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Abstract: Photovoltaic (PV) systems have become one of the most promising alternative energy
sources, as they transform the sun’s energy into electricity. This can frequently be achieved without
causing any potential harm to the environment. Although their usage in residential places and
building sectors has notably increased, PV systems are regarded as unpredictable, changeable, and
irregular power sources. This is because, in line with the system’s geographic region, the power
output depends to a certain extent on the atmospheric environment, which can vary drastically.
Therefore, artificial intelligence (AI)-based approaches are extensively employed to examine the
effects of climate change on solar power. Then, the most optimal AI algorithm is used to predict
the generated power. In this study, we used machine learning (ML)-based algorithms to predict
the generated power of a PV system for residential buildings. Using a PV system, Pyranometers,
and weather station data amassed from a station at King Khalid University, Abha (Saudi Arabia)
with a residential setting, we conducted several experiments to evaluate the predictability of various
well-known ML algorithms from the generated power. A backward feature-elimination technique
was applied to find the most relevant set of features. Among all the ML prediction models used
in the work, the deep-learning-based model provided the minimum errors with the minimum set
of features (approximately seven features). When the feature set is greater than ten features, the
polynomial regression model shows the best prediction, with minimal errors. Comparing all the
prediction models, the highest errors were associated with the linear regression model. In general,
it was observed that with a small number of features, the prediction models could minimize the
generated power prediction’s mean squared error value to approximately 0.15.

Keywords: solar photovoltaic; power prediction; residential load; environmental parameters; ma-
chine learning models; ensemble models; artificial neural networks; correlation; backward
feature elimination

1. Introduction

The building sector consumes about one-fifth of the total energy worldwide. The world
energy demand for buildings is projected to increase from 81 quadrillion Btu in 2010 to
approximately 131 quadrillion Btu by 2040 [1–3]. Buildings in the United States (US),
including commercial and residential, accounted for about 28% of total US end-use energy
consumption in 2019 [4]. Fossil fuels, the primary energy source, accounted for about
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80% of US energy production in the last decade [5]. The combustion of fossil fuels to
generate electricity was reported to be the largest single source of carbon dioxide (CO2)
emissions in the US in 2013. It has accounted for about 37% of total CO2 emissions and
31% of total greenhouse gas emissions in the country [6]. Renewable energy sources are
one of the critical sources of reductions in CO2 emissions. The 2030 challenge requires
the global architecture and building communities to design carbon-neutral buildings
by 2030 [7]. Moreover, in Saudi Arabia, within five years (2011–2016), the electricity
consumption increased from 219.66 terawatts to 287.44 terawatts, i.e., 30% [2,3,8]. In the
field of renewable energy technologies, photovoltaic (PV) devices have been extensively
adopted in the last decade. The global installed PV capacity increased from 1 gigawatt (GW)
in 2000 to 177 GW in 2014, and reached about 633 GW in 2019 [8]. In the US, the installed
PV capacity increased from around 2 GW in 2010 to over 88 GW in 2020 [9]. The US market
continued this rapid expansion in 2014, with an estimated 6.2 GW added to the grid, raising
the total capacity to approximately 19 GW [5]. The demand for PV technology is anticipated
to grow over the next few years. A number of countries have set a percentage target for
a renewable energy source of the total electricity supply at the national or state levels.
In 2015, 38 out of 50 states in the US introduced renewable portfolio standards (RPSs),
which require electric utility and other retail electric providers to supply a predetermined
minimum percentage of customer demand with eligible renewable electricity sources,
thereby creating specific standards for solar energy [10].

In Saudi Arabia, several programs focus on increasing the use of renewable energy.
In its National Transformation Program, Saudi Arabia recently set an ambitious target to
migrate from oil dependency and divert oil and gas exploration to various higher-value
uses [11,12]. As part of its Vision 2030, the country is required to produce 40% of its energy
from renewable sources [13]. Due to the availability of solar radiation throughout the year,
Saudi Arabia is one of the prime locations for harnessing solar energy [14]. The accuracy
of predicting the amount of energy produced by the solar PV system is imperative for
appraising the capacity of the PV system, calculating incentives, and obtaining a more
accurate forecasting of the investment’s feasibility. Several studies in the literature have
suggested simulation, modeling, and prediction-based methods for estimating the amount
of energy produced by PV systems [15–19].

In this paper, the power generation data were extracted from the polycrystalline PV
system at King Khalid University (KKU) in Abha city (one of the coldest cities in Saudi
Arabia, with heavy rains and fog). They are correlated with the solar irradiance and other
parameters, measured for the same period by the weather station, to develop a model
using artificial intelligence (AI) techniques, namely, least absolute shrinkage and selection
operator (LASSO), random forest (RF), linear regression (LR), polynomial regression (PR),
extreme gradient boosting (XGBoost), support vector machine (SVM), and deep learning
(DL), to predict the amount of energy produced by the PV system. The contribution of this
work was to study the most compelling features that can be used to predict the solar panel’s
generated power for the building sector using the backward feature elimination method,
which shows an accurate prediction of power with fewer features. The method of backward
feature elimination helps to indicate that fewer features can achieve similar results.

2. Literature Review

Numerous studies have developed different forecasting models to estimate the energy
output of renewable energy systems. The studies, however, differ with regard to the crucial
variables that are to be predicted. Brahimi [20], proposed an artificial neural network
(ANN)-based method to forecast the daily wind speed in a number of locations in Saudi
Arabia. The weather data were collected from multiple local meteorological measurement
stations operated by King Abdullah City for Atomic and Renewable Energy (K.A.CARE.).
For this research work, five machine learning (ML) algorithms were developed and com-
pared with each other, including ANN, SVM, random tree, RF, and RepTree. The proposed
model was a feed-forward neural network (NN) model that applied a back-propagation



Energies 2021, 14, 6759 3 of 18

algorithm with the administered learning technique. The similarity between predicted and
actual data from meteorological stations exhibited a reasonably satisfactory agreement [20].
A study [4] analyzed various ML methods to predict the output power for uniform solar
panels. The researchers used a distributed RF regression algorithm and independent vari-
ables, namely, the latitude, wind speed, month, time, cloud ceiling, ambient temperature,
pressure and humidity. Another study [6] predicted the short-term, next-day global hori-
zontal irradiance using the earlier day’s meteorological and solar radiation observations.
The models used for this investigation were based on computational intelligence methods
of automated-design fuzzy logic systems. Fuzzy c-means clustering (FCM) and simulated
annealing (SA) algorithms were utilized in fuzzy logic systems for optimization. The
FCM model achieved 79.75% accuracy, and the agreement increased to 88.22% upon using
the SA model. A research work conducted by [21] used ANNs to investigate the corre-
lation between irradiance and PV output power. The model was designed for real-time
prediction of the power produced the next day. The PV power output data used for the
AI model were extracted from an installed PV system. The research findings revealed
that ML algorithms exhibit a marked capacity for predicting power production based
on various weather conditions and measures. The model helps in the management of
energy flows and the optimization of PV plants’ integration into power systems. In another
study [22], different NN-based techniques were compared with the results procured by
the simulation of a moderate manufacturing plant in the UK to forecast energy use and
workshop conditions for manufacturing facilities based on output plans, environmental
conditions, and the thermal characteristics of the factory building, along with building
activity and usage, by comparing two deep neural networks (DNNs), namely feed-forward
and recurrent. The recurrent (feed-forward) model can forecast building electricity with a
precision of 96.82% (92.4%), workshop air temperatures with a precision of 99.40% (99.5%),
and humidity with a precision of 57.60% (64.8%). Coupling modeling techniques with
ML algorithms makes it possible to forecast and maximize energy consumption in the
industrial industry using a low-cost, non-intrusive approach. Kharlova et al. [23] discussed
the end-to-end forecasting of PV power output by introducing a monitored deep learning
model. The suggested framework leverages numerical estimates of the weather’s historical
and high-resolution calculations to predict a binned probability distribution, rather than the
prognostic variable’s predicted values, over the prognostic time intervals. The suggested
sequence-to-sequence model with focus achieved a 48.1% accuracy by root mean square
error (RMSE) score on the test range, outperforming the best previously reported ability
scores for a day-ahead forecast of 42.5–46.0% by a large margin [24,25]. Rajabalizadeh’s
study took a PV housing unit in Swanson, New Zealand. The copula method was used to
model the stochastic association structure between meteorological variables, such as air
temperature, wind speed, and solar radiation. The Clayton copula method was used to
estimate a small-scale PV system’s output power. The prediction error was crucial and,
under all weather situations, copula increased forecasting results. The approach discussed
in this report is expected to be sufficient for the control of energy in a smart home. As the
model is easy to operate and precise, it will be accessible to residences [26]. The solar PV
system was installed on the roof of the Faculty of Electrical engineering, Universiti Tun
Hussein Onn Malaysia. The maximal PV output capacity on the roof will then be predicted
by using the estimation process and the ANN. The experimental results have validated
that ANN is capable of estimating PV performance similar to the approximation pro-
cess [27]. In this research work, a microgrid residential model was developed in San Diego,
California, in 2016. To verify the model precision, the solar irradiance and solar energy
generated in the residential microgrid, those expected for 2017, were used in NN-based
model. The two metrics used to calculate and compare the model’s precision were mean
absolute percentage error (MAPE) and mean squared error (MSE). The NN-based model
was observed to be effective [28]. Another research work conducted by [10] developed
an AI model that improved an ANN with tapped delay lines, built for one-day-ahead
forecasting. The model achieved a seasonal mean absolute error that ranged between 12.2%
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and 26.0% in different seasons around the year. The inputs of the model were the irradia-
tion and the sampling hours. Monteiro et al. [29] developed models that could predict PV
power using numerically predicted weather data and previous hourly values for PV electric
power productions. The developed models, the analytical PV power forecasting model
and multilayer perceptron PV forecasting model, achieved an RMSE between 11.95% and
12.10%. Wei [30] investigated the southern climate of Taiwan in 2016 to predict the power
generation for the building roofs. This study was divided into three phases; the first phase
used BP3 solar panels installed on the rooftops of buildings. The most effective model with
regard to results is BP380(183.5 KWh/m2-y), BP3125(182.2 KWh/m2-y) with the perfor-
mance of power conversion is 12.4%, 12.3%, respectively. In the second phase, a surface
solar radiation measurement analysis was conducted to simulate meteorological instability
during hourly PV generation; the results obtained by a DNN method are compared with
backpropagation NN (BPN) and an LR model. In the third phase, a BP3125 panel was
used for both the second and third phases, and DNN attained the minimum MAEs and
RMSEs among the three models at lead times of 1 h, 3 h, 6 h, and 12 h, demonstrating its
adequate predictive precision. The approach was validated as sufficient for evaluating the
power-generation performance of a roof PV system. According to this paper, a centralized
grid unit is constructed to which PV panels are installed on rooftops with an energy storage
system, i.e., battery, under the power purchase agreement (PPA) scheme. The system’s
economic stability relies solely on the quality of the data. Therefore, AI techniques can
be used to adequately forecast and control grid load in real-time via PV. This is beneficial
for almost all the players concerned, i.e., the solar lease firm, the grid provider, and the
end-users [31].

It has been asserted in the extant literature that the models that use numerically
predicted weather data do not consider the effect of cloud cover and cloud formation when
initializing [32]. Pelland et al. [33] used sky imaging and satellite data to predict the PV
energy output. Another study [34] developed a model that predicts the global horizontal
radiation for the next day in several weather stations in Saudi Arabia. Although these
systems are primarily run and have proven remarkably helpful, they are referred to as
unpredictable, uncontrollable, and non-scheduled power source systems. This is because,
in line with the system’s geographic region, a certain kind of power output is contingent
on the atmospheric environment.

3. Experimental Settings
3.1. Site and Instruments

This study was conducted at KKU, located in Abha, Asir, Saudi Arabia. Saudi Arabia
is part of the northern hemisphere, centered in West Asia. The country is divided into
13 administrative regions. Abha is the capital of the Asir region, situated 2200 m above
sea level in the southwestern part of Saudi Arabia. Its coordinates are 18°13′14.40′′ N and
42°30′15.59′′ E. The solar PV system was installed on a south-facing rooftop at a tilt angle
of 22° with the parking lots of the KKU campus, as shown in Figures 1 and 2. For research
purposes, it was installed in November 2018 in the College of Engineering, far away from
the harsh weather conditions of the marine environment. The selected parameters for the
tilt and azimuth angle for the system are shown in Table 1. The parameters were selected
in accordance with the actual values of the existing system.

Table 1. Orientation Parameters Selected In the PV System.

Tilt angle 22°

Azimuth angle −21°

Field type Fixed tilted plane
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Figure 1. Geographical Location of Abha.

Figure 2. The Installed solar PV system at KKU.

As presented in Table 2, the solar PV system comprises 20 modules of type KS-240PC
with one TRIO-5.8-TL-OUTD-400 inverter of 5.8 kW rating. The 20 modules are distributed
in a total area of 33.2 m2 over one string of the maximum power point tracker (MPPT) for
maximum installation flexibility for optimal energy production. This inverter includes
two MPPTs and integrates power control, monitoring functionalities, and environmental
sensor inputs without the need for any external components. The total installed PV power
is 4.80 kWp. The PV array parameters considered here have the following manufacturer
parameters. The inverter’s nominal ac power is 5.22 kW and the maximum ac power is
5.8 kVA, as the name indicates. The maximum efficiency is 98% at a voltage level of 175 V.
The maximum efficiency is set as 97.5% according to the European efficiency, the average
operating efficiency over a yearly power distribution corresponding to the middle-Europe
climate. The inverter has two MPPT inputs, which make it possible to connect strings with
different panels to one inverter. The nominal power of the two strings connected to the
inverter is 4.6 kW ac, which fits well with the inverter’s nominal power.
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Table 2. PV Array Parameters and Characteristics.

Mechanical Characteristics

Model KS-240PC

Solar cells Polycrystalline silicon
156 × 156 mm

No. of cells 60 (6 × 10)

Dimensions 1663 mm × 998 mm × 35 mm

Weight 23.5 kg

Front glass 4.0 mm tempered glass

Frame Anodized aluminum alloy

Cell area 2.9 m2

PV module Electrical Characteristics (STC)
STC: Standard test condition; 1000 W/m2, 25 °C, AM 1.5

Optimum operating voltage (Vmp) (V) 30.12

Optimum operating current (Imp) (A) 8.21

Open circuit voltage (Voc) (V) 37.94

Short circuit current (Isc) A) 8.69

Maximum power @ STC (Pmax) (W) 240 W

Module efficiency 14.8%

Operating module temperature −40 °C to +85 °C

Maximum system voltage 1000 V DC (IEC)/600 V
DC (UL)

Maximum series fuse rating 20 A

Power tolerance 0/+5%

Temperature Characteristics
NOCT: Nominal operating cell temperature, Irradiance level 800 W/m2,

Spectrum AM 1.5, Wind velocity 1 m/s, Ambient temperature 20 °C

Nominal operating cell temperature
(NOCT) 45 °C ± 2 °C

Temperature coefficient of Pmax −0.44%/°C

Temperature coefficient of Voc −0.33%/°C

Temperature coefficient of Isc −0.055%/°C

Radiation measurements were performed by a Pyranometer (Py), as shown in Figure 3).
This is a solar irradiance sensor designed to measure the global solar irradiances, which is the
amount of solar energy per unit area per unit time incident on a specific orientation surface
emanating from a hemispherical field of view.The global solar irradiance includes both direct
and diffuse sunlight, and, in some cases, specular reflections of sunlight. Nothwithstanding
this, the weather station mentioned in Section 3.2 includes a built-in Py. We observed the
SR20-T2 Py to be more precise than the weather station built-in Py, where we validated our
reading via the PVsyst software [35]. The Py’s specifications are summarized in Table 3.
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Table 3. SR20-T2 Py Specifications.

Spectral range (20% points) 285 to 3000 10−9 m

Calibration uncertainty <1.2% (k = 2)

Rated operating
temperature range −40 to +80 °C

Sensitivity 7 to 25 10−6 V/(W/m2)

Impedance 20 to 200

Maximum operational
irradiance 2000 W/m2

Response time (95%) 4.5 s

Temperature response <±1% (−10 to +40 °C) and <±0.4% (−30
to +50 °C) with correction in data processing

Figure 3. SR20-T2 Py.

3.2. Weather Station

Figure 4 shows the weather station used in this study, Davis Vantage Pro2, made in
the USA. It continuously collects and transmits weather data. It is equipped with several
sensors for different parameters such as temperature, pressure, rainfall, solar radiation.
The weather station was assembled with the console and the sensor suit. This console
and the sensor unit are dual-powered, and have an inbuilt battery and AC-power supply
connected as a backup. The sensor suite is succinctly described in Table 4, and the console
equipment that displays the pertinent data is presented in Table 5. The maximum capacity
of the anemometer is 322 kph (wind speed). This makes the weather station more durable
and sensitive to the lightest breeze. The weather station was installed on the rooftop
of KKU.

Figure 4. Rooftop Weather Station.
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Table 4. The Sensor Suite Consistency.

SI No. Parameter Type of Sensor Used

1 Temperature sensor PN junction silicon
diode

2 Wind speed sensor Solid state magnetic
sensor

3 Wind direction sensor Wind vane with
potentiometer

4 Rain collector

Tipping spoon type of
Tipping bucket, 0.01′′

per tip (0.2 mm with
metric rain adapter)

5 Relative humidity sensor Film capacitor element

6 Housing material UV-resistance, ABS,
Polypropylene

Table 5. Console Output.

Sl No. Parameter Resolution Range Accuracy

1 Barometric
pressure

0.01′′ Hg, 0.1 mm Hg,
0.1 hPa/mb

16.00′′ to 32.50′′ Hg,
410 to 820 mm Hg,
540 to 1100 hPa/mb

±0.03′′ Hg (±0.8 mm Hg,
±1.0 hPa/mb)
(at room temperature)

2 Clock 1 min 12 or 24 h format ±8 s/month

3 Dew point
1 °F or 1 °C. °C is converted
from °F rounded to the
nearest 1 °C

−105° to +130 °F
(−76° to +54 °C) ±3 °F (±1.5 °C) (typical)

4 Evapotranspiration 0.01′′ or 0.1 mm

Daily to 32.67′′

(832.1 mm);
Monthly Yearly to
199.99′′ (1999.9 mm)

Greater of 0.01′′ (0.25 mm) or
±5%

5 Forecast

Barometric Reading
Trend, Wind Speed
Direction, Rainfall,
Temperature, Humidity,
Latitude Longitude, Time
of Year

—– ——–

6 Heat Index
1 °F or 1 °C. °C is converted
from °F rounded to
the nearest 1 °C

−40° to +165 °F
(−40° to +74 °C) ±3 °F (±1.5 °C) (typical)

7 Humidity 1% 1 to 100% RH ±3% (0 to 90% RH),
±4% (90 to 100% RH)

8 Moon phase
1/8 (12.5%) of a lunar
cycle, 1/4 (25%) of lighted
face on console

New moon,
Waxing crescent,
First quarter,
Waxing gibbous,
Full moon,
Waning gibbous,
Last quarter,
Waning crescent

±38 min
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Table 5. Cont.

Sl No. Parameter Resolution Range Accuracy

9 Rainfall 0.01′′ or 0.2 mm (1 mm at
totals ≥2000 mm)

0 to 199.99′′ (0 to
6553 mm)

For rain rates up to 2/h
(50 mm/h): ±4% of total

or +0.01′′ (0.2 mm) (0.01′′ = one
tip of the bucket),
whichever is greater.
For rain rates from 2/h
(50 mm/h) to 4/h (100 mm/h):
±4% of total or +0.01′′ (0.25 mm)
(0.01′′ = one tip of the bucket),
whichever is greater

10 Rain rate 0.01′′ or 0.1 mm 0, 0.04/h (1 mm/h) to
96/h (0 to 2438 mm/h)

±5% for rates less than 5′′

per hour (127 mm/h)

11 Solar radiation 1 W/m2 0 to 1800 W/m2 ±5% of full scale

12 Sunrise and sunset 1 min Depends ±1 min

13 Temperature

0.1 °F or 1 °F or 0.1 °C or
1 °C (user-selectable) °C
is converted from °F
rounded to the nearest 1 °C

+32° to +140°F
(0° to +60 °C) ±1 °F (±0.5 °C)

14
Temperature
humidity
Sun wind index

0.1 °F or 1 °F or 0.1 °C or
1 °C (user-selectable) °C
is converted from °F
rounded to the nearest 1 °C

−90° to +165 °F
(−68° to +74 °C) ±4 °F (±2 °C) (typical)

15 Ultra violet (UV)
radiation dose

0.1 MEDs to 19.9 MEDs;
1 MED above 19.9 MEDS 0 to 199 MEDs ±5% of daily total

16 UV
radiation index 0.1 Index 0 to 16 Index ±5% of full scale

17 Wind direction
16 points (22.5°) on
compass rose, 1° in
numeric display

0°–360° ±3°

18 Wind speed

1 mph, 1 km/h, 0.4 m/s, or
1 knot (user-selectable).
Measured in mph, other
units are converted from
mph and rounded to the
nearest 1 km/h, 0.1 m/s,
or 1 knot.

1 to 200 mph, 1 to
173 knots, 0.5 to
89 m/s, 1 to 322 km/h

±2 mph (2 kts, 3 km/h, 1 m/s)
or ±5%, whichever is greater

4. Methodology

The methodology that was adopted to build an ideal ML model for Abha’s PV power
prediction involved four general phases: (1) data collection and presentation, (2) data
preparation (to obtain the data in a suitable format for analysis, exploration, and under-
standing the data to identify and extract the features required for the model), (3) feature
selection and model building (to select the appropriate algorithm and prepare a training
and testing dataset), (4) and model evaluation (to observe the final score of the model for
the unseen dataset).

4.1. Data Collection and Presentation

As illustrated in the first part of Figure 5, the power generation data extracted from the
polycrystalline PV systems placed at KKU are associated with four primary data sources



Energies 2021, 14, 6759 10 of 18

measured over the same period of time. Weather station sensors (WS) were located near the
station to measure various parameters, namely ambient temperature (Ta), relative humidity
(RH), wind speed (W), wind direction (WD), solar irradiation (SR), and precipitation (R),
where solar irradiance was found to be more accurate using the Py sensor. The computed
parameters from the WS and Py were also considered. The latter included the solar PV
system inverters (N) and panel sensors (PVSR). The four sources of data were utilized
together to conduct our experiment. However, the collected data were for December 2019
until February 2020, between the autumn and the winter seasons. During this time, data
were acquired and tabulated from sunrise to sunset at an interval of each five minutes
for the parameters of low and high temperatures, average temperature, humidity, wind
speed, and solar radiations. This differentiated cloudy days, clear-sky days, and mix days.
Eventually, about 5000 samples were collected, with different data types such as integer,
float, and object. The generated power statistical summary is presented in Table 6.

Figure 5. Block Diagram of the System.

Table 6. Statistical Summary for The Generated Power (W).

Generated Power Scaled Generated Power

Count 5402 5402

Mean 2336.47108 0

Standard deviation 1569.29464 1

Minimum 0 −1.489

25% 796.435 −0.98145

50% 2460.935 0.07932

75% 3873.59 0.97959

Maximum 5828.5 2.22543

Eventually, the collected dataset represented the sensors readings, assuming
A = {a1, a2, a3, . . . , am} to be the dataset n− by−m matrix, where n = 5402 is the number
of the observations collected from each sensor and the vector ai is the ith observation with
m = 42 attributes, and the generated power p is the target of these features.
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4.2. Data Preparation

In general, data need to be pre-processed so that they have a proper format, and are
free of irregularities such as missing values, outliers, and inaccurate data values. Missing
values are typical in any dataset. They may have occurred during data collection or possibly
due to sensor-connecting issues. However, they must be considered by dropping their
rows, estimating their values or replacing them. In our case, the data had less than 1%
missing values in the total dataset; thus, eliminating these missing values was imperative.
Outliers and noisy data emerge due to data entering/transmission errors. We discovered
one outlier for “PV Energy”, which we handled by smoothing its value.

Data scaling is typically required because many ML algorithms perform more accu-
rately and converge faster when attributes are on a moderately similar scale and close
to normally distributed. In this work, standardization (see Equation (1)) was applied to
rescale data to have a mean µ(A,p) of zero and a standard deviation σ(A,p) of one, where
the scaled p is shown in Table 6.

(a, p)scaled =
((a, p)i − µ(A,p))

σ(A,p)
(1)

4.3. Feature Selection

Feature selection is one of the core concepts in ML and profoundly affects the model’s
performance. Its principal objective is to select the feature set with minimum cardinality
while maximizing the learning performance. We believe that, when predicting generated
power in the PV system, not every feature equally contributes to the prediction performance.
Features can be relevant, partially relevant, or even irrelevant. Feature selection algorithms
aim to assign weight to each feature according to its pertinence. As illustrated in Figure 5,
in this study, we applied two approaches to score each feature, namely, Pearson’s correlation
coefficient [36] (see Equation (2)) and Information Gain [37] (see Equation (3)). The former
measures the amount of correlation between each variable and the target, while the latter
quantifies the amount of information provided to the class by evaluating the impurity level
of each variable using the entropy H(·) with respect to the target.

ra,p =
∑n

i=1(ai − ā)(pi − p̄)√
∑n

i=1(ai − ā)2
√

∑n
i=1(pi − p̄)2

(2)

IG(p, a) = H(p)− ∑
v∈Values(A)

|pv|
|p| H(pv) (3)

The relevant attributes should be sasigned a greater scoring than less relevant at-
tributes. In Equation (2), features were selected by correlating all input sensor parameters
with PV-generated power p. Pearson’s Correlation Coefficient Equation (2) was used to
evaluate the correlation between the sensor parameters and PV-generated power, where
n is the observation size, ai and pi are the single observation points indexed with i, and ā
is the observation mean. A positive and negative correlation score would suggest higher
prediction accuracy because an increase in one value of the attribute increases/decreases
the generated power value. Meanwhile, zero correlation coefficient indicates no relation.
Nevertheless, Figure 6 indicates the amount of correlation of each attribute with the gener-
ated power. The Solar Average has the most crucial positive correlation (+ve) with 88%,
although the Out Humidity has the most significant negative correlation (−ve) with about
−42%. Meanwhile, the rain rate, rain and arc exhibited zero correlation. Furthermore,
profound/redundant features that are directly affected by the generated power have been
dropped, such as Voltage, Current, PV Energy, and Solar Energy, where the number of
attributes were reduced to m = 38.
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Figure 6. Correlation Plots.

To evaluate the similarity between two ranked sets of features r represented by ra,p and
r̄ represented by IG(p, a)), Spearman’s rank correlation coefficient [38] (see Equation (4))
was used to assess the significance of the relationship between them.

SR(r, r̄) = 1− 6 ∑
i

(ri − r̄i)
2

m(m2 − 1)
(4)

Spearman’s rank correlation coefficient resulted in a range of [−1,1]. The maximum
value was reached when the two ranks were equivalent, while the minimum was reached
when they were precisely in reverse order and zero meaned no correlation between r and r̄.
However, after we measured the stability of the two sets of features, we observed them to
be stable with the value 0.96. In Figure 7, we show the comparison of two ranked feature
lists, where the x-axis and the y-axis represent the Pearson’s correlation coefficient and
information gain for features, respectively. Moreover, the linear line shows the stability
between them.

Backward elimination was applied after Pearson’s correlation coefficient was calcu-
lated, which selected the most appropriate attributes. We started with a complete set of
attributes and then recursively removed one attribute after each iteration. The eliminated
attribute is the attribute with the lowest absolute correlation coefficient |ra,p|. At each itera-
tion, we evaluated the loss using the remaining set of features. The backward elimination
criterion was applied from the lowest correlated attribute to the highest, one until only one
attribute remained.
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Figure 7. Spearman’s Rank Correlation Coefficient.

4.4. Model Selection and Evaluation

The selection of appropriate ML algorithms to predict the amount of power generated
p̂ based on the sensors’ readings was challenging, because each ML model performs
differently on the same dataset according to the model’s nature. A number of ML models
need to be trained and tested to select the optimal or superior one. Nonetheless, prior to
the training, the dataset needs to be divided into a training set, to build up a model by
extracting the features and train them to fit the model, and a testing set, to validate the
built model by predicting the outcome of the unseen data. There are numerous methods of
splitting the dataset, such as hold-out and cross-validation. As illustrated in the first part
of Figure 5, in this experiment, we used k-fold cross-validation with k = 10. It is known
for its ability to reduce overfitting while improving generalizability power. Moreover,
cross-validation is known to have a better bias-variance trade-off. Therefore, the models
are expected to perform equally well for the unseen data and the training data.

Many classical and modern regression and prediction models were examined in this
study to estimate the generated power from the PV system. These include LASSO, RF, LR,
PR, XGBoost, SVM, and DL.

The LR model [39] (see Equation (5)) is one of the simplest ML models used to find a
linear relationship between the generated power p and the input parameters A. Taking y as
the response value that lies in the best-fit regression plane, the intercept b in Equation (6) is
the reference position of the plane, and xm is the m predictor variable from the most effective
attributes. w1, . . . , wm in Equation (7) are the parameters of slope coefficients. The response
variable is the generated power p, and the predictor variables are selected from the most
effective attributes A variables. Nevertheless, Equation (5) can present all the datapoints
as a matrix (see (8)). Next, PR [40] (see Equation (9)) is a well-known algorithm, applied
when the data are correlated, but the relationships are non-linear. This is a particular case
of LR because we created polynomial attributes to fit the polynomial equation, where
the dth power is the PR degree. LASSO [41] is also a type of LR model trained with an
L1 regularizer in the loss function J(w)L1 = 1

n ∑n
i=1( fw(x)i − yi) + λ ∑n

j=1
∣∣wj
∣∣, to reduce

overfitting, which applies shrinkage. Shrinkage is where data values are shrunk toward a
central point, where λ denotes the amount of shrinkage. However, it is well-suited for data
that show high multi-collinearity levels and fewer parameters.

y← fw(x) = bn + w1x1 + . . . + wmxm (5)
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bn =
(∑n

i=1 yi)(∑n
i=1 x2

i )− (∑n
i=1 xi)(∑n

i=1 xiyi)

n(∑n
i=1 x2

i )− (∑n
i=1 xi)2

(6)

wm =
n(∑m

i=1 xiyi)(∑m
i=1 x2

i )− (∑m
i=1 xi)(∑m

i=1 yi)

n(∑m
i=1 x2

i )− (∑m
i=1 xi)2

(7)


y1
y2
...

yn

 =


b1
b2
...

bn

+


w1
w2
...

wm

(x1 x2 · · · xm
)

(8)

y = b + w1x1 + w2x2
1 + . . . + wdxd

1 (9)

An RF [42] is an ensemble of randomized regression trees that combine predictions
from multiple ML algorithms to make more accurate predictions and control overfitting.
XGBoost [43] has evolved as one of the most famous ML algorithms in recent years. It
relates to a family of boosting algorithms named the gradient boosting decision tree (GBDT),
a sequential technique that operates on the principle of an ensemble as it combines a set
of weak learners and delivers an increased prediction accuracy. The most prominent
difference between XGBoost and GBDT is that the former uses advanced regularization,
such as L1 (LASSO) and L2 (Ridge), which is faster and has less chance of overfitting.
An SVM [44] (see Equation (10)) performs a non-linear mapping of the training data to a
higher-dimension space over a kernel function φ. It is possible to perform an LR where
the kernel selection defines a more or less efficient model. The radial basis function (RBF)
e−γ‖x−y‖2

, as the kernel function, is used as a mapping function.

fw(x) =
n

∑
i=1

wT
i φ(xi) + b (10)

NNs [45,46] have been extensively applied to solve numerous challenging AI prob-
lems. They surpass the traditional ML models by dint of their non-linearity, variable
synergies, and customizability. The process of building an NN starts with the perceptron.
In simple and straightforward terms, the perceptron receives inputs, multiplies them by
some weights, and then carries them into an activation function such as a rectified linear
unit (ReLU) to generate an output. NNs are designed by adding these perceptron layers
together, in what is known as a multi-layer perceptron model. There are three layers of an
NN: input, hidden, and output. The input layer immediately receives the data, whereas
the output layer produces the required output. The layers in between are called hidden
layers, and are where the intermediate computation takes place.

Model evaluation is a critical ML task. It helps to quantify and validate the model’s
performance, makes it easy to present the model to others, and ultimately selects the most
suitable model. There are various evaluation metrics; however, only a few of these are
applicable to regression. In this work, the most common metric used for regression tasks
(MSE) is applied to compare the models’ results. MSE (see Equation (11)) is the average
of the squared difference between the predicted power p̂ and the actual power p. This
penalizes large errors and is more convenient for optimization, as it is differentiable and
has a convex shape.

MSE =
1
n

n

∑
i=1

( p̂i − pi)
2 (11)

Figure 5 schematically presents the overall AI system and methodology used in
the research and delineates all the steps from data collection until the computation of
predicted power.
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5. Results and Discussion

As noted previously and depicted in Figure 7, the two feature-scoring approaches
generated very similar results. Therefore, the learning performance was almost equiv-
alent using both approaches. We omitted the results of the information gain to reduce
duplication.

The results of the prediction error, illustrated in Figure 8, reveal that all prediction
models behave in a similar manner. The DL-based model gave the minimum error with the
minimum set of features (approximately seven features). The DL error was steady, with
almost over all feature sets’ cardinalities ranging from almost two features up to the full
cardinality. Thus, it can be concluded that, when using only a few features or looking for a
very stable prediction regardless of the features, DL is preferable.

Figure 8. Results attained with various ML techniques.

In contrast, PR’s prediction was the best when the feature set was greater than 10 fea-
tures. This illustrates the advantageous properties of PR in the extraction of marginally
useful knowledge, even from extremely irrelevant features. MSE kept steadily reducing
after adding more features. With regard to MSE, PR is the most optimal choice in this case,
as it had the lowest value.

As expected, LR had the highest error associated, with erros found over various
selected cardinalities. LR is not capable of modeling non-linear relationships. The generated
power is nonlinear in this problem. Thus, LR is not a suitable and adequate fit for the model.

LASSO, XGBOOST, SVM, and RF behaved in a similar manner. RF was the worst in
terms of MSE in the cases with a single feature. This is intuitive, due to the nature of the
algorithm. To build more decision trees, RF requires more features. Thus, one feature was
not sufficient to extract sufficient and relevant knowledge in this case. However, SVM was
extremely steady after selecting 13 features. This is due to the fundamental nature of SVM,
which works by selecting a set of support vectors to maximize the margin. These support
vectors are the same beyond the thirteenth feature. This is another way of indicating the
proper number of selected features.

Figure 9 illustrates the actual active power versus the predicted one from December
2019 to February 2020 using a PR model. Thus, we can observe that the model can reason-
ably predict the generated power. However, there are still obstacles to some predictions,
due to sudden voltage dips in the original dataset. The latter occured because we applied
a transient three-phase voltage dip to gauge the performance of the system under study.
The active power output from the whole PV system before the fault was 4000 W. After
the occurrence of a fault, a transient peak of 5800 W was instantly observed for the active
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power generation. Within a short interval, and according to the Saudi grid code [47],
the transient was cleared. The solar PV system controller action was sustained to cope with
the fault, after which the power oscillations were damped out and the system restored
to its regular operation. Therefore, immediately after the fault was cleared, the solar PV
system entered a voltage regulation mode [48,49], and the active power generated at the
solar PV terminals started to reach the rated values. p output’s mirrored characteristics are
a sign of the controlled converter action, which is only limited by the converter’s nominal
current rating.

Figure 9. Results.

6. Conclusions and Future Work

In this paper, seven well-known machine learning algorithms were successfully ap-
plied to solar PV system data from Abha (Saudi Arabia) to predict the generated power.
The prediction error of the algorithms was relatively low. This indicates that we can
confidently evaluate the feasibility of installing solar PV systems in residential buildings
using only a small set of weather station data. Although the algorithms behaved similarly,
the Deep Learning technique gave the minimum error with the minimum set of selected
features. However, Polynomial Regression produced the best prediction performance when
we incorporated more features.
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