].
Although one study concludes that the American stock market is neither a net transmitter
nor a net receiver of volatility relative to oil or precious metals [60], others have found
spillover effects in smaller economies such as Iran [112] and South Korea [113].

Stock returns and stock market volatility in oil-exporting countries such as Qatar, Saudi
Arabia, and Venezuela are assuredly affected by oil prices [114]. These effects follow a
regime-switching framework based on the cyclical state of these countries’ equity markets—
specifically, whether stocks in oil-producing countries are in a bull or bear market [114].
Some sources advise investors in oil-exporting countries to increase their allocation to
oil [115,116].

The relationship between oil price volatility and the equity market may depend on
the cyclicality of both markets. The “relationship between oil prices and US equities
could depend on both the nature of oil price shocks and how well the US stock market
is performing” [117] (p. 6). Complete understanding of the mutual dependence of oil
prices and broader capital markets requires not only some understanding of cyclicality in
commodity and equity markets, but also a principled way of identifying critical periods
within financial history.

To like effect, structural heterogeneities in foreign exchange markets coincide with
geopolitical and economic impacts [118]. In conjunction with broader macroeconomic
phenomena, oil markets exert dynamic influence on trade in currencies [118]. Portfolio
management and other forms of risk management therefore hinge on the relationship
between oil prices, exchange rates, and the business cycle.

2.3.2. Macroeconomic Effects

Oil price volatility impairs economic growth [119]. Like many other phenomena
connected to oil and fuel markets, the macroeconomic effects of disruptions in energy-
related markets are asymmetrical. Oil price increases stunt economic growth more deeply
than corresponding decreases in price spur economic activity [120,121]. Even sharp price
drops may reduce aggregate output in oil-importing countries by raising uncertainty or
inducing inefficient reallocation of resources [122].

Macroeconomic uncertainty spurred by oil price volatility varies over time. Volatility
typically peaks during financial crises and recessions [123]. Nonlinear measures capture
the overall economic effects of oil price shocks [124]. Oil price volatility in the wake of
economic, geopolitical, and natural disturbances often combines short-term perturbations
with longer-term macroeconomic factors [125].
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A useful trichotomy summarizes the macroeconomic component of oil price volatil-
ity [126]. First, “most commodity prices are endogenous with respect to the global business
cycle” [127] (p. 313). Second, demand shocks cause slow but sustained changes in price.
Third, and in stark contrast, supply shocks have immediate but small and ultimately
evanescent price impacts. In oil-related markets, crises and recessions generally reduce
demand over a sustained period, while geopolitical events and natural disasters tend to
disrupt supplies on an acute basis.

This rigidly logical approach to evaluating the macroeconomic effects of oil and fuel
price volatility does leave room for potentially exogenous factors to affect uncertainty.
Oil “price uncertainty,” conditioned “on macroeconomic uncertainty,” might be a more
complete and “suitable measure of uncertainty” than purely volatility-based measures [127]
(p. 325). As a matter of broad theory, if not empirical precision, uncertainty may depend
more heavily on the predictability of energy-related markets than on their volatility [127].

2.4. Identifying Cyclicality and Critical Periods in Energy Markets, Finance, and the
Real Economy

Comprehensive financialization strengthens the connections linking commodities,
capital markets, and the broader economy. These relationships reinforce other centrifugal
tendencies throughout economics. For instance, asset pricing models should account for
tangible assets and human capital as well as financial instruments [128]. The behavior of a
firm is likewise influenced by that of its upstream suppliers, downstream purchasers, and
competitors in geographically and technologically adjacent markets [129].

Appropriately enough, efforts to track economic cyclicality span stock markets and
macroeconomic policymaking. These two domains, neither more than a single degree
removed from commodity markets, have invited many efforts to define critical periods.
Even though this article applies unsupervised machine language rather than conventional
econometric methods, it is motivated by the same desire to trace economic cyclicality in
commodity markets, particularly for crude oil and refined fuels.

Stock markets provide the narrower and methodologically simpler basis for compar-
ison. Technical stock analysis typically defines bull and bear markets, respectively, as a
market-wide price increase of at least 20 percent since the previous trough or a market-wide
decrease of at least 20 percent since the previous peak [130–132]. A 10 percent decline is
typically described as a “correction” [133]. Designations of bull and bear cycles within
market trends can be made only in retrospect, and there is no justification for these ar-
bitrary 10 and 20 percent thresholds beyond the conventions of technical analysis and
financial journalism.

For its part, the Business Cycle Dating Committee of the National Bureau for Economic
Research (NBER) tracks recessions and recoveries in the United States [134–137]. The
NBER’s methodology relies on a dynamic-factor, Markov-switching model that examines
non-farm payroll employment, the index of industrial production, real personal income,
and real manufacturing and trade sales [134,136].

Figure 1 describes the NBER’s announcements regarding the arrival and departure of
recessions in the United States [138,139]. It depicts smoothed recession probabilities as they
rise and ebb. Notably, only two periods from 2000 through 2020 have exceeded 50 percent
according to the NBER: the financial crisis of 2008–2009 and the COVID-19 pandemic. The
“dot-com” crisis of 2001 approached but did not exceed a 50 percent probability of recession.
As is evident in the shaded areas of Figure 1, however, the NBER did define March through
November 2001 as a recession.
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One can also frame this problem as the mirror image of an event study [140,141].
An event study traces abnormal effects to determine the duration of a suspected market
disturbance. Event studies of oil price shocks [142,143], for instance, have evaluated OPEC
announcements [144,145] and storms [146]. Conversely, temporal clustering uses economic
anomalies to extract events for further examination amid the flow of financial history.

The timing of recession announcements presents an economically significant issue in
its own right [147]. By the NBER’s own admission, its business cycle dating committee’s
“approach to determining the dates of turning points is retrospective” [148]. Before defini-
tively identifying a peak, “the committee tends to wait to identify a peak until a number of
months after it has actually occurred” [148]. Likewise, the committee does not immediately
announce a trough. Rather, the committee “waits until it is confident that an expansion is
underway” [148].

Under this methodology, announcements of recessions and recoveries are not aligned
in time with actual economic activity [149]. In the three decades from 1980 to 2010, “the lag
between the determined start of [a] recession” and the NBER’s “peak announcement” has
averaged 9 months [150] (p. 645). At a bit more than 15 months, the lag between a trough
and its announcement is longer still [150].

The lag between actual macroeconomic phenomena and their announcements creates
an opportunity for machine learning, artificial intelligence, and other automated methods
for evaluating economic data. For instance, the United States publishes its official Consumer
Price Index on a monthly basis, with a delay of several weeks between the gathering of
price data by. the Bureau of Labor Statistics and the announcement of each new CPI
reading [151]. By contrast, the Massachusetts Institute of Technology’s Billion Prices Project
reports a comparable price index on a daily basis [151].

This article develops a methodology for identifying critical periods in energy-related
commodity markets. The literature on oil and fuel markets emphasizes volatility and the
connectedness of oil and oil-based fuels with other commodities, other financial markets,
and the macroeconomy. Instead of defining cycles akin to bull and bear markets or
macroeconomic expansions and recessions, this article will try to distinguish between
critical and normal periods of trading within markets for petroleum-related commodities.
In seeking a crisis-based approach to understanding temporal shifts in these markets,
this article aims at an intermediate level of mathematical rigor between the extremes
represented by technical definitions of bull and bear markets and the NBER’s recession-
and-recovery methodology.

Qualitative distinctions between peaks and troughs, expansionary and recessionary
cycles, and critical periods dissolve upon closer mathematical inspection. Critical points in
calculus identify points within the domain of a function where the derivative or gradient
is zero (assuming that the function is differentiable at those points). Peaks and troughs
as maxima and minima constitute critical points in a univariate function. In a multidi-
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mensional space representing returns on more than one asset, critical points also include
saddle points, where all slopes in orthogonal directions are zero, but no local extremum
is attained. In this mathematically informed sense, the methods described and applied in
this article cast a wider net than methods dedicated of finding peaks and troughs within a
single time series.

The second derivative of logarithmic returns on a financial asset is related to volatility
through the Taylor series expansion [152,153]. Points within the domain of a function
where the second derivative is zero indicate inflection or undulation. Methods focusing on
financial volatility may therefore find inflection and undulation points as well as critical
points. These observations are not meant to suggest that this article consciously seeks
to find all critical and inflection points in a strictly mathematical sense. Rather, this
analogy simply offers a conceptually helpful way of understanding similarities as well as
meaningful differences between traditional peak-and-trough approaches and this article’s
clustering methods.

As with stock markets and the broader economy, cyclicality in commodity prices has
drawn scholarly attention [154]. Efforts to sharpen forecasting and the understanding of
the dependence structure in oil and adjacent markets have highlighted differences between
normal trading and economic turmoil [155]. The question is whether existing and novel
“econometric tools” can generate reliable volatility forecasts when “periods of heightened
volatility in crude oil markets are recurrent” [156] (p. 622).

Conventional econometric tools include unit root tests [157,158]. Those tests aided
the discovery of structural breaks in 1990 and 2008, coinciding with the first Gulf War and
the global financial crisis [17]. Technical analysis inspired by conventional methods for
identifying bull and bear cycles in equity markets [159] has aided the search for cyclical
effects in oil-based markets, at higher [4] as well as lower frequencies [160].

Computational tools abound amid economic “big data” [151]. Although some sources
have mined linguistic [161] and Internet search data [16,162] in search of novel insights,
this article uses machine learning and artificial intelligence to answer a more fundamental
question: Whether financial economics can detect oil price fluctuation and its impact on
the relationship between risk and return [163].

This article applies unsupervised machine learning to conditional volatility in com-
modity markets over two decades. An ensemble of clustering methods can identify
episodes in commodity markets (especially those related to energy) warranting closer
examination. Some episodes, particularly the global financial crisis and the COVID-19 pan-
demic, reflect a broader, more durable demand shock. Other episodes may last mere days.
Such acute events should be expected more often within a confined subset of commodities,
such as crude oil and refined fuels. These acute events typically involve geopolitical or
natural calamities that disrupt supplies of oil and its downstream derivatives.

3. Materials and Methods
3.1. Data
3.1.1. Data Sources and Preprocessing

This article draws its raw data from sources used in [1]. Thomson Reuters’ DataS-
tream provided price data on a range of precious metals, base metals, energy commodi-
ties, and agricultural commodities. Specifically, this article relies upon daily prices from
18 September 2000 through 31 July 2020 for gold, silver, platinum, palladium (precious met-
als); copper, zinc, tin, lead, nickel, aluminum (base metals); Brent, West Texas intermediate
crude (WTI), gasoil, gasoline (energy commodities); and palm oil, wheat, corn, soybeans,
coffee, cocoa, cotton, and lumber (agricultural commodities).

The preprocessing pipeline took two further steps. Transforming daily prices into
continuous logarithmic returns shortened all series by a single day: 18 September 2000. The
resulting log return data (as well as the conditional volatility data derived from log returns)
therefore covered the period from 19 September 2000 to 31 July 2020. Two additional
days were excluded. On 20 April 2020, WTI closed at –37.63. This event rendered it
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mathematically impossible to calculate the log return for WTI on that day and the next,
21 April 2020. Those two trading dates were also omitted.

The second preprocessing step involved forecasts of conditional volatility from log
returns. We calculated the conditional, time-variant volatility for all 22 commodities accord-
ing to a GJR-GARCH(1, 1, 1) process using Student’s t distribution [1,164]. The mathemati-
cal underpinnings of GJR-GARCH(1, 1, 1) have been thoroughly documented [165,166].
GJR-GARCH outperforms alternative time-series models in forecasting financial mar-
kets [167].

For purposes of analysis and discussion, we aggregated log return and volatility
data according to a precalculated ontology of commodity markets. The vocabulary of
commodities trading distinguishes between mined, nonrenewable “hard” commodities (such
as metals and fossil fuels) and grown, renewable “soft” commodities [20,88,168,169]. The term
“soft” is sometimes reserved for tropical crops such as cocoa, coffee, and sugar [170]. We
adopt that narrower definition of “softs” and describe the temperate commodities of wheat,
corn, and soybeans as “crops.” Because cotton and lumber span tropical and temperate
climates, these commodities can be assigned to either agricultural subcategory. Results
from the clustering of log returns support the classification of cotton and lumber as tropical
or semitropical softs [1].

These distinctions, paired with traditional divisions among metals and fuels, can be
summarized as a traditional ontology of commodities trading:

1. Energy (crude oil and refined fuels): Brent, WTI, gasoil, gasoline;
2. Precious metals: Gold, silver, platinum, palladium;
3. Base metals: Copper, zinc, tin, lead, nickel, aluminum;
4. Temperate crops: Wheat, corn, soybeans;
5. Tropical and semitropical “softs”: Cocoa, palm oil, coffee, cotton, lumber.

3.1.2. Visualizations of Logarithmic Return and Conditional Volatility Data

This subsection visualizes this article’s core data. Although log return and conditional
volatility calculations were performed on all 22 commodities, this article compares only
energy-related commodities with one another on an individual basis. This article compares
crude oil and refined fuels as an asset class alongside the aggregate categories for metals
and agricultural commodities.

Figure 2a depicts cumulative log returns for commodities as asset classes. Relative to other
classes, energy-related commodities show many sharper price movements. Figure 2b illustrates
cumulative log returns for individual crude oil and fuel markets. Although comovement
among individual oil and fuel markets is far tighter (as one should expect) than among
broad classes of commodities, sharper upward and downward price spikes, particularly
for gasoline, are evident to the naked eye.
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Figure 3a,b depict conditional volatility. By analogy to Figure 2a,b, Figure 3a portrays
the five broad classes of commodities, while Figure 3b focuses on the four individual energy-
related markets. Visibly greater volatility in energy markets dominates Figure 3b. Relative
to crude oil markets and even gasoil, the market for gasoline is palpably more volatile.
These acute volatility spikes confirm the intuition motivating the conventional exclusion
of food and fuel prices from core inflation indices used in the making of macroeconomic
policy [171–174].
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3.2. Clustering Methods
3.2.1. General Considerations

Many applications within economics and finance exploit clustering and related forms
of unsupervised machine learning [175–178]. This article applies five clustering meth-
ods: Spectral, mean-shift, affinity propagation, k-means, and hierarchical agglomerative
clustering. Each of these methods is available in the SciKit-Learn package for Python.
The implementation of hierarchical agglomerative clustering in Scipy generated visually
distinctive dendrograms for that method.

Previous research had established that temporal clustering should be based on con-
ditional volatility rather than logarithmic returns [1]. All five clustering methods were
applied to volatility data arrayed in n rows of trading days and p columns corresponding
to the number of distinct commodity markets. For the full volatility array covering all
22 commodities, p = 22. For the energy-specific subarray, p = 4. The two arrays, however,
had the same number of trading days: n = 5182.

For both the full 5182 × 22 array and the energy-specific 5182 × 4 subarray, clus-
tering results underwent a crude aggregation inspired by voting classifiers in machine
learning [179]. Since clustering of the full 5182 × 22 array reached rough consensus on the
financial crisis of 2008–2009 and the COVID-19 pandemic as the two periods of interest,
that analysis relied on the union and the intersection of the five sets of clustering results.
Using the union of sets is tantamount to allowing a single vote to drive a positive result.
The intersection of those sets indicates unanimity. These set theory concepts therefore
define the logical extremes of voting methodologies [180,181].

Greater variability in the results for the energy-specific 5182 × 4 subarray required
a more flexible approach. For that array, this article aggregated all positive results regis-
tered by two or more of the five clustering methods. The most generous voting method,
consisting of the union of all positive results, generated a wider range of dates. Though
unexamined in this article, those results remain available for future research.

The balance of this subsection will describe each of the five clustering methods.
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3.2.2. Spectral Clustering

Spectral clustering operates on a projection of the normalized Laplacian [182,183].
Since this article’s conditional volatility arrays represent 4 or 22 commodity markets as
simple functions of a common vector of trading dates, the Laplacian (∆f = ∇2f ) is the sum
of the partial second derivatives for each of those variables.

Spectral clustering should work very well with financial data. This method exposes
individual clusters within highly non-convex structures [184,185]. Since each volatility
vector is plotted against the same vector of trading dates, the resulting arrays of volatility
forecasts by date are tantamount to overlapping curves on a two-dimensional plane.
Spectral clustering therefore excels precisely where conventional statistical measures of
central tendency and variability fail to describe the shape of the data to be clustered.

These properties have made spectral clustering especially popular in computer vision
and image processing [186,187]. The ability of spectral clustering to detect blobs and edges
suggests potential success with economic time series. In mathematical terms, image and
time-series data are quite similar. Unlike documents that have been vectorized for natural
language processing, these data sources consist of perfectly dense arrays whose columns
observe the same scale, or at least nearly so. Still images and simple, harmonized arrays of
economic time series can be rendered in a nominally two-dimensional format.

Spectral clustering generated the fewest discrete clusters. Consequently, the spectral
method may be regarded as setting the most conservative clustering baseline.

3.2.3. Mean-Shift Clustering

An extension of more traditional pattern-recognition algorithms, mean-shift clustering
uses nonparametric techniques to identify deviant blobs in an otherwise smooth space [188].
Alongside k-means, mean-shift is one of two centroid-based methods in this article. The
distinctive process that gives mean-shift its name relies on a recursive updating of potential
centroids that would represent the mean of the points within a given region. A final
postprocessing stage eliminates near-duplicates before reporting the final list of centroids.
Hybridizing the mean-shift method with agglomeration can reduce the computation cost
of mean-shift clustering [189].

3.2.4. Hierarchical Agglomerative Clustering

Hierarchical clustering methods decompose and arrange mathematical objects ac-
cording to dendrograms, or trees expressing phylogenetic relationships [190–192]. The
agglomerative method begins from the “bottom” of a dataset and combines instances into
clusters until all data has been assigned to a single, overarching cluster [193].

Bottom-up agglomeration is less computationally demanding than top-down divi-
sion [194,195]. Four methods for computing distances in hierarchical clustering are widely
used: Ward’s method and single-, average-, and complete-linkage [196–199].

In economics and finance, hierarchical clustering has evaluated stock markets [200,201],
buildings and real estate [202,203], broader financial indicators [204], and the relationship
between financial markets and the real economy [177]. Hierarchical clustering of cryptocur-
rency markets [205] intensifies the urgency of research into this asset class during market
turbulence [206].

One source has used hierarchical clustering to identify correlation patterns similar
enough to comprise distinct market states [207]. Aside from our own work [1] and the use of
multidimensional scaling to evaluate comovement among commodities during subjectively
defined crises [164], this application of hierarchical clustering represents the most extensive
effort to classify periods in financial history through unsupervised machine learning.

3.2.5. Affinity Propagation

Affinity propagation identifies typical cluster members by exchanging quantitative
messages between data pairs until the algorithm converges on a high-quality set of ex-
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emplars [208–210]. This property distinguishes affinity propagation from mean-shift and
k-means clustering, which are centroid-based methods.

Under SciKit-Learn’s default settings, however, affinity propagation generates far too
many distinct exemplars. To the extent that other methods (specifically spectral, mean-shift,
and hierarchical clustering) can better estimate the optimal number of clusters, an instance
of affinity propagation can alter the element preference from its default value of the median
of the array of input similarities [211]. To a limited extent, this adjustment enables affinity
propagation to alter the number of clusters that it finds.

Affinity propagation spans an impressive range of applications. Affinity propaga-
tion is used to cluster microarray and gene expression data [212–214] and in sequence
analysis [215]. Applications beyond bioinformatics [216] include natural language pro-
cessing [217–219] and computer vision [220,221]. Especially if calibrated so that element
preference yields something close to the optimal number of exemplars, this versatile
clustering method should accommodate financial time series.

3.2.6. k-Means Clustering

One of the oldest clustering algorithms [222], k-means clustering remains a popu-
lar way to partition mathematical space [223]. k-means clustering excels in detecting
fraud [224] and firms at risk of default or failure [225]. Other financial applications include
the forecasting of returns and the management of investment risk [176,226–228]. Our own
previous research on commodity markets relied heavily on k-means clustering [1].

k-means clustering does require more careful handling. More than other methods, k-
means clustering depends on algorithms for determining the ideal number of clusters [229,230].
In addition to k, the optimal number of clusters, this centroid-based method depends
entirely on randomized instantiation [231]. To ensure replicability of results, this article
seeded SciKit-Learn’s pseudo-random number generator with the value of 1. Finally,
k-means clustering cannot detect objects lacking a hyper-ellipsoidal shape [232].

3.3. t-Distributed Stochastic Neighbor Embedding (t-SNE)

This article uses a single method of manifold learning: t-distributed stochastic neigh-
bor embedding, or t-SNE [233–235]. t-SNE reduces distances between similar instances
and maintains distances between dissimilar instances. Although this article applies t-SNE
solely for visualization, t-SNE can be a valuable form of unsupervised learning on its own.
Preprocessing with t-SNE can detect and remove outliers in preparation for the application
of convolutional neural networks to computer vision [236].

4. Results, Part 1: Temporal Clustering

Clustering results differ dramatically according to the underlying array of conditional
volatility forecasts. This section accordingly separates results for the full 5182 × 22 array of
all commodities from results based on the smaller 5182 × 4 energy-specific array.

Differences among clustering methods are also stark. Clustering differs from classi-
fication through supervised machine learning in a crucial respect. Clustering results do
not correspond to a priori labels assigned by a human. Analyst judgment therefore plays
a subtler role. Each clustering method must be evaluated on its own terms. Moreover,
each method’s results must be evaluated in light of all others and against the backdrop
of unavoidably subjective judgment. Each method’s underlying mathematics, however,
offers principled guidance on the exercise of that discretion.

4.1. Temporal Clustering of the Full Array of Conditional Volatility Forecasts
4.1.1. The Naïve Biennial Baseline

The naive clustering of all 20 years of commodities trading data provides a valuable
starting point. Consider the possibility that a fixed and predetermined period of time
should define each segment of financial interest. This hypothetical is far from absurd;
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monthly, quarterly, or annual reporting slices financial time in precisely this way. In the
interest of convenience, we select intervals of two calendar years each.

Figure 4 establishes a visual baseline for all temporal clustering. Consistent reliance
on t-SNE to reduce all 22 dimensions produces a uniform three-dimensional projection
of conditional volatility forecasts. Synthetic centroids generated by the average of all
observations for each biennium supply a rough sense of those two years.
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Figure 4. Naïve, biennially defined clusters of trading days in commodity markets.

Cluster 9 is particularly interesting because the 2019–2020 biennium includes the
global maximum for cumulative log returns on precious metals and the global minimum
in cumulative log returns on oil and fuels. That cluster’s synthetic centroid falls very
near the global center. Its corresponding observations, in cyan, stretch across the financial
firmament, as measured by its width across the zeroth t-SNE dimension.

Expanding all spheres from Figures 4 and 5 reveals the futility of arbitrary biennial
clusters. If spherical radii corresponding to each cluster define the mean distance of each
observation from its corresponding synthetic centroid, then the size of each sphere and its
overlap with other spheres suggest the extent to which each cluster is internally cogent
and externally distinct. Internal cogency, if present, should reveal itself through contiguous
or nearly contiguous clusters in an ordered, one-dimensional projection along a temporal
axis. An ordered, horizontal representation would indeed display 10 perfectly contiguous,
nonoverlapping clusters. That is an artifact of the arbitrary definition of those clusters,
however, and not any mathematical property captured by t-SNE.
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4.1.2. Spectral Clustering

Spectral clustering of all conditional volatility forecasts identifies eight clusters. Al-
though this method does not generate centroids, finding the mean of each cluster’s mem-
bers in the three-dimensional t-SNE manifold produces synthetic centroids.

Figure 6 reveals the complete t-SNE manifold of spectral clusters. Clusters 1, 2, 3,
and 5 appear in a tight group at upper left. Clusters 1 and 2 contain only two days each,
while cluster 3 adds only nine more. The tiny size of these clusters is implied by their
compactness.
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embedding) manifold.

Two other groupings also stand out. Clusters 4 and 7 occupy the lower foreground.
Cluster 6 stands alone. As with clusters 1, 2, and 3, a tight radius implies that cluster 6
consists of a small number of days. Indeed, cluster 6 contains only 22 days.

The vast majority of trading days—4920 out of 5182—belong to cluster 0. The t-SNE
manifold suggests that cluster 0 may be the fallback cluster representing ordinary trading
days, when volatility levels do not substantially deviate from their central tendency.

The most useful representation of temporal clusters, of course, is the one plotted
against the ordered vector of dates. Figure 7 reveals how the eight spectral clusters almost
perfectly identify two critical periods of interest from 2000 to 2020. The height of the bars
communicates categorical rather than ordinal or numerical information. Because of the
fortuity that spectral clustering assigned the number 0 to the default, catch-all category, all
clusters numbered 1 and above identify periods of interest.
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Spectral clustering identified the financial crisis of 2008–2009 and the COVID-19 pan-
demic. Almost miraculously, six of the remaining seven clusters are perfectly contiguous.
Instances from cluster 5, though split by clusters 1, 2, and 3, joined those other clusters
to form a continuum covering the beginning of the pandemic. Cluster 6 covers the final
22 days in the dataset. Whether those days belong with the earliest phase of the pan-
demic or instead indicate a transition toward noncritical cluster 0 may be inferred from the
location of cluster 6 in Figure 6 as well as the statistical summary of each cluster.

The resolution of Figure 7, however, is not sharp enough to reveal additional insights.
Cluster 5 consists of two subclusters separated by nearly 19 years. The earliest instances
in cluster 5 occur in 25–28 September 2001, exactly two weeks after the terrorist attacks of
11 September 2001. The remaining 67 days in cluster 5 started in March 2020, coinciding
with the outbreak of COVID-19 in Europe and North America. This represents evidence,
however faint, that an event unequivocally related to energy markets might sway the
commodities market as a whole.

4.1.3. Mean-Shift Clustering

Mean-shift clustering generated results remarkably similar to spectral clustering. In
certain respects, mean-shift clustering might be even more parsimonious.

Figure 8 identifies two periods of potential interest: The tight clump formed by clusters
2, 4, and 5 at left and the looser pair of clusters 1 and 3 at bottom. Because t-SNE manifolds
are shaped by their underlying data, Figure 8 can be compared directly with other t-SNE
manifolds. Figures 4–6 make it apparent that clusters 2, 4, and 5 correspond to COVID-19,
while clusters 1 and 3 track the financial crisis of 2008–2009.

The ordered timeline in Figure 9 confirms these intuitions. Clusters 2, 4, and 5 indeed cover
the COVID-19 pandemic. Notably, the final 39 trading days (9 June through 31 July 2021) fall
within cluster 0. Mean-shift results suggest that the final 22 days might be better classified
as “ordinary” trading days rather than part of the COVID-19 crisis.

4.1.4. Hierarchical Agglomerative Clustering

The visual signature of hierarchical clustering is the dendrogram. The dendrogram
has the added benefit of offering principled guidance on the optimal number of clusters.

Figure 10 displays the dendrogram for hierarchical agglomerative clustering using
Ward’s method and Euclidean distances. The height of the branches offers guidance on
the ideal number of clusters. In principle, the ideal number of hierarchical clusters may
be as low as two. The height of the blue branches exceeds the vertical distance between
any other set of splits. Splitting this dataset into two temporal clusters is tantamount to the
binary classification between crises and ordinary (or non-critical) periods.
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Figure 9. Mean-shift clustering of commodity markets—An ordered timeline.

The dotted horizontal line in Figure 10 intersects five vertical branches. The comfort-
able vertical distance on either side of 75 implies that 5 is a near-optimal number, if we are
unwilling to abandon multiclass in favor of binary clustering. In any event, the logic of
agglomeration makes it easy to rearrange the five clusters as two.
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Hierarchical agglomerative clustering in Python can designate an arbitrary number of
clusters, k ∈ [1, n]. Having determined k = 5, we can project the t-SNE manifold in three
dimensions as well as the ordered timeline.

The three-dimensional t-SNE manifold of hierarchical clustering results differs in
striking ways from its spectral and mean-shift counterparts. Figure 11 divides noncritical
trading days more evenly among three clusters: 0, 1, and 2. Clusters 3 and 4 are the outliers.
Cluster 3 surely represents the financial crisis, while cluster 4 captures COVID-19.

The ordered timeline in Figure 12 confirms the intuitive interpretation of the t-SNE
manifold. Again, departures from ordinary trading are designated by higher-numbered
clusters. The spike for cluster 3 coincides with the financial crisis, while cluster 4 rises
during the COVID-19 pandemic.

4.1.5. Affinity Propagation

The final two clustering methods, affinity propagation and k-means clustering, require
more computation and discretionary judgment. These difficulties arise from a simple
difference: Default settings for affinity propagation and k-means clustering generate a
larger number of smaller clusters. Worse, many of those clusters cover non-consecutive
days, despite their relatively small size.

Adjusting the element preference matrix enables affinity propagation to generate a
desired number of exemplars. This trait of affinity propagation is not infinitely elastic.
Nevertheless, a simple matrix of element preferences generated five clusters, the same
value of k in hierarchical agglomerative clustering. Those element preferences consisted of
the median (not mean) of each vector of volatility forecasts, uniformly scaled by −3000.
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Figure 12. Hierarchical agglomerative clustering of commodity markets—An ordered timeline.

Figure 13 shows how closely affinity propagation, once nudged toward five clusters,
resembles hierarchical agglomerative clustering. Critical days appear in clusters 2 and 4,
which respectively define the financial crisis and the pandemic.
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Figure 13. Affinity propagation of commodity markets—A t-SNE manifold.

Figure 14 places these clusters within an ordered timeline. Cluster 2, however, covers
not only the financial crisis of 2008–2009 but also the three days immediately following
cluster 4′s definition of the pandemic. Consistent with other clustering results, this minor
deviation from perfect contiguity suggests that volatility during the COVID-19 crisis drifted
toward conditions characterizing the longer-lasting “great recession.”
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4.1.6. k-Means Clustering

This article’s exercise in k-means clustering on all conditional volatility forecasts
duplicates the temporal clustering in [1], with a salient difference: The value of k, now fixed
at six, is the average number of clusters found by other methods (Figure 15). Conventional
methods for optimizing k did not prove particularly satisfying. It remains possible to
determine k through other clustering methods.
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Figure 15. k-means clustering of commodity markets—A t-SNE manifold.

Like mean-shift clustering, k-means clustering relies on the stochastic instantiation
of centroids. k-means clustering, however, generates the least contiguous and the least
visibly cogent set of clusters. Figure 16 reveals only two wholly contiguous clusters (1 and
4), which coincide with the financial crisis and the pandemic.
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4.1.7. The Union and Intersection of Clustering Results for the Full Volatility Array

Though similar, these five clustering methods differ subtly, just enough to require
human intervention. Some methods confine all results for the financial crisis or the pan-
demic to a single cluster. Others divide results among as many as four clusters. Affinity
propagation associated three days after its COVID cluster with the earlier financial crisis.

Prior intuitions about any particular clustering method are just that: prior intuitions.
The “no-free-lunch” theorem of machine learning posits that no single method can be
expected to outperform others in every task [237]. Moreover, machine-learning ensembles
typically outperform any individual model [238]. Some method of aggregating results
from different clustering models seems advisable.

Elementary set theory provides a simple solution. The union of all clustering results
identifies a critical period as long as any method assigns a date to a critical period. The
intersection of those results demands agreement among all methods. Given the simplicity of
finding agreement over exactly two periods—the financial crisis and the pandemic—these
opposite extremes of any plausible voting algorithm define the range of answers.

Figure 17 depicts this simple voting algorithm’s parsimonious results. The union of all
results defines the financial crisis as 16 September 2008 to 24 April 2009. The intersection of
those results narrows the timeframe so that it runs from 16 October 2008 to 17 March 2009.

The definition of the COVID-19 pandemic is likewise perfectly contiguous by either
criterion. The union of results defines the COVID crisis as 10 March to 1 July 2020. The
narrower intersection of those sets also begins on 10 March but ends on 26 May 2020.
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4.2. Temporal Clustering of the Energy-Specific Array of Conditional Volatility Forecasts

We now apply all five clustering methods to the energy-specific 5182 × 4 subarray of
conditional volatility forecasts. The smaller size of this array nudges all methods toward
finding more clusters. That property makes some clustering models more difficult to
manage. On the other hand, the relative stability of clustering on the grand array of
22 commodities suggests that this suite of unsupervised machine-learning methods can be
successfully extended to larger financial markets (including equity markets with hundreds
or thousands of stocks) and to arrays of macroeconomic indicators.

Dispensing with the naïve clustering of observations by arbitrary two-year periods,
we begin with spectral clustering and progress through all other methods.

4.2.1. Spectral Clustering

Figure 18 reports spectral clustering results for the time periods within the subarray
of energy-specific conditional volatility.
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Figure 18. Spectral clustering of energy-related markets—A t-SNE manifold.

On the energy-specific subarray, as with the full array, spectral clustering is a very
conservative method. It finds fewer and smaller clusters apart from a single large cluster
of ordinary observations. In Figure 18, clusters 1 through 6 adhere together during the
COVID-19 pandemic. Cluster 7 stands apart in time and contains 17 consecutive trading
days. Cluster 0 accounts for nearly 99 percent of the full 5182 days.
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Figure 19′s ordered timeline reveals that cluster 7 does not overlap any period associ-
ated with the financial crisis of 2008–2009. Rather, cluster 7 consists of 17 days in August
and September 2005. This is the first energy-specific event not identified by the broader
array of all commodities. As will become apparent, these days coincided with Hurricane
Katrina, which profoundly affected oil production and gasoline refining in and near the
Gulf of Mexico [239,240]. Indeed, an enduring structural break between crude oil and spot
gasoline prices is attributed to this event [241].
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4.2.2. Mean-Shift Clustering

Relative to spectral clustering, the mean-shift method finds nearly twice as many
clusters. More intriguingly, mean-shift clusters deviating from the central tendency of
energy-specific volatility gather on a single side of the three-dimensional t-SNE manifold.

Figure 20 shows how mean-shift clustering is based on centroids. The centroids
indicated by numerals are visibly distinct from the apparent center of gravity for each
cluster within the t-SNE manifold’s stylized three-dimensional space. Clusters 0 and 1, the
two largest, exhibit the greatest apparent dislocation between centroids and individual
instances. All other clusters, except perhaps clusters 2 and 7, are more likely to identify
brief, compact events in the trading in crude oil and refined fuels. Such events likely arise
from supply disruptions, as opposed to longer-lasting shifts in demand associated with
broader crises affecting all commodities.

Figure 21 renders mean-shift results on an ordered timeline. Mean-shift clustering
is manifestly more sensitive than spectral clustering. Cluster 0 plays its usual role as the
fallback category. All clusters numbered higher than 1 are much smaller, containing (in two
instances) as few as two days. Pronounced spikes are associated with the global financial
crisis and the pandemic, as well as a previously undetected 2016 event.

Clusters 1 and 2, as the second- and third-largest clusters among the 15, fall between
the extremes represented by cluster 0 and collectively by clusters 3 through 14. In addition
to indicating several periods in the early 2000s, Cluster 1 brackets better known, already
identified volatility events. It may be reasonably surmised that this cluster indicates the
beginning or the end of distinctive events. Its appearance at the end of the peak of the
pandemic reinforces what all-commodity clustering has already suggested: The pandemic
arrived suddenly and began to relax almost as quickly.

Cluster 2 recurs on multiple occasions in the first half of this 20-year period and again
in 2015. Those 60 trading days should share characteristics that distinguish them from the
financial crisis, the 2016 event, and the pandemic.

Recombining mean-shift clusters from 15 into four—0, 1, 2, and all clusters numbered
3 or higher—provides a clearer picture. Figure 22 reports this summarized timeline.
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Figure 22. Mean-shift clustering of energy-related markets—A simplified timeline compressing
15 clusters into four.

4.2.3. Hierarchical Agglomerative Clustering

As a matter of visual interpretability as well as mathematical logic, hierarchical clus-
tering begins with a dendrogram. Figure 23 suggests that the ideal number of clusters may
be as low as three: A concentrated cluster of 51 trading days (not necessarily consecutive)
in the middle in red, a moderately large supercluster of 848 days at right in cyan, and a
very large supercluster of the remaining 4283 days at left in green. Deviating from cluster
distance as a guide to the optimal value of k yields the 12 clusters along the bottom.

Distances within these 12 clusters average less than 30, as opposed to the distance of
60 separating a three-cluster configuration from its five-cluster alternative. Even so, many
of these clusters will exhibit so little contiguity that it will take considerably more analyst
judgment to cogently interpret hierarchical clustering.
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The t-SNE manifold of hierarchical clustering in Figure 24 looks decidedly unlike the
manifolds for spectral and mean-shift clustering. The affinity propagation and k-means
manifolds will exhibit a shape similar to the hierarchical results. The greatest difference
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lies in the relative sizes and overlapping locations of the spheres representing the clusters.
Aside from clusters 9, 2, 10, and perhaps 5, these clusters have large radii and overlap
their neighbors. The centroids are synthetic, as in spectral clustering, and not stochastically
instantiated, as in k-means. Overlapping spheres suggest that the adjoining clusters will
not be perfectly contiguous, or even close to being so.
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principled case can be made to include cluster 8, the seventh smallest among 12, because 
of its proximity to cluster 5 in the t-SNE manifold and in Figure 23′s dendrogram. On the 
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Figure 24. Hierarchical agglomerative clustering of energy-related markets—A t-SNE manifold.

The ordered timeline in Figure 25 confirms these fears. Cluster 0, the closest repre-
sentation of normal trading, has shorter stretches of uninterrupted, contiguous cogency
than the default, background trading clusters under the spectral or mean-shift methods.
Cluster 1, which appears during the financial crisis and the pandemic, also appears in 2001.
Reducing the total number of clusters below the 15 clusters generated by mean-shift did
not bring visible order to the timeline. Additional analyst judgment seems advisable.

Figure 26, the revised manifold, highlights the six smallest hierarchical clusters. A
principled case can be made to include cluster 8, the seventh smallest among 12, because
of its proximity to cluster 5 in the t-SNE manifold and in Figure 23′s dendrogram. On the
other hand, cluster 8 adds 484 days to the 415 total days in clusters 1, 2, 5, 7, 9, and 10. At
415 total days, those clusters comprise almost exactly 8 percent of the 5182 trading days.
Adding 484 days from cluster 8 would raise the share of critical trading days to more than
17 percent. For the sake of comparison, mean-shift clustering identified 609 trading days of
interest, while spectral clustering found only 70.

Whether critical periods in energy commodity trading comprise 8 or 17 percent of an
entire timeframe requires delicate analyst judgment. An incidental benefit of forecasting
conditional volatility through GARCH is the ability to estimate the degrees of freedom for
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the t-distribution that best fits each series of returns. Figure 27 shows that the estimated
degrees of freedom for energy-related commodities ranged between 3.03 (WTI) and 3.71
(gasoil). For an equally weighted market basket of oils and refined fuels, ν ≈ 3.51.
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The degrees of freedom estimate enables the cumulative distribution function for Student’s
t-distribution with location = 0 and scale = 1 to describe the size of the tails at a given value of ν.
At this dataset’s estimates for ν, the two-tailed estimate for F(x | |x| > 2) ranges from 0.121634
for gasoil to 0.138395 for WTI. The estimate is 0.125950 for the equally weighted market
basket. The one-tailed estimate would be exactly half of those values. The one-tailed
estimate for F(x | x > 2) might be justified on the reasoning that volatility is invariably
non-negative and that outliers found through clustering are likely to exhibit extremely
high rather than extremely low volatility. That rationale, to say nothing of methodological
conservatism, supports a smaller number of clusters.

By either measure, the six or seven smallest clusters occupy a distinct edge within
Figure 26. All of the candidate clusters lie a palpable distance from the t-SNE manifold’s
center of gravity. This is intriguing (if not altogether conclusive) visual evidence that a
size-based criterion can successfully isolate outliers among trading days.

Figure 28 simplifies the ordered timeline in Figure 25 by reducing the more conser-
vative six-cluster interpretation of hierarchical clustering into binary classification. Those
six clusters have been aggregated into a single “critical” supercluster, while all other days
are classified as a normal, noncritical background. In addition to the financial crisis and
the pandemic, simplified hierarchical clustering identifies periods of interest in 2000, 2001,
2003, 2005, 2015, and 2016.
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4.2.4. Affinity Propagation

The smaller size of the energy-specific subarray created immense difficulty with
affinity propagation. Scaling the element preference matrix according to the median values
for each series cannot reduce the number of clusters close to the range of eight to 15, the
number of clusters found by the spectral and mean-shift methods. More aggressive efforts
prevented the algorithm from converging. The smallest number of viable clusters in affinity
propagation appears to be 32.
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Affinity propagation generates a beautiful but deadly t-SNE manifold (Figure 29). The
large number of overlapping clusters, many enveloped in spheres with moderate to large
radii, suggests that this method yields highly atomized, noncontiguous clusters.
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Figure 30 displays an ordered timeline whose clusters are extremely hard to interpret.
Affinity propagation is even more chaotic than hierarchical clustering (Figure 25). The
larger the number of clusters, the likelier that individual clusters will splinter internally.
Identifying financially meaningful groups of trading days requires extensive work.

Experience with more tractable clustering methods suggests a way forward. Critical
and ordinary trading days are not uniformly distributed. The very process used to forecast
volatility—GJR(1, 1, 1)-GARCH—presumes heteroskedasticity in the sequence of logarith-
mic returns. All else being equal, clusters identifying extreme levels of volatility are likely
to be smaller than clusters describing lower background levels.

A viable filter therefore consists of tagging affinity propagation clusters for further
evaluation until the cumulative number of trading days reaches a certain threshold. The
415 out of 5182 days selected by hierarchical clustering provide a workable benchmark.
Isolating the 14 smallest among 32 clusters yields 384 trading days, roughly 7.4 percent
of the total. Adding a 15th cluster would add the 78 days from cluster 12 and raise the
number of potentially critical days to 459, or nearly 8.9 percent. Because cluster 12 is so
close to the 14 even smaller clusters, we included it. Fortuitously, that choice ultimately
made no difference in aggregation through voting.
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Figure 31 isolates the 15 smallest affinity propagation clusters. As expected, these
clusters occupy the left edge of the t-SNE manifold and resemble the critical clusters chosen
by hierarchical clustering (Figure 26). Four subgroups are evident: Two appear closer to
the top: Clusters 7 and 8 in one supercluster and clusters 11, 23, and 26 in another beneath
it. Clusters 28 through 31 occupy the far upper left. Finally, clusters 1, 12 through 15, and
25 comprise a more diffuse but still distinct supercluster at lower left.

Figure 32 isolates these four superclusters. The first three superclusters cover contigu-
ous or nearly contiguous periods corresponding to energy-trading events in 2005, 2016, and
2020. The last of these plainly covers the COVID-19 pandemic—specifically, its frantic first
weeks. Clusters in 2005 and 2016, wholly distinct from the financial crisis and the pandemic,
imply the occurrence of events quantitatively distinct from the fourth supercluster. Those
clusters unite several events in the early 2000s and the back half of the pandemic with the
financial crisis.

Analyst judgment, aided by the heuristic tool of choosing the k smallest clusters until
some fraction of all trading days is attained, rescued an initially frustrating set of results
from affinity propagation. We will apply a similar approach to k-means clustering.
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4.2.5. k-Means Clustering

Finding the optimal number of clusters is as difficult as it is pivotal for k-means
clustering [229,230]. Other methods have yielded as few as eight and as many as 32 clusters.
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Without reliable guidance from other tests, we proceed with k = 12, as suggested by
hierarchical clustering and roughly halfway between spectral and mean-shift clustering.

Figure 33 shows another treacherously beautiful, highly overlapping set of clusters.
Although k-means clustering proceeded on a value of k akin to the number of clusters
found by mean-shift and hierarchical clustering, it attains less clarity. The failure to deliver
cogent clusters vexed affinity propagation and ultimately required considerable human
intervention. Finally, the radial sizes of the spheres within the t-SNE manifold, aside from
clusters 2, 6, 10, and maybe 11, suggest that few if any clusters will be close to contiguous.
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Figure 33. k-means clustering of energy-related markets—A t-SNE manifold.

As expected, Figure 34 shows a deeply fractured k-means timeline. Only clusters 6 and
10 approached perfect contiguity. Cluster 10 is more readily associated with the COVID-19
pandemic. Cluster 6 identifies the September 2005 Katrina event, which eluded detection
by temporal clustering of all commodities.

The previously deployed size-based filtering technique converts the superficial chaos
of k-means clustering into a credible division of energy-trading history. Figure 35 isolates
the six smallest clusters (2, 6, 10, 11, 8, and 0) at the familiar left edge of the t-SNE manifold.
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Figure 36 reduces the apparent chaos in k-means clustering (Figure 34) into a binary
indicator of critical events. Familiar episodes have emerged: In addition to the financial
crisis and the pandemic, k-means clustering isolates events in the early 2000s (including
August/September 2005) as well as events in 2015 and 2016.
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4.2.6. Aggregating Clustering Results through Voting

All that remains is the aggregation of clustering results through voting. The much
smaller number of energy-related commodities makes clustering more sensitive and more
likely to find a larger number of critical events. In addition, spectral clustering is much
more conservative than other methods. Consequently, some gradations in addition to the
extreme outcomes of set theory might be warranted.

The union of all sets of clustering results is tantamount to a one-vote regime. The
intersection of those sets effectively imposes a unanimous hard voting regime. Tabulating
positive results from each clustering method as a single, equally weighted vote facilitates
as many gradations as there are models. In this instance, five distinct models can generate
votes ranging from 0 to 5. Any positive result is an element of the union of all five sets. The
more votes required, the more stringent the voting regime becomes, until the intersection
of all sets reaches the extreme of unanimity.

Figure 37 displays voting results. The only trading days receiving a single vote were
those identified by mean-shift clustering but by no other method. Aggregation through
voting becomes most interesting at the threshold of two votes. Moreover, the 70 days
receiving unanimous support are coextensive with the days found by spectral clustering.
Of the other 400 days, 333 received unanimous support from the four remaining methods.
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5. Results, Part 2: Evaluating Critical Periods in Energy-Related Markets
5.1. Identifying and Classifying Critical Periods Located through Temporal Clustering

If all periods receiving two or more votes in Figure 37 are treated as critical, or at
least as candidates for such a classification, the following events emerge from the temporal
clustering of energy-related markets between 2000 and 2020:

1. Five noncontiguous days in 2000: 26, 27, and 29 September, plus 18 and 19 October;
2. The December 2000 event: 15 December 2000 through 2 January 2001;
3. The immediate aftermath of the 11 September 2001 terrorist attacks: 25 September 2001

through 7 November 2001;
4. The American invasion of Afghanistan: 13 November 2001 through 27 December 2001;
5. The second Gulf War: 19 March 2003 through 5 May 2003;
6. The single day of 30 September 2013;
7. Five noncontiguous days in 3, 6, 7, 8 December 2004 and 16 December 2004;
8. The aftermath of Hurricane Katrina: 31 August 2005 through 12 October 2005;
9. The global financial crisis: 19 September 2008 through 30 April 2009;
10. The September 2015 event: 2 September 2015 through 22 September 2015;
11. The winter 2016 event: 18 January 2016 through 25 March 2016;
12. The COVID-19 pandemic: 9 March 2020 through 17 July 2020.

Three of these 12 events may be too brief or incoherent for proper examination. The
noncontiguous days in fall 2000 and December 2004, as well as 30 September 2003, comprise
a total of 11 trading days. The shortest span among the nine other events is the 13 days of
the December 2000 event. Even if those three events are excluded from in-depth analysis,
however, the 11 days they collectively span may be worth including in a broader definition
of critical (as distinct from ordinary, noncritical) trading days.

A more generous definition of critical days remains available. Several clustering
methods could have been expanded to include closer to 800 rather than 400 days. Days
that are noncontiguous under this aggregation of clustering results may cohere once more
days of possible interest are investigated.

Among the nine surviving events, it makes sense to distinguish between (a) events
uncovered by temporal clustering of all commodities and (b) events unique to the energy-
specific subarray. There are three possible and nonmutually exclusive justifications for
separate treatment. First, the financial crisis of 2008–2009 and the COVID-19 pandemic
may have affected all commodity asset classes in ways that meaningfully departed from
the ordinary course of trading. Second, crises affecting all commodities are likelier to be
deeper recessions affecting the broader economy across a wider geographic swath. In
other words, events affecting other commodities in addition to oil and refined fuels arise
from comprehensive declines in demand. By contrast, crises unique to energy markets are
likelier to arise from disruptions in supply, attributable to acts of war, natural disasters, or
even OPEC production decisions. Finally, the impact of the financial crisis or the pandemic
on energy may have been so profound as to sway the overall commodities market.

5.2. Visualizing and Evaluating Critical Periods Uncovered by Temporal Clustering
5.2.1. Condiitonal Volatility Forecasts

In principle, temporal clustering precedes and enables more extensive analysis. Identi-
fying events such as the global financial crisis, the COVID-19 pandemic, and energy-market
disruptions associated with American military engagements offers even greater value when
those events’ financial characteristics are distinguished from those of calmer, ordinary con-
ditions. This section visualizes conditional volatility and cumulative logarithmic returns
during critical events.

Since temporal clustering operated on arrays of conditional volatility, it makes sense
to depict conditional volatility during critical events. Cumulative log returns describe the
experience of commodity traders during those events. They, too, are worth illustrating.

Figure 38 shows the volatility conditions during the nine critical periods identified
through temporal clustering. Throughout 20 years, an equally weighted market basket
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of Brent, WTI, gasoil, and gasoline exhibited an average GJR(1, 1, 1)-GARCH conditional
volatility forecast of 1.918575. Collectively, all critical events exhibited average conditional
volatility of 4.009828, while noncritical periods averaged 1.709983. Many but not all of the
periods in Figure 38 exhibited peak volatility exceeding 4.00.
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The real question is why some periods showed elevated volatility for energy-related
commodities, but others did not. Notably, both the financial crisis and the COVID-19
pandemic showed sustained volatility above 4.00. By contrast, a majority of the energy-
specific critical events managed to stay below 4.00. Conditions of active warfare do not
explain the difference. The Second Gulf War in 2003 remained below 4.00, while the event
of 2016, comparable in duration and overall volatility, did crest above 4.00.

Every energy-related crisis does exhibit an upward volatility spike in at least one of
four oil and fuel markets. The two episodes associated with the September 11 terrorist
attacks and the American military response, the global financial crisis, and the COVID-19
pandemic all show the four individual markets spiking together and early. To a limited
degree, the same can be said for Gulf War II in 2003.

The five other energy-specific events appear to be driven by a volatility spike in a
single constituent market. Only the December 2000 event involved a spike in a crude oil
market, as volatility in WTI rocketed in the middle of that month. Gulf War II occasioned
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a sudden rise in gasoil volatility, which remained high until markets eased seven weeks
later. All other events—Hurricane Katrina in 2005 and the temporally proximate events of
September 2015 and late winter 2016—involved spikes in gasoline.

At least to some degree, all nine critical periods identified by temporal clustering of
volatility exhibit the imbalanced triangular shape associated with the rockets-and-feathers
account of oil pricing and the Edgeworth price cycles in refined fuel markets. At or near
the beginning of each event, volatility in at least one constituent market spikes. Volatility
then eases slowly. Whether to describe the relaxation of volatility by analogy to feathers
or gradations on a sawtooth blade appears to be a strictly esthetic question. Volatility
during these critical events exhibits the triangular signature associated with either account
of pricing dynamics in energy-related markets.

On the other hand, critical periods identified through temporal clustering do not
invariably exhibit the peak-to-trough shape that characterizes traditional definitions of
recessions and bull and bear markets. Though several episodes open with peak volatility for
at least one of the four energy-related commodities, others do not. Given the mathematical
basis of clustering, critical periods do not end because volatility reaches a local trough.
Rather, they end because volatility has relaxed and returned to background levels.

Differences in the volatility profile of these events provide a reminder that temporal
clustering by any one method reflects subtleties that can be erased during aggregation by
voting. To be workable, the voting process must treat each method as though it were a
binary classifier. Either a period is critical, or it is not.

Each of the individual methods nevertheless achieved subtleties by finding more
than two clusters. For instance, the very conservative spectral clustering method isolated
the 17 days it associated with Hurricane Katrina from six wholly separate clusters that
collectively identified 53 days during the pandemic. Differences among those six periods
become unrecoverable once they are aggregated as a “pandemic” supercluster.

Other methods reflect a similar subtlety. Mean-shift clustering suggested that a single
cluster characterized much of the financial crisis as well as the geopolitically fraught energy
crises of the early 2000s, but Katrina stood entirely apart. Hierarchical agglomerative
clustering could have been interpreted as recommending three superclusters: one for
51 days during the crisis, another 848 days worthy of attention for abnormal volatility
readings, and a third supercluster comprising all other trading days across two decades.

Analyst judgment looms large again. There may be no quantitatively consistent rule
for striking the desired balance between the ease of isolating outliers on a binary basis and
the nuance of discerning differences among outlier, critical periods.

5.2.2. Logarithmic Returns

These periods’ log returns do provide another tool. Visualizing log returns also depicts
markets as investors understand them: by the ebb and flow of profit and loss.

Volatility events are associated, perhaps stereotypically and simplistically, with har-
rowing declines in asset prices. This perception is reinforced by the popular depiction
of VIX as the “fear index.” The log returns in Figure 39 suggest far greater diversity and
subtlety in the temporal clustering of energy-related markets. For the steep, sustained
decline in demand associated with the financial crisis, the stereotype does apply.

Other events tell a subtly different story. The suspension of air travel in the United
States after 11 September 2001 inflicted losses on all oil and fuel markets. That episode
may represent a rare instance of an energy-specific crisis arising from an acute disruption
in demand as well as supply, or instead of it. After a steep decline at the beginning of the
ensuing invasion of Afghanistan, prices stabilized and rose. Though they were separated
by less than a week, these were distinct events.

Although the rockets-and-feathers hypothesis and Edgeworth pricing cycles are asso-
ciated with prices rather than volatility, the triangular charts associated with those accounts
of energy markets do not appear in Figure 39. Temporal clustering of the volatility array
did not isolate periods where prices rose rapidly and eased slowly. If anything, some
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critical periods exhibit the opposite “boulders and balloons” pattern, by which gasoline
prices steeply decline in response to oil price decreases, and then recover slowly [28].
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On the other hand, to the extent that these signature descriptions of price- or return-
based time series apply to energy markets under normal conditions, we might find that
energy markets follow differently shaped arcs during critical periods. Indeed, it is entirely
plausible that sawtooth-shaped or rockets-and-feathers patterns characterize volatility
but not return during critical periods, while the opposite relationship governs ordinary,
background trading. It is also possible that the iconic shapes associated with Edgeworth
pricing cycles or rockets-and-feathers behavior do appear throughout these time series, but
over time horizons longer than those of acute events isolated by temporal clustering. The
behavior of energy markets during temporal clusters associated with ordinary, background
trading invites further research.

The movement of precious metal prices also highlights the difference between the
terrorist attacks and the Afghan invasion. Precious metals are considered hedges against
inflation and geopolitical turbulence. The latter property is probably the dominant driver of
precious metal prices during military activities affecting petroleum-exporting regions. Pre-
cious metal prices fell after 11 September 2001 but recouped their losses during the Afghan



Energies 2021, 14, 6099 42 of 58

invasion. Precious metal prices fell again during Gulf War II, when they accompanied even
steeper declines in oil and fuel prices.

At least two events proved to be net winners for energy investors and companies.
Despite a few downward spikes, winter 2016 eventually rallied these energy markets.

Even more dramatically, the onset of the COVID-19 pandemic inflicted catastrophic
losses on oil and fuel markets, only to spark a ferocious rally. The price of gasoil, a fuel
associated with industrial uses and long-haul transport, remained more stable throughout
both phases. (Despite gasoil’s superior fuel efficiency and lower levels of pollution [242],
and despite the popularity of diesel-powered cars in Europe, gasoline engines in passenger
vehicles outnumber diesel engines four to one [243].) It is little wonder that this historically
unprecedented episode generated such diverse clustering results. At the same time, aggre-
gating all methods enables the evaluation of four months of prices, returns, and volatility
that know no equal in financial history.

5.3. Comparing Energy-Market Impacts with Other Commodity Asset Classes

Energy-specific crises may be best understood through a comparison with other
commodity classes. Subjectively defined crisis periods offer a good starting point. In
addition to six critical periods in broader commodity markets between 2000 and 2019 [164],
we propose a seventh—the COVID-19 pandemic—as defined by temporal clustering of
energy-specific volatility. The critical periods are as follows:

1. The gas shock, March 2001 through December 2001;
2. The Iraq invasion, November 2002 through July 2003;
3. Oil price increases, June 2007 through August 2008;
4. Global oil and food crises, July 2008 through January 2009;
5. The coffee shock, June 2010 through March 2011;
6. Chinese deceleration, June 2015 through February 2016;
7. The COVID-19 pandemic, 10 March 2020 through 17 July 2020.

Figure 40 overlays these periods on conditional volatility for all commodity asset
classes. A majority of these seven human-designated crises accompany visible spikes
in volatility in energy-related markets, even though many such crises are either defined
neutrally (for example, Chinese deceleration) or wholly by reference to other commodity
markets (the coffee shock). Indeed, deceleration of the Chinese economy would explain
the energy markets’ September 2015 and winter 2016 events.

Aggregate statistics on energy-specific crises show elevated volatility for these markets
(Figure 41). Energy-specific markets are more volatile on the whole, but the gap between
volatility in these commodities and in all other asset classes grows considerably during
volatility outliers in energy-related markets.

Unsurprisingly, defining crises according to a single asset class has the effect of
highlighting volatility events unique to that class. An even more striking implication of
Figure 41 is the reduction of volatility in almost every other asset class, even relative to
noncritical periods generally. Only tropical and semitropical softs experienced increased
volatility during energy-related events. Akin to the way VIX options and other volatility-
based strategies can hedge equity portfolios, stakeholders in the fossil fuel sector might
consider broader holdings as a way to offset energy-specific turbulence.



Energies 2021, 14, 6099 43 of 58Energies 2021, 14, x FOR PEER REVIEW 44 of 59 
 

 

 
Figure 40. Six human-defined commodity crises, 2000–2020, plus the COVID-19 pandemic. 

 
Figure 41. Volatility for commodity asset classes, overall and during noncritical and critical periods. 

The opposite directions of annualized log returns on all commodity classes, as shown 
in Figure 42, reinforce the intuition that other commodities move separately during events 
affecting solely energy-related markets. This exercise vindicates the wisdom of clustering 
all commodity markets before focusing on energy-specific events. There have been exactly 
two crises affecting all commodity markets since 2000: the global financial crisis of 2008–
2009 and the COVID-19 pandemic. Aside from assets related to energy, no asset class lost 
ground during energy-specific events. Base metals did suffer steep price declines overall 
and lost ground relative to baseline rates of return during energy-specific events. Even 
that class did not decline in the aggregate, however, during the American military inter-
ventions of the early 2000s and the energy-market disturbances of 2015 and 2016. 

Figure 40. Six human-defined commodity crises, 2000–2020, plus the COVID-19 pandemic.

Energies 2021, 14, x FOR PEER REVIEW 44 of 59 
 

 

 
Figure 40. Six human-defined commodity crises, 2000–2020, plus the COVID-19 pandemic. 

 
Figure 41. Volatility for commodity asset classes, overall and during noncritical and critical periods. 

The opposite directions of annualized log returns on all commodity classes, as shown 
in Figure 42, reinforce the intuition that other commodities move separately during events 
affecting solely energy-related markets. This exercise vindicates the wisdom of clustering 
all commodity markets before focusing on energy-specific events. There have been exactly 
two crises affecting all commodity markets since 2000: the global financial crisis of 2008–
2009 and the COVID-19 pandemic. Aside from assets related to energy, no asset class lost 
ground during energy-specific events. Base metals did suffer steep price declines overall 
and lost ground relative to baseline rates of return during energy-specific events. Even 
that class did not decline in the aggregate, however, during the American military inter-
ventions of the early 2000s and the energy-market disturbances of 2015 and 2016. 

Figure 41. Volatility for commodity asset classes, overall and during noncritical and critical periods.

The opposite directions of annualized log returns on all commodity classes, as shown
in Figure 42, reinforce the intuition that other commodities move separately during events
affecting solely energy-related markets. This exercise vindicates the wisdom of cluster-
ing all commodity markets before focusing on energy-specific events. There have been
exactly two crises affecting all commodity markets since 2000: the global financial crisis of
2008–2009 and the COVID-19 pandemic. Aside from assets related to energy, no asset
class lost ground during energy-specific events. Base metals did suffer steep price declines
overall and lost ground relative to baseline rates of return during energy-specific events.
Even that class did not decline in the aggregate, however, during the American military
interventions of the early 2000s and the energy-market disturbances of 2015 and 2016.
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Figure 42. Annualized logarithmic returns for commodity asset classes, overall and during noncritical
and critical periods.

Figures 43 and 44 highlight the effects of the financial crisis and the pandemic. Though
these broad events affected all commodities, they made a far deeper impression on energy-
related markets. Collapses in demand had a far greater impact on energy-related com-
modities and (to a lesser extent) base metals during the financial crisis. COVID-19, on the
other hand, benefited the energy sector overall after historically unprecedented gyrations
in both directions.
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5.4. Comparing Crude Oil with Refined Fuels

The examination of volatility and log return for energy-related markets in Section 5.2
suggested dramatic differences among individual markets. Internal differences among these
markets may be more economically meaningful than differences separating oil and refined
fuels from other commodities.

Volatility for Brent, WTI, gasoil, and gasoline is elevated during all energy-related
events. Figures 45 and 46 should come as no surprise at all. Differences in scaling may
obscure the fact that the across-the-board, the crises of 2008–2009 and COVID-19 in Figure 46
were more volatile than the energy-specific events in Figure 45.

There is a noticeable difference between refined fuels. The palpably lower levels of
volatility for gasoil in all conditions suggests that this fuel enjoys a floor of demand that
undergirds prices and returns throughout varying economic conditions. The flip side of
gasoil’s relative stability is greater susceptibility for gasoline. Faster and less consistent
changes in demand for gasoline generate greater turbulence.
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the pandemic.

Annualized logarithmic returns on Brent, WTI, gasoil, and gasoline tell a more dra-
matic story (Figures 47 and 48). Relative to crude oil, refined fuels absorb far more punish-
ing losses in critical periods. Such losses—though by no means universal, as demonstrated
by the winter 2016 event and the COVID-19 pandemic—are far steeper for gasoil and
especially gasoline. WTI essentially broke even during the two greatest economic crises of
the past two decades. Brent pulled affirmatively ahead of the breakeven point.

By contrast, gasoil and gasoline staggered during the financial crisis. They cratered
during the onset of the COVID-19 pandemic, only to regain their footing and actually
advance as pandemic conditions retreated during the summer of 2020.
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6. Discussion
6.1. Implications for Firms, Investors, and Governments

“The interconnected nature of oil, metal, and agro-commodity price movements
through the transmission of price shocks have serious implications for policymakers and
investors” [57] (p. 1). Oil price volatility also affects strategic investment decisions by
individual firms [244,245]. All stakeholders in energy markets should pay close heed to
the identification of critical periods through temporal clustering.

As expected, the temporal clustering of the limited market basket of four energy-
specific commodities generated a larger number of discrete critical events. The parallel
exercise of clustering the broader basket of 22 commodities proves valuable in distin-
guishing between supply-related and demand-related events. Disruptions in demand
affect multiple commodity classes. They tend to be associated with recessions, depres-
sions, and other events of global scale. By contrast, supply disruptions tend to arise from
acute crises associated with military operations and extreme weather. At least since 2000,
supply-related crises have been unique to energy-related markets and tend to be shorter
in duration.

These patterns confirm the value of the trichotomy identified in [126,127]. Though
commodity prices are generally endogenous with respect to the global business cycle,
they respond to demand shocks slowly but steadily. They respond to supply shocks with
sharp but small and momentary movements. Though these effects may not be unique to
energy-related markets, this article’s focus on oil, gasoline, and gasoil certainly isolated all
three effects.

The different duration associated with each of the two types of critical events affects
managerial, investment, and policy prescriptions. Different stakeholders in energy markets
and adjacent areas of the economy have different time horizons. At one extreme, the
brevity of supply-related disruptions suggests that crises identified through the temporal
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clustering of the energy-specific subarray of volatility forecasts carries the greatest weight
for short-term hedging and managerial decisions.

Longer-term investors and strategic managerial decisions (as distinct from tactical
hedging decisions) depend more heavily on demand-related crises. These tend to be crises
that emerge from temporal clustering of the all-commodities array as well as clustering of
the narrower, energy-specific subarray. Changes in comovement and connectedness during
these periods tend to be slower but also more enduring. Structural shifts in economic
dynamics are likelier to occur during these overlapping crises, as opposed to acute events
arising from disruptions in the supply of oil or its distillates.

The difference between long-term structural shifts due to changes in demand and
episodic disruptions in supply carries profound macroeconomic implications. Conventional
measures of core inflation exclude putatively volatile food and fuel commodities [171–174].
Consumer demand, at least for fuel, turns out to be quite inelastic in the short term.
Temporal clustering uncovered rapid and extreme movements in fuel prices, only a few
of which coincided with broader drops in demand detected by temporal clustering of
all commodities.

Generalizations of the methods demonstrated in this article promise powerful insights,
microscopic as well as telescopic. Extensions of this research can and should be both
introspective and teleological. Opportunities for further research lurk within the data
gathered for this article. In addition to the array of log returns for all commodities, as
well as those related to energy, temporal clustering can use different variations on the
theme of volatility. Historical volatility or additional conditional volatility forecasts at
higher frequencies may yield different results, as would implied volatility derived from
options trading.

The temporal clusters also invite closer examination. Hierarchical clustering could
easily have been expanded to treat 17 percent rather than 8 percent of all trading days as
potentially critical. The threshold for votes among clustering methods could be reduced
from two to one. A softer definition of periods to be identified by temporal clustering may
uncover, as hypothesized at the beginning of this article, inflection points as well as local
minima and maxima within the history of commodities trading.

Obvious extensions beyond crude oil and refined fuels involve other asset classes
among commodities, such as precious metals or the surprisingly placid market for tropical
and subtropical softs. Although this article did gather data for as many as four additional
asset classes among commodities—precious metals, base metals, temperate crops, and
semitropical and tropical “softs”—the thoroughness needed to evaluate even one of those
commodity classes would have required a considerable effort.

The value of examining temperate crops alongside oil, gasoline, and gasoil could be
considerable. At a bare minimum, temporal clustering would enhance the understanding
of connectedness between markets for fossil fuel commodities and food crops [78–80]. Corn
as a feed stock for ethanol and soybeans as a feed stock for biodiesel directly affect oil
markets [84]. Sugarcane, a crop not included in this article’s data sources, is an obvious
candidate for inclusion in such a comparison [85].

Financialization of commodities raises the premium on hedging. First-order oppor-
tunities for diversification and hedging lie within commodity markets. Precious metals
experienced relatively less volatility and retained more of their value throughout all crises.
During energy-specific events, if not in broader crises, agricultural commodities as a super-
class proved resilient. This was particularly true of tropical and semitropical softs. Returns
on those commodities mitigated many of the losses incurred by crude oil and refined fuels
during energy-specific events. They even fared reasonably well during the financial crisis.

The relationship between energy-specific and agricultural commodities should pro-
vide especially useful guidance in emerging markets. The decoupling of energy commodi-
ties from softs may reveal hedging and diversification opportunities among investment
opportunities in emerging markets. Petrostates tend not to depend on agricultural exports,
and coffee and cocoa producers are not coextensive with OPEC. Extensions of this work



Energies 2021, 14, 6099 48 of 58

can critical moments identified through unsupervised machine learning with event studies.
In addition to OPEC announcements [144,145], the public disclosure of decisions affecting
major agricultural markets and the resolution of global trade disputes over agriculture can
serve as bases for comparative analysis.

All capital markets invite temporal clustering. Deeper research should examine
equities and sovereign debt as well as commodities. Although many sources addressing
diversification opportunities affecting oil and refined fuels have specifically addressed
other commodities (including but not limited to precious metals) [55,57], equity holdings
can also contribute to diversification [50,114–116].

In addition to markets for equity and sovereign debt, the entire fixed-income mar-
ketplace presents an enticing target for temporal clustering. The market for debt includes
Islamic sukuk [246]. Clustering by market movements should operate at two levels: Ini-
tially in financial space, as different instruments respond to interest-rate, default, and
prepayment risk, and again in time as crises overtake and release different segments of the
bond market.

6.2. Additional Directions for Research: Temporal Clustering and Machine Learninng

This article has demonstrated the feasibility of using unsupervised machine learning
to isolate and interpret critical periods in financial and economic history. In terms of math-
ematical complexity, the methods demonstrated in this article lie somewhere between the
most familiar benchmarks in the literature on the identification of regime shifts throughout
economics. The clustering of all commodity markets, followed by a narrower focus on
four energy-related markets—Brent, WTI, gasoil, and gasoline—encompasses subtleties
that elude methodologies based on arbitrary 10 or 20 percent changes from short-term
minima and maxima in stock market prices. By the same token, temporal clustering does
not purport to capture all of the nuances of the dynamic-factor, Markov-switching model
that the NBER uses to identify recessions in the United States.

The amount of subjective judgment used in this application of unsupervised machine
learning likewise occupies middle ground. Since conventional definitions of bull and bear
markets are based on fixed changes in stock prices, those exercises rely exclusively on
the definition of peaks and valleys in recent financial history. Conversely, the selection of
commodity markets and the admittedly crude taxonomy distinguishing oil and refined
fuels from precious and base metals, temperate crops, and tropical and semitropical softs
does not approach the depth of the research supporting the NBER’s focus on non-farm
employment, industrial production, real personal income, and real manufacturing and
trade sales as broad macroeconomic indicators.

Much of the mathematical elaboration in temporal clustering arises from unsupervised
machine learning itself. The categorical ontology of commodity markets is an artifact of the
clustering of daily logarithmic returns for each commodity [1]. The clustering of trading
days according to volatility forecasts generates far more diverse results. The vast difference
in scale between two dozen commodities, give or take, and thousands of trading days
makes temporal clustering that much more challenging.

Fixing the optimal number of clusters continues to pose a formidable barrier. One
possible solution lies in using more deterministic methods, such as spectral or mean-shift
clustering, to guide more malleable methods. Leading use cases include the calibration of
element preferences in affinity propagation or the stipulation of k in k-means clustering.

By its nature, clustering as a branch of unsupervised machine learning divides large
quantities of data into more tractable classes. The concurrent application of multiple
clustering methods with wholly disparate algorithms highlights the applicability of an
ensemble technique from supervised machine learning: the voting classifier. This article
used voting methods to aggregate clustering results.

This article also exploited an intuition arising from clustering as a method for outlier
detection. Especially for methods predisposed to generate a large number of clusters (affin-
ity propagation) or to select noncontiguous clusters (k-means), one method for imposing
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order on temporal clustering consists of selecting clusters until some threshold fraction of
all trading days has been reached.

This method does inflict costs of its own. Any reduction in the number of clusters
pushes clustering closer to binary classification and away from the nuances attained by
multiclass clustering. Even the conservative spectral clustering method distinguished
between the pandemic and the energy-specific event associated with Hurricane Katrina.

The extreme turbulence associated with COVID-19 provides a unique lesson. The
four months after the pandemic’s outbreak in March 2020 revealed radical shifts that
had no precedent in this 20-year survey. Indeed, there may be no other period like it in
modern economic history. The sudden shock to demand, to say nothing of uncertainty over
the progression of the greatest threat to human health apart from war, destroyed normal
channels for conveying economic information [247].

Utmost care in the volatility-based clustering of critical periods is advised, especially
if clustering is treated as an exercise in binary classification. The nine discernible events
highlighted in this article are quite diverse, even as they were treated as outliers in the
ordinary fabric of financial spacetime. Cataclysms such as the financial crisis of 2008–09
and the COVID-19 pandemic swamp all commodities, though by no means equally. Other
events exhibit unusual volatility in a single energy market, often (but not always) gasoline.

Even the direction of the impact on prices and returns is not uniform. Two events,
notably, the winter 2016 event and the pandemic, witnessed sharp increases in energy
prices. More precisely, these events represented superclusters of temporally contiguous
but economically distinct periods. Temporal clustering can steer analysts toward intrigu-
ing moments.

On the other hand, clustering cannot dictate the course of economic history. Nor can
clustering define the inferences to be drawn from economic analysis. As the poet T.S. Eliot
wrote [248] (p. 26):

“The knowledge imposes a pattern, and falsifies, /For the pattern is new in every
moment/And every moment is a new and shocking/Valuation of all we have been.”

The comparison of temporal clustering across all commodities with the energy-specific
subarray carries broad and important implications. The inescapably narrow focus on any
fraction of the universe of valuable assets necessarily undermines efforts to model the
entire economy according to that limited sample [128].

The reduction of complexity may ultimately prove more of a virtue than a vice. As eco-
nomics advances by devising ever more elaborate models, from the decision-making level
to that of the broader macroeconomy, simplification often holds the key to success [151].
The deeper the data, so it seems, the more vital it becomes to reduce complex relationships
to their bare essence [151].

Unsupervised machine learning’s greatest contribution may lie in its ability to reveal
those moments where other analytical methods are most likely to fail. Such failures include
the shortcomings of other branches of artificial intelligence. Failures in otherwise accurate
deep learning models for forecasting economic time series may reveal macroeconomic
regime shifts in an unintended and unsupervised fashion [249].

Temporal clustering may reveal the mirror image of this phenomenon. The application
of unsupervised machine learning to economic time series can identify such shifts, or at
least smaller breaks or departures, from otherwise prevalent financial or macroeconomic
regimes. Such recognition, one can only hope, should happen ex ante, before policymakers
adopt predictive models as elaborate and consequential as they are flawed.

Disruptions in financial or economic spacetime represent deviations from the “normal
science” of economic exchange. Even if temporal crises do not shift economic paradigms,
they raise departures from prior factual suppositions that warrant analytical calibra-
tion [250]. Posterior probabilities in Bayesian statistics and the concept of backpropagation
in deep learning through neural networks embody this wisdom.

At the very least, critical periods identified through temporal clustering should not be
expected to behave according to the usual rules of financial or economic engagement. Ceteris
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paribus, temporal outliers identify wrinkles in economic time when conventional wisdom
and entrenched forecasting methods are most likely to fail. As necessity is the mother of
invention, crisis is the font of philosophical foment and the father of discovery [250].

7. Conclusions

Crude oil and refined fuels are crucial elements of global trade. Through their finan-
cialization, these energy commodities sway capital markets and economic development
around the world. Geopolitical struggles over oil and its distillates divide importing from
exporting countries. Public policies responding to these economic and diplomatic condi-
tions seek to nudge oil-importing countries from fossil fuels and toward a fuel mix with
renewable sources and a lower carbon footprint.

Mainstream economics has exhaustively evaluated the volatility dynamics and con-
nectedness of energy-related commodities. These effects vary considerably across time.
Disruptions in supply and especially in demand punctuate distinct regimes in the relation-
ship of oil and fuel markets to financial instruments and markets for other commodities.
The rockets-and-feathers behavior of Edgeworth price cycles in gasoline markets may
even reverse and follow the opposing boulders-and-balloons pattern, depending on the
relationship of fuel markets to oil prices, capital markets, and broader business cycles.

At the same time, mainstream economics has traditionally relied on peak-to-trough
methods to define these cycles and their temporal boundaries. Given the centrality of the
time domain to fuller understanding of volatility and connectedness in energy markets,
this article has used a new set of computational tools to define critical periods in the trading
of energy commodities. Unsupervised machine learning and related fields of artificial
intelligence promise deeper mastery of time and its economic meaning.
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