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Abstract: The volatility of renewable energy sources (RES) poses a growing problem for operation
of electricity grids. In contrary, the necessary decarbonisation of sectors such as heat supply and
transport requires a rapid expansion of RES. Load management in the context of power-to-heat
systems can help to simultaneously couple the electricity and heat sectors and stabilise the electricity
grid, thus enabling a higher share of RES. In addition power-to-hydrogen offers the possibility of
long-term energy storage options. Within this work, we present a novel optimization approach for
heat pump operation with the aim to counteract the volatility and enable a higher usage of RES. For
this purpose, a detailed simulation model of buildings and their energy supply systems is created,
calibrated and validated based on a plus energy settlement. Subsequently, the potential of optimized
operation is determined with regard to PV and small wind turbine self-consumption. In addition,
the potential of seasonal hydrogen storage is examined. The results show, that on a daily basis a 33%
reduction of electricity demand from grid is possible. However, the average optimization potential
is reduced significantly by prediction inaccuracy. The addition of a hydrogen system for seasonal
energy storage basically eliminates the carbon dioxide emissions of the cluster. However, this comes
at high carbon dioxide prevention costs of 1.76ekg−1.

Keywords: demand response; demand side management; heat pump optimization; building simula-
tion; HVAC optimization; genetic algorithm; heat pump cluster operation; demand flexibility; small
wind turbine

1. Introduction

In order to counteract climate change, energy supply systems in all relevant sectors
need be decarbonized. The problem thereby is that with regard to the share of RES there is
a clear sector imbalance. In Germany, in 2018, on the electricity demand side, RES had a
share of approximately 40% [1]. In contrary, the share was only 14% on the heat demand
side [2]. To solve this problem sector coupling in the context of power-to-heat can present
an important solution. This is underlined by the fact that it is predicted that heat pumps
will gain more importance within future heat supply systems [3]. Additionally, in the near
future, also hydrogen-based systems (power-to-gas) will play an increasing role for the
decarbonization of heat generation in the building sector, especially for existing buildings,
where heat pumps are not always suitable.

Within this work, based on a real existing plus energy district as case study, a detailed
digital twin of a cluster of 10 residential buildings with decentral heat pumps, thermal
buffer storages and large PV systems is created and validated. The buildings are supplied by
a cold district heating grid that is fed by an agrothermal collector (a large-scale specialized
version of a geothermal collector). In a further step, the system model is supplemented by a
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hydrogen system with a PEM-Electrolyzer, local hydrogen storage and a power-driven fuel
cell, to increase the autarky of the cluster by storing seasonal power surpluses as hydrogen.
Thereby during the heating season, the fuel cell provides additional power for the building
heat pumps, as well as waste heat. Based on this digital twin, an optimized single building
and cluster operation of the buildings heat pumps and the hydrogen system is realized
with the aim to increase PV self-consumption (either through direct usage by heat pumps
or by storage as hydrogen and re-electrification), annual heating energy autarky and to
provide more flexibility to utilize on site generated electricity from small wind turbines.

In this study, first, the state of the art regarding model-based prediction and optimiza-
tion algorithms in the context of HVAC systems is presented. Then a detailed description
of the model calibration methodology that relies on the application of an optimization
algorithm to model parameters in combination with measured data (set point tempera-
tures, air exchange rate etc.) is given. Also prediction inaccuracy due to weather forecast
uncertainties are examined. Additionally the optimal parameters for the genetic algorithm
to produce 24 h schedules for heat pump operation according to predicted weather data
are determined. This ensures a low computational demand and at the same time a high
quality of results. Then based on the calibrated cluster model and the optimal algorithm
parameters, results for different optimization goals are obtained for an entire year. Thereby
a 24 h optimization for each day of the year is carried out based on logged weather pre-
diction data. Those results are then compared to the optimized operation based on the
weather situation that has occurred in reality. The potential of the following optimization
goals is examined:

• Single building: Optimization of PV self-consumption.
• Cluster: Optimization of PV self-consumption.
• Cluster: Optimization of PV and small wind turbine self-consumption.
• Cluster: Autarky and increased carbon dioxide emission saving with the application

of a hydrogen system.

1.1. State of the Art
1.1.1. Building Demand Prediction

Advanced prediction, optimization and control algorithms are essential to realize intel-
ligent load management (demand response) in HVAC and especially in heat pump systems
as well as to enable an improvement in efficiency. Prediction methods can be divided into
three different subcategories: analytical, numerical (e.g., detailed building simulations),
and predictive (self-learning algorithms such as neural networks) [4]. Furthermore, the
modeling approach can be distinguished between so-called White Box, Grey Box, and Black
Box models. White Box and Grey Box models belong to the numerical methods, Black
Box models to the predictive methods. White Box building simulation environments such
as EnergyPlus, TRNSYS and INSEL tend to provide more accurate results because they
combine several domains such as heat demand, internal thermal gains, ventilation [5] and
because they represent buildings in a more physical or geometric detail. The disadvantage
of these models, especially with respect to applications that should run in near real time,
is the higher computational effort, which is usually better with Grey Box and Black Box
models. On the other hand, the parameterization of Grey Box models is error-prone and
Black Box models require a high data quality over longer periods. An overview over the
different methods and their advantages and disadvantages is given in Table 1. Here also a
simplified White Box is listed. This refers (i) to the methodology used in this work, that
consists of single zone building models with a lower level of geometric detail and (ii) to
other more simplified methods.
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Table 1. Comparison of different building demand prediction methods. Own representation based on [6].

Method Required Typical User- Computational Model
Input Data Applications Friendliness Demand Accuracy

White Box Detailed DOE-2, EnergyPlus, Low High High
(Detailed) physical information TRYSYS, ESP-r INSEL

White Box Physical Heating degree day Average Average Relativly
(Simplified) information method, temperature high

frequency method,
RLF (Residential

Load Factor)

Grey Box Physical information RC Network Low, Low, Relatively
and historical data average average high

Black Box Historical data ANN, SVM, Low Low, High
Regression- average except

analysis, Clustering regression

1.1.2. Metaheuristic Optimization in the Field of HVAC Systems

One significant advantage of metaheuristic algorithms is that in opposite to linear
and nonlinear programming the equations on which the mathematical model is based
on, don’t need to be accessible by the optimization algorithm. This is important when
using building simulation tools like EnergyPlus, TRNSYS or INSEL. The drawback is
that only a near by global optimum can be achieved. In the case of building demand
prediction methods this can be neglected because due to prediction inaccuracies (e.g.,
ambient temperature and global radiation), the real global optimum will always be slightly
different. The field of metaheuristic algorithms can be divided into the subcategories
trajectory-based (single-individual algorithms) and population-based [4,7]. Often used
examples of population-pased algorithms are particle swarm optimization (PSO), ant
colony optimization (ACO) and genetic algorithms (GA). GAs are characterized by the fact
that, like various stochastic techniques and population-based algorithms, they are based
on nature and, in particular, on the theory of evolution and natural selection. Natural
selection, which was largely defined by Charles Robert Darwin, states that the individuals
in a population that are more fit or more able to survive tend to reproduce more and thus
pass on their genetic material and with that their positive characteristics. Due to their
design, GAs are variable and therefor well adaptable to different problems [8].

According to a literature review by Ahmad et al. [4], in the field of optimization of
HVAC systems, most applications are based on stochastic algorithms to which the field of
heuristic and metaheuristic algorithms also belongs. Most scientific publications aimed
at solving HVAC related problems made use of evolutionary algorithms (EA) and GA.
Among them, GAs were most frequently used at 37%, followed by error backpropagation
in the context of artificial neural networks at 35% and PSO at 19%. In the field of building
energy systems, software-based optimization can be useful in different areas, where one
can distinguish between the optimization of the system dimensions and the system control.
Different population-based algorithms are used for the optimization of HVAC systems.
It is shown that EA and GA are especially suitable for the search of a global optimum,
but their convergence speed may be lower compared to other algorithms. PSO, on the
other hand, showed better performance in searching local optima and the search process is
slower compared to GA. Compared to GA, ACO algorithms are also suitable for finding
global optima and they show higher convergence speed in searching local optima. GAs are
mainly used when no unique solution is sought. They are also usually used for complex
optimization tasks because they are better suited for global searches. In some cases, GAs
are also combined with artificial neural networks (ANN) as optimization algorithms to
model complex nonlinear systems [4,9].
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In previous studies, a coupling of demand prediction (based on detailed white box
models of the building and energy supply) in combination with optimization algorithms
was examined. For example, by Zhou et al. [10] an integrated optimization module for
EnergyPlus was developed to use the thermal mass of an office building as energy storage
to reduce the peak load of the building air conditioning. For this purpose, schedules of
the temperature set points were created for 24 h in advance. Four different optimization
algorithms were investigated in this context. The Nelder-Mead-Simplex method (a simpler
evolutionary algorithm), the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, simulated
annealing and a population-based approach. Among these, the Nelder-Mead-Simplex
method showed the best results. Here, a computation time of 1–1.5 h resulted in 33%
savings in power costs. In comparison, the use of GenOpt as an external optimizer led
to an increase in computation time to 6 h. The settling time was taken into account
using weather data from the previous day. Xu et al. [11] optimized the operation of their
university laboratory building using an EnergyPlus model and PSO. The temperature set
points were varied to achieve optimal pre-cooling of the building during the following
day. This resulted in a 21.3% reduction of energy costs. Kajl et al. [12] used a GA to
optimize the set points (air exchange rate, chilled water supply temperature) of a local
energy management (LEM) system in a building on an university campus. The set points
were optimized for two summer months, resulting in a 16% reduction of energy demand.
The computation time for this was 30 min. GA were also used to optimize the thermal
building envelope by Sun et al. [13] and to achieve an optimal combination by Seo et al. [14]
or sizing by Bee et al. [15] of building energy supply systems. What many of those studies
neglect, as in those by Zhou et al. [10] and Xu et al. [11], is to address the effect of weather
prediction inaccuracy on the optimization result. This can lead to an overestimation of the
optimization potential.

1.1.3. Seasonal Hydrogen Storage

The usage of a power-to-hydrogen system as a seasonal energy storage is described by
Petkov and Gabrielli [16]. They state that the application of hydrogen systems are beneficial
for districts with high thermal-to-electricity demand ratios, where a seasonal hydrogen
storage system contributes to shave peak electrical demands in winter. This minimizes
the overall carbon footprint and increases the self-consumption of RES of the investigated
district. However, according to this study, power-to-hydrogen only contributes to the last
5% to 10% of carbon emission savings at high investment costs.

Wang et al. [17] describe a power control strategy for a wind/PV/fuel cell hybrid
energy system for five homes with an electrolyzer as dump-load. The fuel cell is sized
to match the peak elecetricity load, whereas the electrolyzer is designed to handle the
maximal excess power. This study is limited to the consideration of the electrical load.
Heat loads are not regarded, which means that the additional electricity demand caused by
heat pumps with their specific load profiles are not part of this study.

The possibilities of optimizing the operation of a hybrid system with a fuel cell and
a heat pump for a single residential building is shown by Sun et al. [18]. A day-ahead
scheduling is used to minimize the fuel costs, with hydrogen used as a single energy carrier.
However, this study focuses on a single building and single day optimization. Electrical
power generation from RES is also not considered in this study.

In a study about possible self-sufficiency for single-family houses in central Europe
with heat pumps, Knosala et al. [19] showed that self-sufficiency could be achieved with
a hydrogen system based on PEM technology and a pressurized hydrogen storage at
lower costs than with seasonal storage based on lithium-ion batteries. They outlined
that self-sufficiency in building cluster could be more simply achieved compared to their
investigated scenario.
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2. Methodology
2.1. Pilot Site

This work focuses on a real existing building cluster situated within a plus energy
demonstration site in the German municipality of Wüstenrot. The pilot site consists of
23 recently built residential buildings with high-energy standard (see also Figure 1). All
buildings have decentral heat pumps that are supplied by a cold district heating grid
that is connected to a large scale low depth geothermal system (agrothermal collector).
All buildings are equipped with PV systems between 6 kWp and 28.8 kWp. Within
12 buildings, thermal and electrical energy flows as well as temperatures are monitored
in detail. These monitoring data are accessible by a cloud based monitoring and control
system. A detailed description of the pilot site and it’s novel heat supply system is given
by Brennenstuhl et al. [20] and by Pietruschka et al. [21] .

Figure 1. Plus energy settlement “Vordere Viehweide”.

2.2. Modelling Approach
2.2.1. Building Model

Within this work dynamic building models are used that are based on the nodal
method. This method is common for building simulations due to its ability to resemble
multi zone buildings. Thereby the principal assumptions are, that each zone is a homo-
geneous volume that is characterised by uniform state variables where a node can e.g.,
represent a room, a wall or a window. The thermal transfer equations are solved for each
node of the system. Each building model is divided into different parts. The connection
between them is realized with internal connectors (inputs and outputs for the blocks, see
also Figure 2). The model bases on a one dimensional numerical solution of the heat
conduction equation for each wall. Additional nodes resemble room air and windows.
Long wave radiation exchange between the room surfaces is also taken into account. Inputs
for the model are external boundary conditions (temperature and irradiance). To speed up
the model creation process and reduce the computational effort, all buildings are resembled
as single zone models with a lower level of geometric detail. To counteract a possible
reduction of prediction accuracy by the reduced model detail, a calibration method is
applied that is described in Section 2.5.

2.2.2. Decentral Energy Supply System

Regarding the heat pumps, the applied models simulate the compressor’s behaviour
based on characteristic curves provided by the manufacturer. For the thermal buffer
storages all layers are resembled physically. Also heat exchange in between the layers is
taken into account. The heat input is always fed into the appropriate layer. The thermal
losses are credited to the building zone. The PV modules are realized by a two diode
model that is suitable for mono- and polycrystalline SI as well as for CIS modules. The PV
modules are connected to a MPP (maximum power point tracking) loop.
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2.2.3. Central Hydrogen System for Seasonal Energy Storage

In order to increase the heating system self-sufficiency a seasonal energy storage
system based on hydrogen is used to supplement the existing system. The hydrogen
system consists of the following components:

• PEM Electrolyzer.
• Multi-stage (isothermal) hydrogen compressor.
• Hydrogen storage tank.
• PEM Fuel Cell.

Figure 2. Building model node interconnections. Own representation based on [22].

In this system surplus electrical power of the building cluster is used to produce hydrogen
via water electrolysis, which is afterwards compressed and stored at 35 MPa in a suitable
cylinder. The PEM fuel cell is operated in a power-driven control mode to balance occur-
ring power deficits. Additionally, the possibility of recovering the waste heat from the
electrolyzer and the fuel cell, e.g., by feeding a district heating network, is regarded. All
components and the system are modelled using the INSEL simulation environment.

The Hydrogen System is automatically rule-based dimensioned based on the electrical
load profile of the building cluster by using a python script. The following rules are applied.

Electrolyzer

The rated power is defined by the maximal electrical power of the load profile. With
the rated power the active cell area is defined (50 cm2, 300 cm2 or 1250 cm2). Finally the
number of needed cells can be calculated with the rated power, the active cell area and the
assumed cell voltage at the maximal operating current density.

Compressor

The maximal hydrogen delivery rate is calculated based on the electrolyzer full load
operation

ṁH2,max = Imax/(zF) · N (1)

Based on the hydrogen production rate, the needed compressor power is estimated as
described by Christensen [23].
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Storage Cylinder

The size of the storage cylinder is calculated with the maximal seasonal surplus energy
which could be stored from June to October.

E =
∫ October

June
Psurplus · dt (2)

With an assumed energy demand for the hydrogen production of 50 kWh kg−1 and
the targeted storage pressure, the needed cylinder volume is determined.

Fuel Cell

The rated power is defined by the minimal electrical power of the load profile (maximal
power deficit of the building cluster). As for the elctrolyzer the cell area results from the
rated power (200 cm2 or 400 cm2), the number of cells from the cell voltage (0.63 V) and the
maximal current density (0.4 A cm−2) with data from Bai et al. [24].

2.2.4. Small Wind Turbines

For the small wind power generation a characteristic curve model of an Aeolos-V
5 kW vertical wind turbine is used. The corresponding power output according to the
wind speed can be found in Table 2. The installation height is assumed to be 15 m above
ground and it is set, that for each building one small wind turbine is installed resulting in a
total number of 10 small wind turbines. The measured wind data is scaled up to this height
according to the wind profile power law that is resembled by the following equation:

V2 = V1 ∗
(

h2

h1

)α

(3)

where V1 [m/s] and V2 [m/s] are the different wind speeds, h1 [m] and h2 [m] are the
corresponding heights and α [-] is the roughness exponent of the environment. α is assumed
to be 0.28 which corresponds to terrain with obstacles up to 15 m like forests, settlements,
towns, etc. according to [25].

Table 2. Characteristic power output of an Aeolos-V 5 kW vertical small wind turbine.

Wind Speed [m/s] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Power [kW] 0 0.05 0.2 0.4 0.6 0.8 1.3 2.0 3.0 3.9 4.5 5.0 5.2 5.3

2.3. Household Electricity Demand

Regarding the household electricity demand, for four buildings measured data was
available in a high resolution of 5 s and in sufficient quality to be used as model input. For
the remaining six buildings, household electricity profiles were created corresponding to
the real household size using the Loadprofile Generator tool [26] that is based on a bottom
up model for electrical load generation. The household electricity demand of the previous
same weekday is used for the prediction of household electricity demand.

2.4. Domestic Hot Water Demand

For the DHW demand, also from four buildings measured data was available in a
resolution of 30 s and in sufficient quality to be used as model input. For the remaining six
buildings, DHW profiles were created corresponding to the real household size using the
Loadprofile Generator tool [26] that is also used for the generation of household electricity
load profiles. The DHW demand of the previous same weekday is used for the prediction
of DHW demand.
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2.5. Building Model Calibration

In order to improve the model prediction accuracy, the combined decentral building
and energy supply system models are calibrated on the basis of high-resolution measure-
ments of the individual heat pumps electricity demand. Thereby the working steps are
the following:

• Preprocessing of monitoring and weather data (filling of measurement gaps, unifica-
tion of time steps).

• Application of a (genetic) optimization algorithm to the building parameters such as
operating limit temperature, air exchange rate, room set point temperature, hysteresis
of the buffer storage (heating and DHW) as well as the room heating hysteresis.

• The calibration takes place as INSEL-Python co-simulation using the DEAP (Dis-
tributed Evolutionary Algorithms in Python [27]) toolbox. The simulation is per-
formed in one minute time steps, but the results and measured values are averaged to
60 min, otherwise a calibration is sometimes not possible due to the high fluctuation
of the heat pump operation.

• As last step an assessment of the calibration results is carried out for a validation
period that differs from the calibration period with a with a different data set.

The targetfunction is the normalized root mean square error (NRMSE) between mea-
sured and predicted values. The NRMSE is used instead of e.g., the mean absolute percent-
age error (MAPE), as this would be less conclusive in the case of high load peak fluctuations
as they occur with heat pumps.

NRMSE =

√
∑n

i (ŷi − yi)2

n
∗ 1

ymax − ymin
(4)

where ŷi is the predicted value and yi is the measured value at the respective time step.
This is applied to the power consumption of the system, in this specific case the

electrical demand of the heat pump. It should be noted, that for six of the buildings no
measurement of the DHW demand were available due to incorrectly installed sensors.
For those buildings, a DHW load profile corresponding to the real household size was
generated using the previously mentioned Loadprofile Generator tool [26]. For the other
buildings measurement data was parsed to a one minute resolution. The measured DHW
demand of the previous same weekday is used for the validation and the prediction process.

2.6. Optimization of Scheduled Heat Pump Operation

As with the the model calibration, a genetic algorithm based on the DEAP toolbox in
python is applied to each individual building and energy supply system model, that varies
the heat pumps operational behaviour. This is also realized as INSEL-Python co-simulation.
Thereby the heat pump operation is optimized for 24 h. The heat pump operation modes
are the following:

• Mode -1: Normal operation.
• Mode 0: No heat pump operation. The optimization algorithm cannot select this

mode directly, as this would cause the heat pump to go out of operation at every
possibility, e.g., in a cost optimization scenario. This mode is used to realize possible
blocking times by a sub script.

• Mode 1: Forced heat pump operation to load the space heating thermal buffer storage.
• Mode 2: Forced heat pump operation to load the DHW thermal buffer storage.
• Mode 3: Forced heating of the buildings thermal mass. Thereby the heat pump can

operate reguarly and load the thermal buffer storages according to demand.

At each simulation start the model is parametrized partly with real measured values
like the ambient temperature as the start temperature of the external part of the building
envelope. A model settling time of 3 h is taken into account. The optimization is carried
out for the following 24 h after the settling time in 5 min intervals. 5 min intervals are
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chosen due to the fact, that longer intervals have shown (e.g., 20 min were tested) lesser
potential as the heat pump’s energy demand is less precisely scaleable. Also a time span of
5 min is assumed to be the minimum running time within this work as Green et al. have
shown, that cycling times of less than 6 min reduce the heat pumps performance especial
in the case of air source heat pumps but also for ground source heat pumps [28]. This
is accompanied by the fact, that short cycling times of heat pump compressors can have
negative effects on the heat pumps mechanical components lifetime (compressor motor,
compressor and electrical contactors) [29]. The optimizations rebound effect is taken into
account for the following 3 h after the optimization as this period is also included in the
fitness evaluation of each result. The simulations run with an internal time step of 1 min.
For the load curve that goes to the hydrogen system the time from 1 a.m. to 4 a.m. each
day is not optimized. The reason for this is the process of creating a load profile over the
entire year from the optimized daily profiles.

2.6.1. PV Self-Consumption

For the daily optimization case of PV self-consumption, the aim is to minimize the
accumulated amount of electricity that is drawn from the grid. This helps to (i) reduce
demand peaks, (ii) lowers the amount of PV electricity that is feed to the grid and (iii) poses
the most economical solution for the building owner as today, the household electricity
price in Germany is more than three times as high as the fixed feed in tariff for small
(<10 kWp) newly installed PV systems. As such, for PV the fixed price feed in tariff for
new systems installed in August 2021 would be 0.736 €/kWh [30] whereas the average
household electricity price in Germany in 2021 is 0.33 €/kWh [31]. This results in the
following target function for which the result is to be minimized:

E f romGridsum =
∫ optend

optstart+3h
(EHousehold + EHeatpump − EPV) · dt (5)

Whereas E f romGridsum [kWh] is the total amount of electrical energy take from the grid
during the optimization time span, EHousehold [kWh] is the households electricity demand
for each time step, EHeatpump [kWh] is the heat pumps electricity demand for each time
step and EPV [kWh] is the PV systems electricity production for each time step. For the
single building optimization this equation is directly applied to the model outputs. For
the cluster optimization, first it is assumed that all electricity flows are balanced within
the cluster.

2.6.2. PV and Wind Self-Consumption

For the daily optimization case of PV and wind self-consumption the same approach
is used as it is described in Section 2.6.1. Only the additional wind production EWind is
added to the target function resulting in the following equation:

E f romGridsum =
∫ optend

optstart+3h
(EHousehold + EHeatpump − EPV − EWind) · dt (6)

2.7. Calculation of Carbon Dioxide Emission Savings and Prevention Costs

All measures to increase the self-consumption of the building cluster are compared
based on its potential to reduce the annual carbon dioxide emissions of the cluster. Table 3
shows the emission factors for the power and heat source, based on available data for
Germany.

The overall annual carbon dioxide emission saving is calculated as follows:

mCO2,reduced = (E f romGrid,base − E f romGrid,variant) · epower + EHeatToNetwork · eheat (7)

With the electrical energy needed from the grid in the base scenario E f romGrid,base
[kWh] and the system variant E f romGrid,variant [kWh], the emission factor for electricity
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epower [kg kWh−1], the amount of recovered waste heat EHeatToNetwork [kWh] and the emis-
sion factor for district heating eheat [kg kWh−1].

Table 3. Emission factors of power and heat.

Source Emission Factor Source

Power From Grid 0.408 kg kWh−1 [32]
District Heating 0.243 kg kWh−1 [33]

For the systems where additional investment costs are needed, a cost factor cCO2−saving
is calculated, which determines the overall costs per reduced mass of carbon dioxide emis-
sions mCO2,reduced. All systems are calculated based on an assumed lifetime of tli f e = 20a.

cCO2,saving =
Cinvest + Cenergy · tli f e

mCO2,reduced · tli f e
(8)

In this case the energy cost consists of the mass of hydrogen which must be provided
by external delivery, e.g., via trailer, to balance the deficit of hydrogen production within
the building cluster (see Section 3.6). The specific cost for the calculation of Cinvest and the
costs for external hydrogen deliveries are summarized in Table 4.

Table 4. Specific investment costs of the system components.

Component Specific Costs Unit Source

PEM Electrolyzer 2000 + 1000 · PEL ekW−1 [19]
Compressor 2545 · Pcomp ekW−1 [23]

Hydrogen Storage 15 · mH2 · LHVH2 ekWh−1 [19]
PEM Fuel Cell 2000 + 1000 · PEL ekW−1 [19]

Battery 500 · Ebat ekWh−1 [34]
Small Wind Turbine (5 kW) 24,000 e own assumption

Hydrogen Delivery 9 ekg−1 own assumption

2.8. Weather Data

As simulation input the following measured weather data as well as prediction data
are used: ambient temperature, global radiation and wind speed. For the measured data,
the ambient temperature is measured on site with a resolution of 1 min. There also exists a
measurement station for global radiation and wind speed on site. Unfortunately, this has
been recently installed and therefor no measurements for a continuous year are available
so far. Hence measurements from a nearby weather station situated close to the town of
Ilshofen are used for those two parameters. Random samples indicate, that those global
radiation measurements show little difference to available on-site measurements. The
use of wind data that is not directly measured on side can be justified by the fact, that
this study doesn’t aim at a qualitative site potential assessment, but on assessing the load
management potential of the cluster in general. The wind and global radiation data are
collected with a 1 h time resolution. Wind measurements are taken at a height of 2.5 m. The
prediction data (ambient temperature, global radiation with a 15 min resolution) comes
from commercial provider for 72 h in advance and is updated multiple times per day. For
this study for each day, the weather prediction that is delivered at 11:15 p.m. is taken as
the basis.

3. Results
3.1. Building Model Calibration Outcome

The calibration of the building and decentral energy supply system models was
carried out with measured demand and weather data for the time between 01.01.2020
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and 31.03.2020 and the validation was carried out for the time between 01.04.2020 and
07.04.2020. For some buildings slightly other time spans were used due to gaps in the
measured data. The initial model parameter and the calibration parameter range are
presented in Table 5. The main results are shown in Tables 6 and 7. A visualization of the
validation results for each model is shown in Figures A1 and A2.

Table 5. Initial model parameter and calibration parameter range.

Building ID Indoor Hyst Space Hyst DHW Hyst Room Heating Stop Air Ex
Temp [°C] [°C] [°C] [°C] Temp [°C] Rate [1/h]

Initial Param. 20.0 5.0 5.0 2.0 10.0 0.30
Param. Range 15.0–25.0 0.01–10.0 0.01–10.0 0.01–3.0 8.0–18.0 0.00–0.60

Table 6. Model prediction error after calibration.

Building ID NRMSE NRMSE E, Measured E, Predicted
Original Calibrated [kWh] [kWh]

01 30.8% 18.4% 105.1 100.0
02 40.6% 26.1% 81.1 72.4
09 49.8% 47.6% 92.4 92.6
10 68.3% 32.9% 62.8 62.0
12 32.2% 29.7% 138.1 133.4
19 41.7% 32.7% 117.1 103.1
20 19.0% 19.0% 83.6 83.0
22 45.4% 23.8% 53.2 46.8
24 45.8% 28.3% 68.7 56.1
25 36.5% 20.8% 61.7 57.2

Table 7. Model parameter after calibration.

Building ID Indoor Hyst Space Hyst DHW Hyst Room Heating Stop Air Ex
Temp [°C] [°C] [°C] [°C] Temp [°C] Rate [1/h]

01 16.7 2.3 0.01 0.7 17.0 0.20
02 16.7 1.7 0.1 0.01 14.0 0.04
09 20.3 7.0 7.3 2.2 11.0 0.02
10 15.7 0.3 0.3 0.3 14.0 0.00
12 19.3 7.7 8.3 0.7 13.0 0.32
19 20.0 4.0 4.7 0.4 9.0 0.10
20 20.3 0.7 4.7 0.4 15.0 0.60
22 16.7 5.0 0.3 0.8 17.0 0.12
24 16.0 1.3 0.3 0.3 14.0 0.04
25 17.3 0.1 0.1 0.4 15.0 0.00

At average the NRMSE is reduced by 32% through the calibration process. It can
be seen that for those buildings where measured DHW demand was available (building
ID 20, 22, 24 and 25) the accuracy tends to be better. For most of the models the indoor
set point temperature that results out of the calibration process is lower than a set point
temperature of 20 ◦C that is generally assumed for residential building living areas. This
can be credited to the fact, that normally only a part of the building is heated whereas
the model set point temperature represents the average temperature through the entire
building zone. In Table 7 the low space heating hysteresis occurs when the space heating
buffer storage is in the rear flow of the heating circuit. The low air exchange rates indicate
a ventilation system with heat recovery. The really low DHW hysteresis of building 01
and building 02 can be explained by the fact, that for those buildings no measured DHW
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profiles were available and thus the algorithm tends to mitigate this negative effect by
trying to reduce DHW demand fluctuations by lowering the specific time span when the
heat pump is activated to the minimum.

3.2. Impact of Weather Prediction Inaccuracy
3.2.1. Building Heat Demand

The effect of weather prediction inaccuracy on the heating demand prediction quality
was investigated for a single building out of the cluster. Therefor the same simulation
was carried out with measured weather data, with forecasted weather data for the same
time period with a forecast horizon of 0–24 h and with a forecast horizon of 24–48 h.
In Table 8, the NRMSE is presented in between the simulation results and the buildings
measured demand. A visualization of the resulting power demand curves is shown in
Figure A3 and a visualization of a comparison of the accumulated electricity demand is
shown in Figure A4. It can be seen, that the NRMSE increases by 17.6% when relying
on forecast data for 0–24 h in advance instead of measured weather data. It increases by
45.0% when relying on forecast data for 24–48 h in advance. It can be said, that for the
buildings heating demand, model inaccuracy has a larger impact than weather forecast
uncertainties. In contrary the results for the cumulative electricity demand are good and
show little influence of the prediction inaccuracy. This leads to the assumption that the
highest uncertainties com from the timing of the heat pump system and thus from control
of the real system and user behaviour.

Table 8. Comparison of heating electricity demand prediction error according to weather data
forecasting duration.

Measured Weather Data 24 h Forecast 48 h Forecast

NRMSE 14.2% 16.7% 20.6%

3.2.2. PV Power Generation

A similar evaluation as for the electrical heating demand prediction error was carried
out for the PV generation prediction error over a period of 6 months. In Table 9 it can be
seen, that the NRMSE is 9.7% when relying on forecast data for 0–24 h in advance instead
of measured weather data. Interestingly it stays approx. the same when relying on forecast
data for 24–48 h in advance. Only when relying on forecast data for 48–72 h in advance it
increases by 10.5%.

Table 9. Comparison of PV generation prediction error according to weather data forecasting
duration.

24 h Forecast 48 h Forecast 72 h Forecast

NRMSE 9.7% 9.6% 10.6%

3.3. Best Parameters for Schedule Optimization

The best parameters for the genetic algorithm were determined iterative for the
optimization of the heat pump operation (creation of 24 h schedules) with regard to the self-
consumption of PV electricity. The number of generations was varied step wise between
50 and 300 and the population size was varied step wise between 5 and 70 individuals. The
crossover and mutation probability was varied in each case in 0.1 steps from pc/pm = 0
to pc/pm = 1.0. Ten computational runs were performed for each parameter combination
of the algorithm to reduce the effects of randomness, which occur primarily when the
number of generations and the population size are small. Thus, 72,600 different parameter
combinations were examined. The number of ten computational runs was considered
as a compromise between accuracy and computational demand. E.g., for the case of a
low number of generations of 50 and a low population size of 5 (pc = 0.9 and pm = 0.3)
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the standard deviation would be 8.2% for 5 computational runs and 4.1% in the case of
10 computational runs.

The overall result is shown in Figure 3a,b. The percentages indicate the improvement
in terms of cost savings resulting from avoided electricity consumption. It can be seen that
the number of generations has low influence. This can be contributed to the fact that the
selected minimum number of 50 already represents a sufficiently large number. For the
population size, the results approach an optimum with increasing number of individuals.
The relatively small improvement of up to 28% is due to the fact that this value represents
the mean value from the various crossover and mutation probabilities and thus many
bad combination possibilities are included. Looking in detail at the results of the varied
crossover and mutation probabilities in Figure 3b, the best results are shown for a crossover
probability of 0.7 ≤ pc ≤ 1.0 and for a mutation probability of 0.1 ≤ pm ≤ 0.3. Based on
these results the crossover probability is set to pc = 0.9 and the mutation probability is set
to pm = 0.3 with the specific results shown in Figure 4b, and the number of generations
and the population size are set to 50 with the specific results shown in Figure 4a. These
parameters present a good compromise between the quality of the result and the required
computing time (2500 simulation runs, 30 min). Due to the forecast inaccuracy, it is also not
necessary to determine the absolute optimum, since it can be assumed that a prediction
inaccuracy will always occur in real operation. By optimizing the prediction model and
the parameters of the GA, the computing time for the optimization is reduced from about
150 min to 30 min.

Figure 3. Parameter variation genetic algorithm without constrains. (a): Dependency on mutation
and crossover probabilities for all population sizes and number of generations; (b): Dependency on
population size and number of generations for all mutation and crossover probabilities.

Figure 4. Parameter variation genetic algorithm with constrains. (a): Number of generations and
population size set to 50; (b): Crossover probability set to pc = 0.9 and mutation probability set to
pm = 0.3.
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3.4. Single Building Operation
Optimized Self-Consumption

As starting point the PV-self-consumption of a single building was optimized for one
year on a daily basis. The considered building has a heat pump with approx 3.5 kW electric
power consumption and a rather large PV system with 28.8 kWp. The buffer storages are
defined in the model to be 750 L for DHW and 1500 L for space heating. These parameters
can be considered as ideal conditions. An exemplary daily operation without optimization
can be seen in Figure 5 whereas the results with optimization are shown in Figure 6. It
can be seen that the algorithm shifts the operation of the heat pump to the period with
sufficient PV power generation reducing the electricity demand from the grid during the
evening hours and night time.

Figure 5. Single building daily electrical demand without optimization.

Figure 6. Single building daily electrical demand with optimization.

Table 10 shows the optimization results on a monthly basis. Thereby Opt is the as-
sumed reduction of electricity demand from the grid based on predicted weather data
whereas Meas Opt is the resulting demand reduction which would have occurred with the
real weather situation and Ad Hoc is the same result with the assumption of an ad hoc
algorithm that would switch to normal operation instead of the schedule in case the predic-
tion inaccuracy would lead to a higher demand. A decline between Opt (annual average
of 9.8%) and Meas Opt (annual average of 3.0%) can be clearly recognized resulting from
the prediction inaccuracy whereas 2/3 can be contributed to weather forecast inaccuracy
and 1/3 results from the inaccuracy of household electricity and DHW demand prediction.
With the inclusion of an ad hoc algorithm that would rule out schedules that worsen the
result during the daily operation, an annual improvement of 4.9% could be achieved. In
total 221.2 kWh (234.6 kWh with an ad hoc algorithm) of lesser electricity would have been
demanded from the grid. The improvement on a monthly basis in general is not very high
reaching at maximum 6.6% in April (8.1% in May with ad hoc algorithm). However on the
best days, an theoretical improvement of Opt = 44% and an improvement with measured
weather data of Meas Opt = 33% could be achieved.
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Table 10. Monthly PV self-consumption improvement for a single building.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Opt 3.8% 7.0% 10.4% 10.6% 14.9% 15.4% 16.6% 12.5% 10.8% 6.7% 4.5% 3.9%
Meas Opt 0.9% 4.6% 4.0% 6.6% 5.0% 1.6% 0.6% 3.1% 3.3% 3.9% 1.4% 1.1%
Ad Hoc 1.2% 5.2% 4.8% 8.0% 8.1% 5.0% 5.9% 6.8% 5.8% 4.7% 1.7% 1.5%

If we take a look at the results on a daily basis in Figure 7, it can be seen that within
this month under good conditions improvements of up to 23% can be achieved. These are
evened out by those days with less or no optimization potential. There can also be seen
two days with a significant decrease of up to −15%. The general daily fluctuation can be
explained the fact that the optimization potential varies according to PV production and
demand by DHW and space heating. The discrepancy in between Opt and Meas Opt is
to be credited to prediction inaccuracies. E.g., the worst result during April occurred on
April 22. During that day the prediction inaccuracy for DHW and household electricity
demand was unusually high. This happened possibly due to the fact that this day was
Easter Monday in 2019 which is a holiday in Germany and therefor the user behaviour was
not like it should have been on a work day. The 23% Meas Opt result on April 11. that was
more than double of the predicted Opt result happened because on that specific day the
measured amount of global radiation was 38% higher compared to the predicted amount.

Figure 7. Daily optimization results for a single building for the month April.

In general the results without ad hoc algorithm are worse during summer where DHW
prediction inaccuracy has a higher impact due to the lack of space heating demand. In op-
posite, the theoretical optimization potential during summer would be up to Opt = 16.6%
on a monthly basis.

In a next step the thermal buffer storage size was doubled. The monthly results are
shown in Table 11. Thereby mainly the increase of the DHW storage size has an effect
during the summer months. The average annual predicted improvement is Opt = 12.8%
whereas the average improvement including the prediction inaccuracy is Meas Opt = 3.7%.
With the inclusion of an ad hoc algorithm Ad Hoc = 5.6% could be achieved on annual
average. This is only slightly better than with the previous thermal buffer storage sizes. In
total 257.0 kWh (347.0 kWh with an ad hoc algorithm) of lesser electricity would have been
demanded from the grid.
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Table 11. Monthly PV self-consumption improvement for a single building with doubled storage
size.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Opt 4.7% 9.8% 12.5% 15.0% 20.9% 18.4% 19.5% 17.0% 15.9% 10.0% 5.6% 4.4%
Meas Opt 1.1% 5.8% 3.0% 4.9% 2.2% 7.0% 2.6% 5.9% 5.4% 2.9% 2.1% 1.7%
Ad Hoc 1.8% 6.0% 4.1% 6.9% 5.7% 9.4% 8.5% 8.8% 7.0% 4.9% 2.7% 2.1%

3.5. Building Cluster Operation
3.5.1. Optimized PV Self-Consumption

Regarding cluster operation the PV self-consumption of a cluster of 10 buildings
was optimized in the same way as on single building level. Thereby solely through the
interconnection of the buildings individual electricity demand and generation the electricity
demand from the grid would be reduced by 10% from 54,436 kWh to 49,140 kWh as well as
the grid infeed would be reduced by 6% from 84,473 kWh to 79,176 kWh for the year 2019.

An exemplary daily operation without optimization is shown in Figure 8 whereas
the results with optimization are shown in Figure 9. In these figures the model settling
time, that is not taken into account for the optimization can be seen for the first 110 min. To
evaluate the results the accumulation of the electricity demand starts after 180 min (grey
line). The monthly results can be found in Table 12.

Figure 8. Cluster daily electrical demand without optimization.

Figure 9. Cluster electrical demand with optimization.
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Table 12. Monthly PV self-consumption improvement for the building cluster.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Opt 1.6% 3.3% 3.5% 5.0% 6.2% 6.6% 4.3% 4.5% 5.0% 4.3% 2.4% 1.5%
Meas Opt 0.0% −0.1% 0.1% −0.2% 0.2% 0.4% −0.4% 0.8% 0.3% 0.0% −0.4% −0.1%
Ad Hoc 0.3% 0.5% 0.9% 0.6% 1.1% 1.4% 0.6% 1.2% 1.2% 1.1% 0.5% 0.3%

The average predicted annual improvement is Opt = 4.1% whereas the average annual
improvement including the prediction inaccuracy is neglectable at Meas Opt = 0.5%. Even
with the addition of an ad hoc algorithm the average annual improvement would just
increase to Ad Hoc = 0.8%. On the best days, an theoretical improvement of Opt = 20%
and an improvement with measured weather data of Meas Opt = 15% could be achieved.
Compared to the single building optimization the results are considerably worse. This
can be contributed to the to the fact, that surplus electricity is also used within the cluster
before the optimization. Also the ratio of installed PV system size and heat pump electrical
demand for some of the buildings within the cluster is unfavorable contributing to these
results. In addition days with bad household electricity and DHW demand prediction in
some buildings can’t be ruled out accurately by an ad hoc algorithm due to the fact that, all
demands are accumulated before the evaluation. The results on a daily basis for the month
April in Figure 10 underline this outcome. Only on a few days would an improvement
be possible.

Figure 10. Daily optimization improvement for a building cluster with normal storage size for the
month April.

In a next step the thermal buffer storage size was doubled. The monthly results
can be found in Table 13. Thereby the effect ist minor. The average annual predicted
improvement is Opt = 4.6% whereas the average annual improvement including the
prediction inaccuracy is Meas Opt = 0.7%. With the addition of an ad hoc algorithm the
average annual improvement would increase to Ad Hoc = 1.2%.

Table 13. Monthly PV self-consumption improvement for a building cluster with doubled storage
size.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Opt 1.9% 4.1% 4.5% 5.3% 7.7% 5.4% 4.2% 5.4% 3.9% 4.5% 3.2% 1.8%
Meas Opt −0.2% 1.6% 0.7% 1.3% 1.0% 1.0% 0.5% 1.1% 0.4% 0.1% 0.5% 0.1%
Ad Hoc 0.3% 1.9% 1.5% 1.5% 2.0% 1.7% 0.9% 1.7% 0.8% 1.0% 0.7% 0.4%
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3.5.2. Optimized PV and Wind Self-Consumption

As a hypothetical approach the optimization was also applied to optimize the PV and
wind self-consumption. This was done to show the theoretical potential as no wind speed
prediction uncertainties were included. The monthly results can be found in Table 14.

Table 14. Monthly PV and Wind self-consumption improvement for a building cluster.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Opt 3.6% 7.4% 5.6% 7.8% 6.8% 6.6% 6.5% 5.3% 7.3% 6.0% 5.3% 0.0%
Meas Opt −0.2% 2.2% −0.6% 0.5% −0.3% −0.4% −0.1% −0.2% 1.1% −0.3% −1.9% 0.1%
Ad Hoc 0.4% 2.8% 0.9% 1.3% 1.4% 1.3% 0.8% 1.3% 1.6% 0.9% 0.9% 0.4%

It can be seen that compared to the PV self-consumption optimization the results are
slightly better in winter due to the additional wind production. The results on a daily basis
for the month February are shown in Figure 11. The month February was chosen because
the wind yield tends to be higher during winter months. This optimization on cluster level
that includes the wind production suffers from the same problems as PV self-consumption
optimization at cluster level. It is conceivable that a better optimization potential would be
available at sites with better wind yields. Also results would be better if focused on single
building level. This will be examined as a continuation of this work.

Figure 11. Daily optimization improvement (PV and wind) for a building cluster with normal storage
size for the month February.

3.6. Adding of Hydrogen Systems with and without Small Wind Turbines

All in all the addition of three different measures to decrease the electrical power of
the building cluster received from the power grid are compared and evaluated.

• Base Scenario: Decentral PV and Heat Pumps.
• Optimization: Optimized Heat Pump operation to increase PV self-consumption

based on weather forecast data.
• Optimization + Hydrogen System: Seasonal hydrogen storage system with electricity-

driven fuel cell to operate the heat pumps with surplus PV power stored from the
summer months. Heat recovery from the electrolyzer and the fuel cell and heat
injection into a district heating network are considered.

• Optimization + Hydrogen System + Small Wind Turbines (SWT): Additional small
wind turbines to increase the power production throughout the year.

In this section the results of adding a hydrogen system and small wind turbines to the
building cluster will be discussed. The resulting system parameters for both the hydrogen
system and the hydrogen system with additional small wind turbines are shown in Table 15.
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The adding of SWTs increases the rated power of the electrolyzer as more surplus power is
available. As a result the hydrogen compressor as well as the storage tank volume must be
up-scaled to match the increased hydrogen production. On the other hand, the installed
fuel cell power decreases slightly, as the power deficit is damped through the wind power
yield. The initial filling level of the storage tank must be lower than 100% for the system
with wind turbines as hydrogen overproduction is achieved (see Figure 12).

Table 16 shows the annual amount of energy from the grid for different system
combinations. Adding a hydrogen system with the described properties, equally with or
without SWTs, basically leads to full autarky of the building cluster related to grid electricity.

However, an investment must be made. Table 17 shows the estimated system capital
expenditures (CAPEX) of both systems. From the annual costs of hydrogen refills it
is apparent that the hydrogen system alone is not self-sufficient related to the needed
hydrogen (see Figure 13). Yearly cost of 4.724e for hydrogen deliveries occur. The adding
of small wind turbines on the other hand leads to hydrogen surpluses (see Figure 12) and
allows an export of hydrogen with negative annual hydrogen costs. The specific costs
for the saving of carbon dioxide emissions cCO2,saving are shown in Figure 14. Under the
assumed conditions the hydrogen system with heat recovery has the lowest specific costs
of 1.23e per saved kg of CO2 emissions. The addition of small wind turbines does not
decrease the specific costs, although hydrogen surpluses are achieved.

Table 15. System parameter overview.

Parameter Hydrogen System SWT and Hydrogen System

Electrolyzer Power 78 kW 107 kW
Electrolyzer Cells 45 62

ELectrolyzer Cell Area 300 cm2 300 cm2

Max. Hydrogen prod. Rate 1.51 kg h−1 2.08 kg h−1

Storage Volume 29.5 m3 37.43 m3

Initial Storage Tank Filling 35 MPa 15 MPa
FC Power 37.5 kW 37.4 kW
FC Cells 345 344
FC Area 400 cm2 400 cm2

Compressor Power 17.75 kW 24.5 kW

Table 16. Annual electrical energy from grid for different system variants.

Parameter w/o SWT With SWT

Egrid w/o H2 48,385 kWh 36,974 kWh
Egrid w/ H2 59 kWh 70 kWh

Table 17. Economic parameter overview.

Parameter Hydrogen System SWT and Hydrogen System

Estimated System CAPEX 597.852e 930.342e
Annual Hydrogen Refill Costs 4.724e −2.452e

cCO2,saving 1.76ekg−1 2.23ekg−1

cCO2,saving (Heat Recovery) 1.23ekg−1 1.55ekg−1
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Figure 12. Annual progression of the hydrogen storage pressure with SWTs.

Figure 13. Annual progression of the hydrogen storage pressure.

Figure 14. Specific costs of carbon dioxide savings.

4. Discussion

Within this work, the proposed modelling and optimization methodology was fully
implemented and applied to a case study to evaluate different optimization goals such as
an improvement of generated electricity self-consumption for decentral PV systems on a
single building and cluster level as well as for small wind turbines combined with PV on a
cluster level. To achieve a higher level of autarky and self-consumption in addition to the
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optimization, the inclusion of a hydrogen system was proposed. Thereby the the following
results were archived for the work packages modelling, optimization case studies and
hydrogen system potential:

4.1. Modelling

Simulation models of the buildings and their energy supply systems were created for
10 residential buildings as well as calibrated and validated with the heat pumps measured
electrical demand data. Thereby through the calibration an improvement of model accuracy,
based on an assessment by NRMSE, of 32% was achieved. For the heating demand, the
impact of weather prediction inaccuracy was 17.6% when relying on forecast data for
0–24 h in advance instead of measured weather. The NRMSE in that case was 16.7%. For
PV generation the NRMSE for forecast data for 0–24 h in advance was 9.7%.

Furthermore the optimal GA parameters for the optimization of heat pump schedules
were determined. This resulted in an optimal crossover probability of 0.9, an optimal
mutation probability of 0.3 and an optimal number of generations and population size
of 50, resulting in 2500 simulation runs per optimization. Through that and through a
simplification of the prediction model details, the computational demand was reduced
by 80%.

4.2. Optimization Case Studies

On single building level better optimization results were achieved compared to the
cluster level. Still the optimization was often prone to solutions that show a negative
result. This could be addressed by an ad hoc algorithm to reduce losses for days with bad
prediction accuracy.

Overall the results showed a predicted annual average improvement of 9.8% and an
improvement of 3.0% when considering the weather situation that actually occurred. With
the addition of an ad hoc algorithm an annual average improvement of 4.9% could be
archived. This worsening can be contributed to 2/3 to weather forecast inaccuracy and to
1/3 it results from the inaccuracy of household electricity and DHW demand prediction.
On the best days an increase of PV self-consumption of up to 33% (44% without any
prediction inaccuracies) could have been achievable. A further increase of thermal buffer
storage sizes (doubling the size) only showed a marginal effect.

On cluster level the demand from grid and the infeed is already reduced by cluster
interconnection of the buildings by 10% (demand) and 6% (infeed). Overall the cluster
optimization results showed a predicted annual average improvement of 4.1% and a
neglectable improvement of 0.5% when considering the weather situation that actually
occurred (0.8% with the addiction of an ad hoc algorithm). Those small improvements can
be contributed to the to the fact, that the surplus electricity generated by the PV systems is
already partly used within the cluster before the optimization. Also the other buildings
tend to have a more unfavorable ratio of installed PV system size compared to the heat
pumps electrical demand contributing to a lower optimization potential. In addition,
days with bad household electricity and DHW demand prediction in some buildings
can’t be ruled out accurately due to the fact that all demands are accumulated before the
evaluation. On daily basis an increase of up to 15% in PV self-consumption was possible
(20% without any prediction inaccuracies). The cluster operation also tends to have more
days without optimization potential due to these reasons. For the cluster optimization
a further increase of thermal buffer storage sizes (doubling the size) also only showed a
marginal effect. On cluster level, the inclusion of wind generation showed similar results as
for the sole PV self-consumption cluster operation. Here the inclusion of wind generation
was a very hypothetical assumption as for the wind generation no wind speed prediction
inaccuracy was included due to the fact that it is very complex and error prone compared
to temperature and global radiation predictions. This could be counteracted by a model
predictive control (MPC) setting that has the model run in a loop in parallel to the normal
operation what would enable near real time optimizations.
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In general increasing the size of the buffer storages only helped up to a certain size
where in contrary this leads to the drawback of higher thermal losses, an increase of
investment costs and more required space. The results showed that the increase of the
DHW buffer storage on single building level had the most impact.

4.3. Hydrogen System Potential

The application of a hydrogen system for seasonal energy storage basically leads to
full autarky, if the electrolyzer is designed to match the peak surplus power of the cluster
and the fuel cell to match the peak power deficit of the building cluster. However, this
measure comes with high investment costs and hence high carbon dioxide prevention costs
(1.76ekg−1). If the heat produced by the electrolyzer and the fuel cell is recovered and fed
into a district heating network, the CO2 prevention costs could be reduced by 30%. In our
investigated scenario, the hydrogen system would depend on external hydrogen deliveries
to maintain its operation in the winter months. The adding of small wind turbines to
increase the power output of the cluster on the other hand leads to an annual surplus
hydrogen production of the system, which could be sold. Nevertheless, the adding of small
wind turbines results in even higher CO2 prevention costs (2.23ekg−1). The next steps
aim at finding an optimum for the dimensioning of the hydrogen system based on the
achievable CO2 prevention costs.

5. Conclusions

In general it can be said, that the results observed in this work are in line with the
experiences made in other publications, even if the specific application differs from them.
As exambple, Zhou et al. [10] aimed to reduce reduce the peak load of an office buildings’
air conditioning system by optimization and achieved an improvement of 33% in power
costs with a computation time of 1–1.5 h. By Xu et al. [11] a variation of temperature set
points was carried out to achieve optimal pre-cooling of the building during the following
day resulting in a 21.3% reduction of energy costs. Kajl et al. [12] optimized the set points
of a LEM system in a building on an university campus for two summer months, resulting
in a 16% reduction of energy demand with a computation time of 30 min. In comparison
within this work for the single building PV self-consumption optimization on the best days
an improvement of up to 33% could have been archived that would have resulted in a cost
saving of approx. 26%. For this the computation time was approx. 30 min.

Overall the proposed methodology was implemented successfully. The results have
shown that the application of a hydrogen system for seasonal energy storage would allow
full autarky but with high carbon dioxide prevention costs. Those could be reduced by up
to 30% if the heat produced by the electrolyzer and the fuel cell would be recovered and
fed into a district heating network.

Regarding the optimization scenarios, good results for the optimization on single
building level were achieved on a daily basis ranging up at average to reductions of
electricity demand from grid of over 16% in the summer months. However prediction
inaccuracies tend to worsen the results significantly. Unfortunately at average over an entire
year and especially for the cluster optimization better results would have been expected.
This can be credited to several reasons. First, for many days the potential that relies on the
ratio between heat demand and electricity production was minor with the installed system
sizes. Second prediction errors for demand (household electricity and DHW) and weather
(ambient temperature and global radiation) minored the accuracy of the optimization
results and thus their impact to improve heat pump operation. In that case the biggest
improvement could be achieved by applying more sophisticated prediction methods for
household electricity and DHW demand. In general it can be said, that self-consumption
optimization is more useful on single building level. Therefor the optimization should be
carried out on single building level and the excess electricity should be provided to fulfil
the other buildings demand afterwards. On cluster level it is more useful for applications
like an aggregated operation to provide DR, e.g., to follow an aggregator’s traces. Also for
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real life applications the economics wouldn’t be that favorable under today’s regulatory
conditions. As an example, for the single building optimization presented in this research,
annual savings of 56 € would have been possible. A further limiting factor within this work
is the fact, that so far uncertainties regarding the heat pumps availability and their control
under real operational conditions were not included in the model approach. This might
lessen the potential within real operation. To verify this an implementation to control heat
pumps within the pilot site under real operational conditions is planned. It is also planned
to further improve the optimization potential by a better DHW and household electricity
demand prediction, e.g., through self-learning algorithms by ANN or k-nearest neighbors
(kNN) algorithms. Also better over all annual results for the optimization could be possible
in other climate zones with lesser seasonal difference as well as for sites with a higher
wind yield. A dynamic inclusions of the hydrogen system within the optimization process
could also be a promising option as well as the appliance of the developed methodology to
optimize the charge and discharge of battery storages as well as for bi-directional charging
of EV’s.
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Abbreviations
The following abbreviations are used in this manuscript:

α Roughness exponent [-]
ACO Ant colony optimization
ANN Artificial neural network
BFGS Broyden-Fletcher-Goldfarb-Shanno
C Cost [€]
c Cost factor [-]
CAPEX Capital expenditures
CIS Copper indium gallium selenide solar cell
DEAP Distributed evolutionary algorithms in python
DHW Domestic hot water
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e CO2 emission factor [kg/kWh]
E Energy [kWh]
EA Evolutionary algorithm
EV Electric vehicle
FC Fuel cell
GA Genetic algorithm
h Height [m]
HVAC Heating, ventilation, and air conditioning
I Current [A]
kNN k-nearest neighbors
LEM Local energy management system
ṁ Mass flow [kg/s]
m Mass [kg]
MAPE Mean absolute percentage error
MPC Model predictive control
MPP Maximum power point tracking
NRMSE Normalized root mean square error
P Power [kW]
pc Crossover probability [-]
pm Mutation probability [-]
PEM Polymer electrolyte membrane
PSO Particle swarm optimization
PV Photovoltaic
RC Resistor–capacitor
RES Renewable energy sources
RLF Residential load factor
SVM Support vector machine
SWT Small Wind Turbine
tli f e Lifecycle [a]
v Speed [m/s]
ŷ Predicted value [kW]
y Measured value [kW]

Appendix A. Calibration Results

Figure A1. Cont.
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Figure A1. Building model calibration results (Building 1–12).
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Figure A2. Building model calibration results (Building 19–25).
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Appendix B. Prediction Error Due to Weather Forecast Inaccuracy

Figure A3. Impact of weather prediction inaccuracy on electrical heat pump power demand.

Figure A4. Impact of weather prediction inaccuracy on cumulative electrical heat pump energy
demand.
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