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Abstract: Machine-learning diagnostic systems are widely used to detect abnormal conditions
in electrical equipment. Training robust and accurate diagnostic systems is challenging because
only small databases of abnormal-condition data are available. However, the performance of the
diagnostic systems depends on the quantity and quality of the data. The training database can be
augmented utilizing data augmentation techniques that generate synthetic data to improve diagnostic
performance. However, existing data augmentation techniques are generic methods that do not
include additional information in the synthetic data. In this paper, we develop a model-based data
augmentation technique integrating computer-implementable electromechanical models. Synthetic
normal- and abnormal-condition data are generated with an electromechanical model and a stochastic
parameter value sampling method. The model-based data augmentation is showcased to detect an
abnormal condition of a distribution transformer. First, the synthetic data are compared with the
measurements to verify the synthetic data. Then, ML-based diagnostic systems are created using
model-based data augmentation and are compared with state-of-the-art diagnostic systems. It is
shown that using the model-based data augmentation results in an improved accuracy compared to
state-of-the-art diagnostic systems. This holds especially true when only a small abnormal-condition
database is available.

Keywords: electrical power equipment; small sample size; data augmentation; diagnostics; fault
detection; machine learning

1. Introduction

Grid operators are responsible for providing a safe and reliable energy grid. For this
purpose, the electrical grid is reinforced to cope with the increasing integration of renewable
energies. One approach of grid reinforcement is the installation of diagnostic systems to
reduce the cost of preventive maintenance measures and personnel cost, as well as reducing
downtimes of electrical equipment. Such diagnostic systems monitor electrical equipment
in a continuous or event-driven manner to detect abnormal or fault conditions [1]. In
recent years, more and more measurement technology has been installed in the electricity
grid [2,3]. This leads to large normal-condition measurement databases and the sporadic
measurement of abnormal conditions. The normal- and abnormal-condition measurements
enable the use of supervised machine learning (ML) diagnostic systems. Such diagnostic
systems have the potential to automatically learn complex relationships between the
conditions of electrical equipment and measurements to classify normal and abnormal
conditions. To train ML-based diagnostic systems, large databases are necessary [4–8],
and the performance of the diagnostic system depends on the quantity and quality of
the data [9–13]. Electrical equipment often has a small fault rate [14], leading to only
small databases of abnormal conditions for the training of ML models. Therefore, the full
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potential of ML-based diagnostic systems is not exploited. One approach to cope with this
challenge is using data augmentation methods to augment the training data.

Data augmentation is already widely used for image classification. Images are rotated,
cropped, or scaled to generate new images and augment the training data [8]. In signal
analysis tasks, the signals are stretched or compressed, and noise is modulated onto the
signals [15]. This signal processing has been shown to increase the performance of ML
models but could also result in unrealistic signals. Synthetic data can also be generated
using generative models, e.g., based on deep learning methods. These generative models
offer the advantage of learning complex and multidimensional distribution functions of
features and using this knowledge to generate high-quality synthetic data. They have
been proven to increase the performance of ML models in the medical sector [8,10,16]
and the diagnostic of mechanical equipment [15] and electrical equipment [7] or electrical
grids [17]. Generative Adversarial Networks (GANs) are often used as generative models.
GANs consist of two multilayer perceptrons (MLPs). The first MLP is trained to classify
data whether they are ‘synthetic data’ or ‘measurements’. The second MLP is trained
to generate synthetic data and maximize the probability of misclassification of the first
MLP. The training is carried out in an iterative manner [18]. Some implementations of
GANs also work for tabular data [19–22]. The training of GANs is hard as the required
time for training can be very long and the training can be unstable, depending on the
optimization algorithm. Another generative model, Restricted-Boltzmann machines, can
also be included in deep belief networks. This model resulted in higher accuracy for
the detection of faults in transmission lines compared to state-of-the-art approaches [23].
Restricted-Boltzmann machines can be hard to train as it is difficult to calculate the energy
gradient function.

However, the existing data augmentation techniques are generic techniques and do
not add information about the subsequent diagnostic task to the generated, synthetic data.
Such information could be provided by computer-implementable, electromechanical mod-
els. The electromechanical models contain information about the functional relationship
between the measurement variables and the electrical equipment. Integrating such elec-
tromechanical models in data augmentation could improve ML-based diagnostic systems
further. Improved diagnostic systems could further reduce maintenance effort, reduce
the number of trips and inspections of maintenance personnel due to false alarms, and
decrease downtimes of electrical equipment. This could potentially lead to savings for the
grid operator.

In this paper, we develop a model-based data augmentation using electromechanical
models. The aim of the model-based data augmentation is to generate synthetic data
and to increase the performance of ML-based diagnostic systems. The model-based data
augmentation is showcased for the diagnostic task of detecting an abnormal condition of
a secondary distribution transformer. Measurements such as top tank vibration, voltage,
and current measurements from the low-voltage side are available for analysis. In the first
step of the analysis, the synthetic data generated by the model-based data augmentation
are compared to measurements. In the second step, ML-based diagnostic systems are
created using model-based data augmentation and are compared with state-of-the-art
diagnostic systems.

2. Generation of Synthetic Data and Data Augmentation

Electromechanical models of electrical equipment generate synthetic data. For the
variation of the model output to correspond to that of measurements, all variables influ-
encing the model’s output would have to be considered in the electromechanical model.
However, electromechanical models typically represent a simplification of the cause–effect
relationships so that the variation of the model output does not correspond to that of the
measurements. Considering this variation is essential to generate appropriate synthetic
normal- and abnormal-condition data. Therefore, the presented model-based data aug-
mentation uses a stochastic approach to sample parameter values of the electromechanical



Energies 2021, 14, 6816 3 of 20

model [24,25]. The variation of measurements can thus be mapped appropriately. The
generated synthetic data can then be integrated into the training process of ML models.

2.1. Model-Based Data Augmentation

The model-based data augmentation consists of three key parts and uses available
normal-condition measurements as input [25]:

• An algorithm to parametrize the electrical model. The algorithm fits the model’s
parameter to subsets of the available normal-condition measurements. This results in
a parameter set of the electromechanical model for each measurement subset and thus
a parameter database.

• An algorithm to sample combinations of parameter values from the previously identi-
fied parameter database to simulate normal and abnormal conditions.

• An electromechanical model to include additional information about the cause–effect
relationships of the electrical equipment.

The electromechanical model is parametrized with the sampled parameter values and
is simulated to generate synthetic data.

2.1.1. Establishing the Parameter Database and Generating Synthetic Normal-Condition Data

Input and parameter values are necessary for the simulation of an electromechanical
model. Both are sampled with a stochastic approach. The process is shown in Figure 1.
In the first step, the probability distributions of the input values are identified from the
available normal-condition measurements. In the second step, the n normal-condition
measurements are divided into q subsets. For each subset, the electromechanical model is
fitted to the subset to find the optimal parameter values of the m parameters of the elec-
tromechanical model. This results in q parameter value sets S1, . . . , q. Each parameter value
set contains m parameter values P1, . . . , p. These parameter value sets are used to identify a
multivariate Gaussian distribution considering the correlation between parameters [25].

For the generation of synthetic normal-condition data, parameter values and input
values are sampled from the corresponding and previously identified probability distribu-
tions. The electromechanical model is parametrized with these values and simulated. This
results in synthetic normal-condition data with input and corresponding output data. This
process is repeated until the desired number of normal-condition data is available.

2.1.2. Generating Synthetic Abnormal-Condition Data

For the generation of synthetic abnormal-condition data, parameter values of the
electromechanical model are manipulated. Which parameters Pabnormal are used for this
should be selected by domain experts so that the manipulation results in realistic abnormal-
condition types. It is not possible to derive the statistically meaningful parameter distri-
butions from measurements as it is often the case that only small databases of abnormal-
condition measurements are available. Therefore, the idea behind the abnormal-condition
generation is sampling parameter values of the electromechanical model outside the main
area of the normal condition’s probability distribution. In this paper, Gaussian distributions
are fitted to the parameter values from the database of parameter values (Section 2.1.1)
for each Pabnormal to represent parameter values for normal conditions. Each Gaussian
distribution has a mean value µnc and standard deviation σ. To sample parameters outside
the main area of these Gaussian distributions, new uniform probability distributions are
introduced, representing parameter values for abnormal conditions. In this work, these
uniform probability distributions start at µnc + 5 σ and end at µnc + 25 σ. This is illustrated
in Figure 2 for different starting points of the probability distribution. Only increasing
parameter values are considered because abnormal conditions of transformers lead to an
increase of the vibration amplitude [25].
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Figure 1. Illustration of generating the database of parameter values and generating synthetic
normal-condition data.

For the generation of synthetic abnormal-condition data, parameter values and input
values are sampled from the multivariate Gaussian distribution from Section 2.1.1, except
for one of the parameters out of Pabnormal. The value of this parameter is sampled from the
introduced uniform probability distribution. The model is parameterized and simulated
with the sampled parameter and input values. This results in a data set containing input
data and output data representing an abnormal condition. This process can be repeated as
often as needed to generate an arbitrary number of synthetic abnormal-condition data.
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Figure 2. Introduction of an abnormal-condition probability distribution in relation to the normal
condition’s probability distribution [25].

2.1.3. Electromechanical Model to Simulate Transformer Vibration

The diagnostic task under investigation utilizes vibration, current, and voltage mea-
surements. Thus, an electromechanical model putting these measurement variables into
relation is used for the model-based data augmentation. A base model [26] is modified
to consider the individual voltage-dependent magnetostrictions and individual current-
dependent electrodynamic forces of the three phases of a distribution transformer. The
model calculates the 100 Hz vibration component A100Hz as a function of the individual
effective mean voltages v and the individual effective mean currents i across and through
phases 1, 2, and 3; see Equation (1). The parameters α1, α2, and α3 and β1, β2, and β3 serve
as proportionality factors between vibration and current or voltage as well as damping
factors along the propagation path [26].

A100Hz = α1 ∗ i12 + α2 ∗ i22 + α3 ∗ i32 + β1 ∗ v1
2 + β2 ∗ v2

2 + β3 ∗ v3
2 (1)

The electromechanical model is fitted to measurements to identify values for the
parameters α1, α2, and α3 and β1, β2, and β3 using a least-squares method.

Faults such as mechanical deformation or loosening of the winding or core, insulation
degradation of the winding [27,28], and highly unsymmetrical load can lead to an increased
vibration amplitude.

2.2. Integration of Synthetic Data into the Training Process

The synthetic data generated by the model-based data augmentation can be integrated
into the training process of ML models using two approaches. The first approach augments
the training data with the synthetic data. These augmented training data are used for
the training of MLPs. The second approach uses synthetic data as a source domain
to train MLPs. These models are then retrained with measurements utilizing transfer
learning methods.

2.2.1. Augmenting the Training Data

The un-augmented training data consists of normal- and abnormal-condition mea-
surements. Therefore, the model-based data augmentation can be used to generate and
augment normal and abnormal conditions or to only augment abnormal conditions [29].
Both methods are analyzed in this work.

Figure 3 illustrates how synthetic data are generated and the constellation of the
training data when they are augmented with the synthetic normal- and abnormal-condition
data. nDA,nc synthetic normal-condition data and nDA,ac synthetic abnormal-condition data
are generated using nM,nc normal-condition measurements utilizing model-based data
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augmentation. The ratio cDA between the number of synthetic data and measurements can
be adjusted with Equations (2) and (3). The MLP is trained with the union of the synthetic
normal- and abnormal-condition data and the measurements. Such diagnostic systems
are denoted by MDA-NC-AC (for model-based data augmentation: normal condition and
abnormal condition).

nDA,nc = nM,nc ∗ cDA (2)

nDA,ac = nM,ac ∗ cDA (3)
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and abnormal-condition data are used to augment the training data [29].

Figure 4 illustrates how synthetic data are generated and the constellation of the
training data when it is augmented using only synthetic abnormal-condition data. nDA,ac
synthetic abnormal-condition data are generated using nM,nc normal-condition measure-
ments utilizing the model-based data augmentation. The union of the synthetic abnormal-
condition data and measurements form the training data. The class balance of the training
data can be adjusted to a desired class balance b by limiting the number of synthetic
abnormal-condition data added to the training data; see Equation (4). Such diagnostic sys-
tems are denoted by MDA-AC (for model-based data augmentation: abnormal condition).

nDA,ac = nM,nc/b − nM,ac (4)
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2.2.2. Generating a Source Domain for Transfer Learning

Transfer learning is normally used to transfer already existing ML models trained on
huge databases (source domain) to other tasks or domains. However, such ML models
are not available for the diagnostics of electrical equipment. Therefore, a source domain
is created with synthetic data generated by the model-based data augmentation using
the available normal-condition measurements. The source domain contains synthetic
normal- and abnormal condition data. MLPs are trained with this source domain and
learn the cause–effect relationships and information provided by the synthetic data dur-
ing the training process. These MLPs are then transferred to the available normal- and
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abnormal-condition measurements using transfer learning methods. Retraining the MLPs
with measurements offers the potential to reduce the impact of inaccuracies of the elec-
tromechanical model or the simulation on the diagnostic system. Generally, knowledge
learned in the first training process is preserved in the MLP. The process is shown in
Figure 5. Two methods of transfer learning are considered in this paper: fine-tuning (FT)
and feature extraction (FE) [30].
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Figure 5. Training of MLPs with synthetic data and transferring MLPs to measurements using transfer learning [30].

The first layers of an MLP mostly represent general knowledge, while the back layers
contain specific knowledge [31,32]. The last layers perform the classification into different
classes and do not contain or contain only very little information about the features. The
structure of the classification part can be one fully connected layer or multiple layers.

The idea behind fine-tuning is that the structure and knowledge of already trained
MLPs are useful for a new domain when adapted. Therefore, this MLP is used as a
base model. This model is transferred to the new domain, in the case of this paper to
measurements, by retraining the output layer with the measurements (fine-tuning) [31,32].
The parameters of the other layers are frozen during this training process, as shown in
Figure 6. Such diagnostic systems are denoted by MDA-FT.
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Figure 6. Transfer learning using fine-tuning [30,31].

The second transfer learning method utilized in this paper is feature extraction. The
classic use case of feature extraction is transferring an MLP to a new task. This is completed
by reusing the part of the MLP where information about features is stored and changing the
part of the MLP responsible for the classification, as shown in Figure 7. The part responsible
for the classification is removed from the MLP, and a new classification structure is added.
The added structure is retrained with new data while the parameters of the rest of the MLP
remain unchanged [31,32]. Such diagnostic systems are denoted by MDA-FE.



Energies 2021, 14, 6816 8 of 20

Energies 2021, 14, x FOR PEER REVIEW 8 of 21 
 

 

structure is added. The added structure is retrained with new data while the parameters 

of the rest of the MLP remain unchanged [31,32]. Such diagnostic systems are denoted by 

MDA-FE. 

  

Figure 7. Transfer learning using feature extraction [30,31]. 

In this paper, diagnostic systems utilizing feature extraction are trained with syn-

thetic data and the diagnostic task to classify between normal condition, abnormal condi-

tion 1, abnormal condition 2, etc. This MLP is then transferred to measurements with a 

binary diagnostic task—normal condition or abnormal condition. 

3. MLP Structure and Benchmark Diagnostic Systems 

To test whether the model-based data augmentation improves the performance of 

diagnostic systems, diagnostic systems created utilizing the model-based data augmenta-

tion are benchmarked with state-of-the-art diagnostic systems. The state-of-the-art diag-

nostic systems include a model-based diagnostic system, a diagnostic system based on 

kernel density estimation, an MLP classifier, and an MLP classifier combined with state-

of-the-art data augmentation. All MLPs have the same structure. 

3.1. Structure of the Multilayer Perceptrons 

All diagnostic systems utilizing MLPs use MLPs with identical structures and hy-

perparameters to achieve comparability between the systems. The chosen structure and 

hyperparameters do not claim to be the optimal choice for the given diagnostic task. 

The MLPs are implemented with l layers. Each hidden layer has n nodes. The input 

layer has seven nodes, one for each normalized feature (100 Hz amplitude of the vibration 

signal, current phase 1, 2, 3, and voltage phase 1, 2, 3). The output layer contains one node 

for the binary classification task of normal condition or abnormal condition. The number of 

nodes in the last layer is equal to the number of synthetic abnormal-condition fault types 

only in the case of the pre-training of MLPs utilizing feature extraction. The activation 

functions are randomized leaky rectified linear units [33]. The parameters of the MLPs are 

optimized with an Adam optimization function [34], and the MLPs are implemented and 

trained utilizing PyTorch [35]. 

3.2. Model-Based Diagnostic System 

Model-based diagnostic systems are widely used as they do not require abnormal-

condition measurements [36–41]. They use an electromechanical model or an ML model 

as a predictor for a variable in normal conditions. If a measurement with input data should 

be analyzed for an abnormal condition, the residuum between the predictor for the given 

input data and the actual measurement is calculated. If the residuum exceeds a threshold 

predefined by an expert, an abnormal condition is assumed. 

In this paper, a parametrized vibration model from Section 2.1.3 is used as the pre-

dictor for the normal condition. The threshold is set to the threshold that maximizes the 

diagnostic accuracy for the available measurements to simulate a domain expert setting 

Input 
layer

Hidden 
layer

Output 
layer

Input 
layer

Hidden 
layer

Output 
layer



Retrain

© 2021 IEEE

Figure 7. Transfer learning using feature extraction [30,31].

In this paper, diagnostic systems utilizing feature extraction are trained with synthetic
data and the diagnostic task to classify between normal condition, abnormal condition 1,
abnormal condition 2, etc. This MLP is then transferred to measurements with a binary
diagnostic task—normal condition or abnormal condition.

3. MLP Structure and Benchmark Diagnostic Systems

To test whether the model-based data augmentation improves the performance of di-
agnostic systems, diagnostic systems created utilizing the model-based data augmentation
are benchmarked with state-of-the-art diagnostic systems. The state-of-the-art diagnostic
systems include a model-based diagnostic system, a diagnostic system based on kernel
density estimation, an MLP classifier, and an MLP classifier combined with state-of-the-art
data augmentation. All MLPs have the same structure.

3.1. Structure of the Multilayer Perceptrons

All diagnostic systems utilizing MLPs use MLPs with identical structures and hy-
perparameters to achieve comparability between the systems. The chosen structure and
hyperparameters do not claim to be the optimal choice for the given diagnostic task.

The MLPs are implemented with l layers. Each hidden layer has n nodes. The input
layer has seven nodes, one for each normalized feature (100 Hz amplitude of the vibration
signal, current phase 1, 2, 3, and voltage phase 1, 2, 3). The output layer contains one node
for the binary classification task of normal condition or abnormal condition. The number of
nodes in the last layer is equal to the number of synthetic abnormal-condition fault types
only in the case of the pre-training of MLPs utilizing feature extraction. The activation
functions are randomized leaky rectified linear units [33]. The parameters of the MLPs are
optimized with an Adam optimization function [34], and the MLPs are implemented and
trained utilizing PyTorch [35].

3.2. Model-Based Diagnostic System

Model-based diagnostic systems are widely used as they do not require abnormal-
condition measurements [36–41]. They use an electromechanical model or an ML model as
a predictor for a variable in normal conditions. If a measurement with input data should
be analyzed for an abnormal condition, the residuum between the predictor for the given
input data and the actual measurement is calculated. If the residuum exceeds a threshold
predefined by an expert, an abnormal condition is assumed.

In this paper, a parametrized vibration model from Section 2.1.3 is used as the predictor
for the normal condition. The threshold is set to the threshold that maximizes the diagnostic
accuracy for the available measurements to simulate a domain expert setting the optimal
threshold. The diagnostic system is illustrated in Figure 8, where A denotes the vibration
amplitude of the 100 Hz component, R is the residuum, v is the voltage, i is the current,
and α and β are the parameters of the vibration model. This diagnostic system is denoted
by Res.
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Figure 8. Model-based diagnostic system [30].

3.3. Diagnostic System Based on Kernel Density Estimation

Statistic diagnostic systems also do not require abnormal-condition measurements
and are widely used across many domains [42–44].

A representative for statistic diagnostic systems, kernel density estimation is used to
identify the probability distributions of the input features in normal conditions. Using this
probability distribution, the membership of each new measurement to the normal condition
can be calculated. An abnormal condition is assumed if the membership undercuts a pre-
defined threshold. For this work, the threshold is set to the threshold that maximizes the
diagnostic accuracy for the available measurements to simulate a domain expert setting
the optimal threshold. This diagnostic system is denoted by KD.

3.4. Multilayer Perceptrons Classifier

Supervised learning classifiers are widely used to classify abnormal conditions [45–49].
In this paper, MLPs are trained with training data containing normal- and abnormal-
condition measurements. They are denoted by MLP-Std.

3.5. Multilayer Perceptrons Classifier with State-of-the-Art Data Augmentation

Generative adversarial networks (GANs) are selected as a state-of-the-art data aug-
mentation to benchmark the model-based data augmentation as they are widely used
to improve diagnostic systems [5,7,15,50,51]. GANs consist of two ML models: a data
generator and a data discriminator. The task of the data discriminator is to classify whether
data were generated by the data generator or whether the data are measurements. The
task of the data generator is to generate realistic synthetic data so that the probability of
misclassification by the data discriminator is maximum. These two ML models are trained
iteratively [18].

For this work, the conditional GAN [22] is slightly modified and used to generate
synthetic data. The synthetic data are used to augment the training data in two ways.
Either only synthetic abnormal-condition data are generated, or both synthetic normal- and
abnormal-condition data are generated to augment the training data, similar to Section 2.1.3.
MLPs are then trained with the augmented training data. Both ways are implemented
for this paper and are denoted GAN-AC (for abnormal condition) and GAN-NC-AC (for
normal condition and abnormal condition).

4. Results and Discussion

The model-based data augmentation is tested for the diagnostic task of detecting
an abnormal condition of a secondary distribution transformer. The transformer is a
20◦ kV/630 kVA transformer with an on-load tap changer on the low-voltage side. The
transformer is equipped with sensors to measure the current through and the voltage across
each phase on the low-voltage side and a vibration sensor positioned at the tank. The
100 Hz amplitude is extracted from the vibration measurements. The sensors take hourly
measurements. In total, measurements of approximately 13 months are available. The
absolute load of the transformer for the period under review is shown in Figure 9. At the
beginning of the measurement campaign, the transformer operates in an abnormal condition
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for approximately 42 days as the on-load tab changer is faulty due to a bad surge arrester
in the auxiliary circuit. The transformer is then switched off, the surge arrester is replaced,
and the transformer switched on again after 119 more days. Since then, the transformer
has operated in normal condition. The measurement campaign resulted in 5614 labeled
normal-condition measurements and 1009 labeled abnormal-condition measurements.
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Figure 9. Absolute load of the transformer.

The faulty on-load tap changer leads to an unsymmetrical voltage output of the
transformer and increased vibration. Figure 10 shows one of the malfunctioning parameters
during the fault: the unsymmetrical voltage. The figure displays the transformer voltage of
phase L1, phase L2, and phase L2 for the period under review. During the fault, the voltage
of phases L1, L2, and L3 are not symmetrical and have a mean voltage of 233.2 V (L1-N),
230.8 V (L2-N), and 227.8 V (L3-N), respectively. After the repair, the phase imbalance
is drastically reduced. The mean voltage is 230.8 V (L1-N), 231.3 V (L2-N), and 231.9 V
(L3-N), respectively.
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Figure 10. Voltage of the transformer for the period under review.

The difference in the vibration amplitude of the normal-condition measurements
(meas. NC) and the abnormal-condition measurements (meas. AC) can be seen in the box
plots in Figure 11. The abnormal condition results in higher vibration amplitudes. The
distribution of the abnormal-condition measurements has a median of 0.024 m/s2 and
reaches amplitudes up to 0.046 m/s2, whereas the distribution of the normal-condition
measurements has a median of 0.014 m/s2, and the maximum occurring value is 0.019 m/s2.
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Figure 11. Box plots of the normal- and fault-condition measurements.

The recorded measurements are used to analyze the model-based data augmentation.
First, the synthetic data generated by the model-based data augmentation are compared
with the measurements. Then, diagnostic systems utilizing the model-based data augmen-
tation are benchmarked with state-of-the-art diagnostic systems.

4.1. Analysis of Synthetic Normal-Condition Data Generated by the Model-based Data Augmentation

Synthetic data are generated with the model-based data augmentation using all
5614 normal-condition measurements as input data. The results in this section form the
foundation of the results shown in Section 4.2 and are also discussed in [25].

4.1.1. Synthetic Normal-Condition Data

A total of 10,000 synthetic normal-condition data are generated utilizing the model-
based data augmentation. The distribution of the resulting synthetic 100 Hz amplitude
(synth. NC) and the normal-condition measurements (meas. NC) is shown as box plots in
Figure 12. The synthetic data’s mean deviates −1.19% from the measurements. The 25%-
and 75%-quantile deviates by −8.59% and 5.93% only. This shows that the model-based
data augmentation is capable of generating realistic, synthetic, normal-condition data.
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4.1.2. Synthetic Abnormal-Condition Data

Synthetic abnormal-condition data are sequentially generated by using the parameters
of the electromechanical model α1, α2, and α3 and β1, β2, and β3 as parameters to simulate
abnormal conditions. For each of these parameters, 10,000 synthetic abnormal-condition
data are generated. The distribution of the synthetic data (synth. NC and Synth. AC) and
the measurements, including the 1009 abnormal-condition measurements (meas. AC), are
shown in Figure 13a. Table 1 shows the percental deviation of characteristic box plot values
from the corresponding values of the abnormal-condition measurement. The deviation of
the median of the abnormal-condition measurement from the normal-condition measure-
ments is 65.70%. The whiskers of the synthetic abnormal-condition data show a deviation
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from the median of the abnormal-condition measurements of up to 6475.00%. Even nega-
tive vibration amplitudes are generated. With smaller start points and endpoints of the
introduced abnormal distribution, realistic abnormal condition data cannot be generated
with β1, β2, and β3. This is an indicator that for a realistic abnormal condition simulation
with β, the correlation between the parameters needs to be considered. Figure 13b shows
the distribution of the data without the synthetic abnormal-condition data generated with
β1, β2, and β3. The synthetic data generated with α1, α2, and α3 show a distribution similar
to the abnormal-condition measurements but is shifted to smaller vibration amplitudes.
The median of the synthetic abnormal-condition data deviates from the median of the
abnormal-condition measurements by a maximum of −23.82%. The 25% quantile only
deviates by up to −17.44% from the 25% quantile of the measurements. The results show
that the model-based data augmentation generates realistic synthetic data for independent
parameters when properly parametrized.
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Figure 13. (a) Distribution of the measurements and synthetic data. (b) Distribution of the mea-
surements and synthetic data except synthetic abnormal-condition data created with β1, β2, and
β3 [25].

Table 1. Percentage deviation of characteristic values of the box plots from the corresponding box
plot values of the abnormal-condition measurements [25].

Percentage Deviation

Data Median 25% Quantil 75% Quantil Upper
Whisker

Lower
Whisker

Meas. NC −39.68% −27.53% −48.17% −8.09% −59.80%
Synth. NC

MGD −40.37% −33.75% −45.09% −37.96% −51.24%

Synth. FC α1 −21.05% −14.04% −2.55% −49.88% −26.83%
Synth. FC α2 −23.82% −17.44% −25.73% −50.69% −29.90%
Synth. FC α3 −21.38% −15.41% −21.93% −58.57% −25.06%
Synth. FC β1 4745.79% 4367.42% 4936.59% 1370.21% 4356.05%
Synth. FC β2 6475.00% 5943.28% 6708.73% 3049.68% 6007.77%
Synth. FC β3 5568.86% 5143.54% 5737.78% 2600.50% 5105.02%
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4.2. Analysis of the Diagnostic Performance of MLPs Created with Model-Based Data Augmentation

Data augmentation methods are often applied when only limited databases are avail-
able. Therefore, the model-based data augmentation is analyzed by limiting and succes-
sively increasing the number of abnormal-condition measurements in the training data;
the number of normal-condition measurements is kept constant. This limitation is carried
out to simulate how the ML models would perform if only small abnormal-condition
databases were available. Diagnostic systems are created with the limited training data
and then tested with test data. The test data contains 80% of the available measurements.
Each diagnostic system is trained multiple times for each number of abnormal-condition
measurements in the training data with a different constellation of abnormal-condition
measurements. The performance on the test data is averaged for each number of abnormal-
condition measurements in the training data—similar to cross-validation. The process is
illustrated for four abnormal-condition measurements in the training data in Figure 14.
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Figure 14. Illustration of the testing process for 4 abnormal-condition measurements in the training data.

By successively increasing the number of abnormal-condition measurements in the
training data, learning curves can be generated for each diagnostic system. Learning
curves plot the performance of a diagnostic system against the number of abnormal-
condition measurements in the training data. During the data-limitation process, the class
balance between the number of normal-condition measurements and abnormal-condition
measurements is kept constant to change only one influence on the performance, the
number of abnormal conditions in the training data, at once. The MDA-AC and GAN-AC
diagnostic systems allow adding synthetic abnormal-condition data until a pre-defined
class balance is met. For the rest of the diagnostic systems, a constant class balance is
realized by upsampling the abnormal-condition measurements to a pre-defined value.
Upsampling adds data duplicates without adding new information in the form of unseen
data to the training data.
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The performance of the diagnostic systems is evaluated using accuracy; see Equation (5).
TP are true positive, TN are true negative, FP are false positive, and FN are false nega-
tive diagnoses.

accuracy =
TP + TN

TP + FP + TN + FN
(5)

Section 4.1.2 shows that the model-based data augmentation does not simulate ab-
normal conditions with the parameters β1, β2, and β3 properly. Therefore, synthetic
abnormal-condition data are simulated with the parameters α1, α2, and α3 in the follow-
ing. When an abnormal condition is simulated with one of these parameters, the other
parameters are sampled from the normal-condition distribution.

4.2.1. Learning Curves of Diagnostic Systems Created with the Model-Based Data
Augmentation and State-of-the-Art Diagnostic Systems

In the first step of the analysis, the MLPs of the diagnostic systems have l = 5 layers,
and each hidden layer has n = 200 neurons. Figure 15 shows the learning curves of the
state-of-the-art diagnostic systems. The diagnostic systems Res and KD have a constant
accuracy (96.6% and 95.0%), as abnormal-condition measurements are not required to create
these systems. The accuracy of the MLP-based diagnostic systems MLP-Std and GAN-AC
is greater than the Res and KD diagnostic systems when only three and four abnormal-
condition measurements are in the training data. The GAN-NC-AC diagnostic systems are
inferior to the MLP-Std and GAN-AC diagnostic systems. The GAN-AC diagnostic systems
are superior to the MLP-Std systems for <25 abnormal-condition measurements in the
training data. The MLP-Std and GAN-AC systems converge for a similar accuracy.

1 

 

 

 

 

           

Figure 15. Learning curves of the state-of-the-art diagnostic systems [30].

Figure 16 shows the learning curves of the diagnostic systems created with the model-
based data augmentation using the approaches presented in Section 2.2 and the learning
curve of the state-of-the-art diagnostic systems. The state-of-the-art diagnostic systems are
represented by the maximal envelope curve of the diagnostic systems from Figure 15 (SoA
systems). For the analysis, cDA is set to cDA = 0.5.
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The results show that the MDA-NC-AC and MDA-FE diagnostic systems are inferior to
the MDA-FT, MDA-AC, and SoA Systems as they have a smaller accuracy for the considered
numbers of abnormal-condition measurements. The MDA-FT and MDA-AC diagnostic
systems achieve higher diagnostic accuracies than the SoA Systems. The MDA-AC diag-
nostic systems improve the accuracy, especially for small numbers of abnormal-condition
measurements in the training data. The MDA-FT diagnostic systems have, for ≤8 abnormal-
condition measurements in the training data, worse accuracy than the MDA-AC diagnostic
systems. For >8 abnormal-condition measurements in the training data, the accuracy of
the MDA-FT diagnostic systems is, on average, 0.06% greater than the accuracy of the
MDA-AC systems.

The results indicate that the model-based data augmentation improves the accuracy
of diagnostic systems compared with state-of-the-art diagnostic systems when MDA-FT or
MDA-AC systems are used. These diagnostic systems are further analyzed.

4.2.2. Influence of the Number of Layers on Accuracy

In this section, it is analyzed how diagnostic systems utilizing the model-based data
augmentation perform compared with state-of-the-art systems for variating numbers of
layers. A similar analysis as in Section 4.2.1 is conducted, but the MDA-FT, MDA-AC,
and state-of-the-art diagnostic systems are trained with a number of layers variated from
l = 3 layers to l = 7 layers in steps of 1. The number of neurons per hidden layer is hl = 200.

Figure 17 shows the difference in accuracy between MDA-FT and MDA-AC diagnostic
systems and SoA Systems with the corresponding number of layers as a function of the
number of abnormal-condition measurements in the training data and the number of layers.
Table 2 lists the averaged accuracy difference between the listed diagnostic systems and
the SoA Systems for the analyzed number of layers. The results show that the MDA-AC
and MDA-FT diagnostic systems achieve greater accuracy than the SoA Systems for all
analyzed number of layers, except the MDA-FT system with l = 6 layers. The accuracy
of the MDA-FT system with l = 6 layers for <17 abnormal-condition measurements in
the training data is 0.36% smaller on average than the accuracy of the SoA Systems. For
≥17 abnormal-condition measurements in the training data, the MDA-FT system with
l = 6 layers improves the diagnostic performance by 0.11% on average. The accuracy of
the MDA-AC diagnostic systems is, especially for ≤14 abnormal-condition measurements
in the training data, larger than the SoA Systems, on average 0.61%. For >14 abnormal-
condition measurements in the training data, the accuracy difference compared to the SoA
Systems is 0.10% on average. The MDA-FT diagnostic systems outperform the MDA-AC
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diagnostic systems for >14 abnormal-condition measurements with an accuracy difference
compared to the SoA Systems of 0.11%.

Energies 2021, 14, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 17. Differences in accuracy between the MDA-FT, MDA-AC, and the SoA Systems. 

Table 2. Averaged difference in accuracy between the MDA-FT, MDA-AC, and the SoA Systems. 

 Averaged Accuracy Difference in % 

Diagnostic System l = 3 l = 4 l = 5 l = 6 l = 7 

MDA-FT 0.15 0.14 0.19 −0.02 0.11 

MDA-AC 0.12 0.14 0.17 0.17 0.17 

4.2.3. Influence of the Number of Neurons per Hidden Layer on the Accuracy 

In this section, it is analyzed how the diagnostic systems utilizing the model-based 

data augmentation perform compared with the state-of-the-art systems for variating the 

numbers of neurons per hidden layer. A similar analysis as in Section 4.2.1 is conducted, 

but the MDA-FT, MDA-AC, and state-of-the-art diagnostic systems are trained with a 

number of neurons per hidden layer varied from n = 50 neurons to n = 300 neurons in 

steps of 25. The number of layers is l = 5. 

Figure 18 shows the difference in accuracy between MDA-FT, MDA-AC diagnostic 

systems, and SoA Systems with the corresponding number of neurons per hidden layer as 

a function of the number of abnormal-condition measurements in the training data and 

the number of neurons per hidden layer. Table 3 lists the averaged accuracy difference 

between the listed diagnostic systems and the SoA Systems for the analyzed number of 

neurons per hidden layer. The accuracy of the MDA-AC and MDA-FT diagnostic systems 

are 0.15% and 0.13% higher on average than the SoA Systems, respectively. Only the MDA-

FT diagnostic systems with n = 250 neurons result in a smaller averaged accuracy than the 

SoA Systems with a difference of −0.01%. For <17 abnormal-condition measurements in the 

training data, the MDA-AC diagnostic systems are superior to the MDA-FT diagnostic 

systems. The difference in accuracy to the SoA Systems is 0.21% for MDA-FT and 0.56% for 

the MDA-AC diagnostic systems for < 17 abnormal-condition measurements in the train-

ing data. For ≥ 17 normal-condition measurements in the training data, no clear statement 

can be made as to which of the systems, MDA-FT or MDA-AC, is better, as it depends on 

the number of neurons per hidden layer. The MDA-AC diagnostic systems have a 0.09% 

Figure 17. Differences in accuracy between the MDA-FT, MDA-AC, and the SoA Systems.

Table 2. Averaged difference in accuracy between the MDA-FT, MDA-AC, and the SoA Systems.

Averaged Accuracy Difference in %

Diagnostic System l = 3 l = 4 l = 5 l = 6 l = 7

MDA-FT 0.15 0.14 0.19 −0.02 0.11
MDA-AC 0.12 0.14 0.17 0.17 0.17

The results show that the model-based data augmentation combined with MDA-FT
and MDA-AC generally improves the accuracy compared to state-of-the-art diagnostic
systems for the analyzed number of layers. An improvement of 0.61% results in 53 less
misclassifications per year per equipment for hourly measurements. Thus the improvement
has a great impact on number of triggered equipment inspections of the equipment owner.

4.2.3. Influence of the Number of Neurons Per Hidden Layer on the Accuracy

In this section, it is analyzed how the diagnostic systems utilizing the model-based
data augmentation perform compared with the state-of-the-art systems for variating the
numbers of neurons per hidden layer. A similar analysis as in Section 4.2.1 is conducted,
but the MDA-FT, MDA-AC, and state-of-the-art diagnostic systems are trained with a
number of neurons per hidden layer varied from n = 50 neurons to n = 300 neurons in steps
of 25. The number of layers is l = 5.

Figure 18 shows the difference in accuracy between MDA-FT, MDA-AC diagnostic
systems, and SoA Systems with the corresponding number of neurons per hidden layer as a
function of the number of abnormal-condition measurements in the training data and the
number of neurons per hidden layer. Table 3 lists the averaged accuracy difference between
the listed diagnostic systems and the SoA Systems for the analyzed number of neurons per
hidden layer. The accuracy of the MDA-AC and MDA-FT diagnostic systems are 0.15% and
0.13% higher on average than the SoA Systems, respectively. Only the MDA-FT diagnostic
systems with n = 250 neurons result in a smaller averaged accuracy than the SoA Systems
with a difference of −0.01%. For <17 abnormal-condition measurements in the training
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data, the MDA-AC diagnostic systems are superior to the MDA-FT diagnostic systems. The
difference in accuracy to the SoA Systems is 0.21% for MDA-FT and 0.56% for the MDA-AC
diagnostic systems for <17 abnormal-condition measurements in the training data. For
≥17 normal-condition measurements in the training data, no clear statement can be made
as to which of the systems, MDA-FT or MDA-AC, is better, as it depends on the number of
neurons per hidden layer. The MDA-AC diagnostic systems have a 0.09% and the MDA-FT
diagnostic systems have a 0.1% higher accuracy than the SoA Systems averaged over all
numbers of neurons per hidden layer.
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Table 3. Averaged difference in accuracy between the MDA-FT, MDA-AC, and the SoA Systems.

Averaged Accuracy Difference in %

Diagnostic
System n = 50 n = 75 n = 100 n = 125 n = 150 n = 175 n = 200 n = 225 n = 250 n = 275 n = 300

MDA-FT 0.2 0.25 0.12 0 0.14 0.1 0.19 0.13 −0.01 0.05 0.13
MDA-AC 0.07 0.13 0.16 0.18 0.17 0.17 0.17 0.16 0.14 0.17 0.16

The results show that the model-based data augmentation combined with MDA-FT
and MDA-AC generally improves the accuracy compared to state-of-the-art diagnostic
systems for the analyzed number of neurons per hidden layer.

5. Conclusions

Within this paper, we proposed a new model-based data augmentation method to
improve the performance of ML-based diagnostic systems by including synthetic data in
the training process. The synthetic data are generated utilizing an electromechanical model
and a parameter value sampling. Such data are then compared with measurements. The
results show that the model-based data augmentation is capable of generating realistic
synthetic normal- and abnormal-condition data. Two approaches on how to include these
synthetic data into the training process are proposed: augmenting the training data and
generating a source domain for transfer learning. Each approach has two types of execution.
Diagnostic systems utilizing the model-based data augmentation are trained and compared
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with state-of-the-art diagnostic systems. The latter includes a model-based diagnostic
system, a diagnostic system based on kernel density estimation, an MLP classifier, and an
MLP classifier combined with state-of-the-art data augmentation. Including the model-
based data augmentation into the training process of ML-based diagnostic systems results
in increased accuracy for the MDA-AC and MDA-FT diagnostic systems compared with
state-of-the-art diagnostic systems for the analyzed diagnostic task. This holds especially
true for the MDA-AC diagnostic systems only if a small number of abnormal-condition
measurements are available for the training—this is often the case for power engineering
use cases. The average accuracy improvement for <13 abnormal-condition measurements
in the training data is 0.68% compared with state-of-the-art diagnostic systems. This
corresponds to a reduction of 60 misclassifications per year for hourly measurements of
one piece of equipment. For ≥60 abnormal conditions in the training data, the increase
in accuracy is smaller. The increase in accuracy compared with state-of-the-art diagnostic
systems is, on average, 0.13% for MDA-FT and 0.09% for MDA-AC diagnostic systems.
The MDA-AC diagnostic systems should be used only if very few abnormal-condition
measurements are available for the training and MDA-FT systems when more abnormal-
condition measurements are available for training.

In this paper, the model-based data augmentation is verified for one diagnostic task.
The model-based data augmentation should be tested for other diagnostic tasks to identify
possible limits.
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