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Abstract: The small modular dual fluid reactor is a novel variant of the Generation IV molten salt
reactor and liquid metal fast reactor. In the primary circuit, molten salt or liquid eutectic metal
(U-Pu-Cr) is employed as fuel, and liquid lead works as the coolant in the secondary circuit. To
design the control system of such an advanced reactor, the uncertainties of the employed computer
model and the physicochemical properties of the materials must be considered. In this paper, a
one-dimensional model of a core is established based on the equivalent parameters achieved via the
coupled three-dimensional model, taking into account delayed neutron precursor drifting, and a
power control system is developed. The performance of the designed controllers is assessed, taking
into account the model and property uncertainties. The achieved results show that the designed
control system is able to maintain the stability of the system and regulate the power as expected.
Among the considered uncertain parameters, the reactivity coefficients of fuel temperature have the
largest influence on the performance of the control system. The most optimized configuration of
the control system is delivered based on the characteristics of uncertainty propagation by using the
particle swarm optimization method.

Keywords: small module dual fluid reactor; delayed neutron precursor drifting; load regulation;
uncertainty-based optimization; particle swarm optimization; uncertainty and sensitivity analysis

1. Introduction

The dual fluid reactor, which adopts molten salt or liquid eutectic metal (U-Pu-Cr)
as fuel and liquid lead as a coolant, has a considerable number of advantages over con-
ventional reactors. It is a novel variant of the Generation IV molten salt reactor and liquid
metal fast reactor. A relevant study can be traced back to 1966, when a two-fluid molten salt
breeder reactor (MSBR) was designed at Oak Ridge National Laboratory [1]. The proposed
MSBR was investigated for its load-following capability under various ramp rates of the
power demand without a controller [2], and its enlarged version of 2 GW thermal output
was proposed by Taube et al. in 1974 [3]. Later, a new design of the two-fluid molten salt
reactor, named the dual fluid reactor (DFR), was proposed by researchers at the Institue for
Solid-State Nuclear Physics (IFK) [4]. By using liquid lead, the dual fluid reactor has a high
capability to transfer heat produced in the core and can be operated at a considerably high
power density without any safety issues. The characteristics of the steady-state physics of
the dual fluid reactor concept were investigated [5,6], and a comparative study of the two
fuel options was conducted [7]. The distribution zone of the dual fluid reactor concept has
been designed and analyzed from the perspective of thermal hydraulics [8,9]. According to
previous studies, the dual fluid reactor concept has a unique feature. Based on this fact, spe-
cial attention has to be paid to the design and optimization of its control system to ensure
that the reactor is able to follow the load as desired and has little overshoot/fluctuation as
possible. However, to date, research on the control system of the dual fluid reactor concept
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has not been conducted, and the strategy for optimization of the controller is unknown.
Moreover, the uncertainties introduced during the modeling process must be considered
to ensure that the optimized control system is always reliable in spite of the deviations
between the numerical model and reality.

In this work, a one-dimensional model of the core of the small modular dual fluid
reactor (SMDFR) is built based on the equivalent parameters achieved by the coupled three-
dimentional model, taking into account delayed neutron precursor (DNP) drifting, and a
power control system is developed. Then, the most representative uncertain parameters
of this model are chosen based on the experience of a previous study [10], and their
influences on the numerical model are quantified. Finally, the technique of particle swarm
optimization (PSO) is implemented to optimize the controller of the core considering
its uncertainties.

2. Description of SMDFR and Control System
2.1. Small Modular Dual Fluid Reactor

Unlike the original dual fluid reactor design, the nominal power of the small modular
dual fluid reactor was reduced to: P0 = 0.1 GW = 100 MW , which is much lower compared
to the original designed thermal power of 3 GW. The schematic of the SMDFR is shown
in Figure 1. There are three circuits in the schematic: the primary circuit of molten salt as
fuel is depicted in deep red; the secondary circuit of liquid lead as the primary coolant
is depicted in yellow; and the tertiary circuit of liquid lead as the secondary coolant is
depicted in blue. The mass flow rate of the molten salt in the primary circuit is notably
low and is intended solely for online fuel processing instead of heat removal. The heat
produced by fission in the core is majorly taken by the liquid lead as the primary coolant in
the secondary circuit and then transferred to the secondary coolant in the tertiary circuit
for utilization, such as hydrogen production, electricity generation, and water desalination

Fuel
PPU

Secondary
Coolant

Secondary
Coolant

Reflector Reflector

Primary
Coolant

Distribution Zone
(Lower part)

Collection Zone
(Upper part)

Core Zone

Figure 1. Schematic of the small modular dual fluid reactor.

In this work, the core of the SMDFR is chosen as the research object, which is made
of three parts: the distribution zone, core zone, and collection zone. Starting from the
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bottom part of the core, the fuel (molten salt) goes into the distribution zone, flows through
the core zone, and then leaves the collection zone. The coolant (liquid lead) flows in
the same direction and takes heat generated by the fission reaction taking place in the
molten salt. Since this work focuses on the one-dimensional model of the core, a detailed
description of the geometry is beyond the scope of this paper, and the reader is referred to
the literature [9].

The major design parameters are listed in Table 1. In this work, the molten salt, which
is a mixture of uranium tetrachloride and plutonium tetrachloride, is selected as fuel, and
silicon carbide is employed as the pipe wall.

Table 1. SMDFR design parameters.

Parameters Values

Core zone D × H (m) 0.95 × 2.0
Distribution zone D × H (m) 0.95 × 0.2
Collection zone D × H (m) 0.95 × 0.2

Height of core (m) 2.4
Outer reflector diameter (m) 1.25

Tank D × H (m) 1.65 × 3.4
Number of fuel tubes 1027

Fuel pin pitch (m) 0.025
Outer/interior fuel tube diameter (m) 0.008/0.007

Outer/interior coolant tube diameter (m) 0.005/0.004
Mean linear power density (W/cm) 609

Fuel inlet/outlet temperature (K) 1300/1300
Coolant inlet/outlet temperature (K) 973/1100

Fuel inlet/in-core velocity (m/s) 3/0.5225
Coolant inlet/in-core velocity (m/s) 5/1.3488

2.2. Uncertainty-Based Particle Swarm Optimization of the Control System

A control system is designed for the control of power of the SMDFR. Its working
principle is shown in Figure 2. The desired power is determined based on the load demand
and then compared with the measured power. Their difference is sent to the PI controller
to adjust the value of reactivity to be introduced. It can be observed that a limiter of
±15 pcm/s is applied to limit the introduction rate of reactivity, considering the criticality
safety of the core and engineering feasibility [11]. The reactivity is assumed to be introduced
by the control rod and applied uniformly to the whole core. As initial values, Kp is set to
200 and Ki is set to 50. Firstly, the feasibility of the designed control system is investigated,
and then optimization of the examined control system is conducted.

åDesired 
Power

Measured 
Power

PI 
Controller

1/s

Integrator

å+ +

+

Initial 
Reactivity

SMDFR
Core

Limiter of the 
reactivity 

introducing rate

--

Figure 2. Working principle of the power control system.

To achieve the best performance, the particle swarm optimization technique is em-
ployed to settle the PI parameters for the control system. The uncertainties of the model and
property have to be quantified to ensure that the optimization is always valid. The structure
of the uncertainty-based PSO optimization of the PI controller is shown in Figure 3.
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Figure 3. Structure of the uncertainty-based particle swarm optimization of the control system.

3. Methodology

In this work, a one-dimensional model of the SMDFR core is established based on
the equivalent parameters achieved by the coupled three-dimensional model, taking into
account the delayed neutron precursor drifting by modifying the point kinetic model.
The reactivity feedback, resulting from the temperature and density change in the two
fluids, is considered by a linearized correlation of the introduced reactivity and the changed
temperatures. After finishing the core model, a PI controller is added to control the power
via the introduction of positive or negative reactivity based on the difference between the set
value and the measured value of core power. Finally, the uncertainty-based control system
is designed and optimized using the PSO technique considering the uncertainty quantifica-
tion.

3.1. Reactor Core Modeling

In order to obtain basic data for the establishment of the one-dimensional model of the
SMDFR core, the parameters needed for the neutronic and thermodynamic equations are
acquired from the coupled three-dimensional model. In addition, the point kinetic model
has to be modified to accurately describe the process of delayed neutron precursor drifting.
The thermodynamic model is built based on the assumption that the fuel, the piping
wall, and the coolant in the core are divided into 12 parts and each part has lumped
properties. The point kinetic model and the thermodynamic model are then linked by the
reactivity feedback.

3.1.1. Data Used for Analysis

For the simulation, two types of data are required, the neutronics data (Table 2) and
the thermodynamics data (Table 3). The neutronics data are obtained by using Serpent
2.1.31 with the ENDF/B-VII nuclear data library, applying the calculated temperature and
density distributions of the fuel and coolant. The thermodynamics data are calculated
using the fully resolved CFD model via COMSOL Multiphysics version 5.6 [12] together
with its CFD module [13] and heat transfer module [14].
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Table 2. Neutronics data for the point kinetic model.

Parameters Value

Λ (s) 1.05× 10−6

βi (−)
(7.91× 10−5 7.03× 10−4 5.04× 10−4

1.17× 10−3 4.57× 10−4 1.10× 10−4 )
β (−) 3.02× 10−3

λ (1/s) (1.27× 10−2 3.00× 10−2 1.10× 10−1 3.19× 10−1 1.18 7.02)
φtot (1/(m2 · s)) 3.61× 1021

1
v (s/m) 4.16× 10−9

N0 (1/m3) 1.50× 1013

Pi (W)
(1.58× 10−1 6.42× 10−2 6.98× 10−2 7.10× 10−2

7.14× 10−2 7.12× 10−2 7.07× 10−2 7.00× 10−2

6.91× 10−2 6.76× 10−2 6.49× 10−2 1.52× 10−1)
P0 (W) 1.00× 108

τc (s) 5.43
τe (s) 10.0
λc (1/s) 0.184
λe (1/s) 0.1
α f (1/K) −2.08× 10−4

αc (1/K) −8.28× 10−6

ρ0 ($) 1.11× 10−3

Ci,0 (1/m3)
(4.29× 1014 4.15× 1015 3.83× 1015

1.16× 1016 5.70× 1015 1.53× 1015)

Cei,0 (1/m3)
(7.01× 1014 5.88× 1015 3.36× 1015

5.09× 1015 8.20× 1014 3.96× 1013)

Table 3. Thermodynamics data.

Parameters Distribution Zone Core Zone (1 from 10 Nodes) Collection Zone

Fuel pipes (#) - - 1027
Coolant pipes (#) 2166 2166 -
A f w (m2) 13.6 9.0 13.6
Awc (m2) 10.9 10.3 10.9
ṁ f (kg/s) 327.7 327.7 327.7
ṁc (kg/s) 5550.5 5550.5 5550.5
M f (kg) 307.7 116.4 307.7
Mw (kg) 39.3 31.1 39.3
Mc (kg) 219.9 770.5 219.9
cp, f (J/(kg · K)) 400 400 400
cp,w (J/(kg · K)) 690 690 690
cp,c (J/(kg · K)) 140.2 140.2 140.2
Heat taken by coolant (J) 18,744,000 5,970,000 16,956,000
h f w (W/(K ·m2)) 6546.0 4305.1 7629.5
hwc (W/(K ·m2)) 27,405.4 13,833.4 32,177.3
Tin

f (K) 1300.0 - -
Tin

c (K) 973.0 - -

3.1.2. Modified Point Kinetic Model

In order to accurately capture the neutronic behavior of the SMDFR, the point ki-
netic model [15] with 6 delayed neutron groups (i = 1, ..., 6) is adopted and modified.
Although the fuel outside of the core is kept subcritical, the decay process of delayed
neutron precursors has to be considered to describe its influence on neutron distribution
in the core. Traditionally, the effect of the delayed neutrons due to the flowing fuel is
described by two additional terms [16]: the precursor loss when the fuel leaves the core,
and the precursor gain when the fuel re-enters the core, which are the 3rd and the 4th terms
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on the right side of the delayed neutron precursors equations, respectively, as shown in
Equation (1). However, the time delay term introduces some complexities to the modeling
process, and some special treatments have to be applied to solve this kind of equation.
To eliminate this time delay term, the concentrations of the six groups of delayed neutron
precursors outside of the core, Cei, are defined, and then the balance of delayed neutron
precursors can be described as shown in Figure 4. The concentrations of the six group
delayed neutron precursors inside the core can be given by Equation (2). Since six depend
variables are introduced, an additional six equations (Equation (3)) describing the evo-
lution of the DNP concentrations outside of the core, together with the equation of the
neutron density (Equation (4)), have to be added to close the set of equations for the point
kinetic model.

Outside of 
the core:

Inside the core:
Decay: Decay:

Exchange rate of the delayed 
neutron precursors:

Exchange rate of the delayed 
neutron precursors:

Figure 4. Schematic of the balance of delayed neutron precursors.

dCi(t)
dt

=
βi
Λ
· N(t)− λiCi(t)− λcCi(t) + λcCi(t− τe) · e−λiτe (1)

dCi(t)
dt

=
βi
Λ
· N(t)− λiCi(t)− λcCi(t) + λeCei(t) (2)

dCei(t)
dt

= −λiCei(t)− λeCei(t) + λcCi(t) (3)

dN(t)
dt

=
(ρ(t)− β)

Λ
· N(t) +

6

∑
i=1

λiCi(t) (4)

The initial value of ρ, Ci and Cei can be calculated by solving the governing equations
Equations (2)–(4), applying a stationary state condition by making the time derivative
terms equal to zero, as shown in Equations (5)–(7).

ρ0 = β−
6

∑
i=1

βi · (λi + λe)

λi + λe + λc
(5)



Energies 2021, 14, 6708 7 of 22

Ci,0 =
βi
Λ
· N0 ·

λi + λe

(λi + λe + λc) · λi
(6)

Cei,0 = Ci,0 ·
λc

λi + λe
(7)

3.1.3. Thermodynamic Model

Considering the geometry structure of the core, 12 nodes are defined: Node 1 for
the distribution zone, Node 2–11 for the core zone, and Node 12 for the collection zone,
as shown in Figure 5. Each node has a height of 0.2 m. The energy balance of Node 1 is
described by Equations (8)–(10). For the remaining nodes (Node 2–12, i = 2, ..., 12), the heat
transfer process is governed by Equations (11)–(13). As shown in Figure 5, the heat gener-
ated by the nuclear fission is transferred from the fuel to the piping wall and then to the
primary coolant. Finally, the fission energy is taken by the primary coolant and transferred
to the secondary coolant for utilization. The power is assumed to be proportional to the
neutron density, as shown in Equation (14).

Node 1

Node 2Node 2

Node 4

Node 3

Node 5

Node 7

Node 6

Node 12

Node 10

Node 9

Node 8

Node 12

Node 1

Node 11

Node 10

Node 9

Node 8

Node 7

Node 6

Node 5

Node 4

Node 3

Node 12

Node 1

Node 9

Node 8

Node 7

Node 6

Node 5

Node 4

Node 3

Node 2

Node 
11

Node 
10

Node 
12

Fuel Piping Wall Primary Coolant

Figure 5. Schematic of nodalization and energy balance.

M1
f · c

1
p, f ·

dT1
f (t)

dt
= P1(t) + ṁ f · c1

p, f · (T
in
f − Te

f (1))− h1
f w · A

1
f w · (T

1
f − T1

w) (8)

M1
w · c1

p,w ·
dT1

w(t)
dt

= h1
f w · A

1
f w · (T

1
f − T1

w)− h1
wc · A1

wc · (T1
w − T1

c ) (9)
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M1
c · c1

p,c ·
dT1

c (t)
dt

= ṁc · c1
p,c · (Tin

c − Te
c (1)) + h1

wc · A1
wc · (T1

w − T1
c ) (10)

Mi
f · c

i
p, f ·

dTi
f (t)

dt
= Pi(t) + ṁ f · ci

p, f · (T
e
f (i− 1)− Te

f (i))− hi
f w · A

i
f w · (T

i
f − Ti

w) (11)

Mi
w · ci

p,w ·
dTi

w(t)
dt

= hi
f w · A

i
f w · (T

i
f − Ti

w)− hi
wc · Ai

wc · (Ti
w − Ti

c) (12)

Mi
c · ci

p,c ·
dTi

c(t)
dt

= ṁc · ci
p,c · (Te

c (i− 1)− Te
c (i)) + hi

wc · Ai
wc · (Ti

w − Ti
c) (13)

P(t) = P0 ·
N(t)
N0

(14)

3.1.4. Reactivity Feedback

The change in temperatures of the fuel or coolant introduces additional reactivity,
which is called reactivity feedback, and it has an important impact on the operation of the
reactor. The reactivity ρ(t) consists of the initial reactivity, the reactivity introduced by the
variation in temperatures of the fuel and coolant, and the externally inserted reactivity
from control rods or other sources, as shown by Equation (15):

ρ(t) = ρ0 + α f (T f (t)− T f ,0) + αc(Tc(t)− Tc,0) + ρinsert, (15)

where α f is the temperature feedback coefficient of fuel; αc is the temperature feedback
coefficient of the coolant; T f ,0 and Tc,0 are the initial mean temperatures of the fuel and
coolant, respectively; and T f (t) and Tc(t) denote the real time mean temperatures.

3.2. PI Controller

In this work, the PI controller is adopted for the control system. As a variation of
proportional integral derivative (PID) control, only the proportional and integral terms are
used in proportional integral (PI) control. The difference between the set value and the
real (measured) value, e(t), is given to the PI controller as the feedback error, and then the
value of the controller output u(t) is calculated in the time domain from the feedback error
by Equation (17) and then fed into the system as the manipulated variable input. It is clear
that the two parameters Kp and Ki have a significant influence on the system response and,
thus, should be optimized for the best control performance.

e(t) = Pset − Preal (16)

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt (17)

3.3. Uncertainty Quantification

In order to quantify the system uncertainties, the input uncertainties of the system
must be identified, and their ranges and probability densities function must be determined.
Several methods are available for the quantification of uncertainty, but the nondestructive
technique, tolerance limits [17], is selected in this work considering its reduced consump-
tion of computational resources. The Monte-Carlo method, which is much more computa-
tionally expensive, is used to verify the performance of the delivered control system.

3.3.1. Input Uncertainties of the Numerical Model

Regardless of the accuracy that the numerical model can achieve, since approxima-
tions and assumptions are essential in the modeling and calculation process, a degree of
uncertainty is always expected and has to be well quantified to deliver reliable results with
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adequate assurance. However, since not all of the uncertain parameters can be considered
due to the limited computational resources and the limited knowledge, only the most
representative uncertain parameters are taken into account based on the experience of a
previous study [10]. Their influences on the numerical model have to be quantified and
considered during the design and optimization of the control system.

The selected uncertain parameters, which are considered as the input of the uncertainty
quantification procedure, were assumed to be uniformly distributed in their ranges and are
given in Table 4. The ranges are determined in the following manner:

• Thermal power, mass flow rates, and inlet temperatures are specified with reference
to the reported experimental uncertainty in the literature [18].

• The heat capacity of liquid lead (coolant) is specified according to the uncertainty
bounds found in [19].

• The heat capacity of molten salt (fuel) is specified referring to the value of liquid
lead. Since no data are available for the molten salt, and there is a heat transfer
process between the two fluids, a consistent uncertainty range is applied to both
of them in order to achieve a conservative assumption for the heat transfer process.
In the future, its value will be adapted when experimental data of the molten salt are
generated/available.

• Temperature feedback coefficients and heat transfer coefficients are taken with a±10%
uncertainty range from the default value. Since no data are available, this assumption
is considered to be sufficiently conservative. When more data are obtained, their
ranges will be updated accordingly.

Table 4. Uncertain parameters.

# Parameters Probability Density Function Min. Max.

1 Thermal power (factor) Uniform 0.98 1.02
2 Temperature feedback coefficient of fuel (factor) Uniform 0.9 1.1
3 Temperature feedback coefficient of coolant (factor) Uniform 0.9 1.1
4 Mass flow rate of fuel (factor) Uniform 0.95 1.05
5 Mass flow rate of coolant (factor) Uniform 0.95 1.05
6 Heat capacity of fuel (factor) Uniform 0.95 1.05
7 Heat capacity of coolant (factor) Uniform 0.95 1.05
8 Heat transfer coefficient between fuel and wall (factor) Uniform 0.9 1.1
9 Heat transfer coefficient between wall and coolant (factor) Uniform 0.9 1.1

10 Fuel inlet temperature (additive) Uniform –2.2 2.2
11 Coolant inlet temperature (additive) Uniform –2.2 2.2

3.3.2. Tolerance Limits

The idea of applying tolerance limits for uncertainty quantification was proposed
by Glaeser [17]. By employing this technique, the required sample size, which is the
required runs of the computer model, is reduced, while the resulting statistical interval
binds with confidence (usually 95%). According to the definition made by Krishnamoorthy
and Mathew [20], two types of tolerance limits can be achieved: one-sided tolerance limits
and two-sided tolerance limits.

The upper/lower tolerance limit can be explained as follows: the 1− α upper/lower
confidence limit can be granted for at least the (100× p)th percentile of the population.
A 100× p percentage of the population would be bounded by the upper/lower tolerance
limit with a confidence of 1− α.

The two-sided tolerance limits can be explained as follows: The 1 − α two-sided
confidence limits can be granted for at least the (100× p)th percentile of the population.
A 100× p percentage of the population would be bounded by the two-sided tolerance
limits with a confidence of 1− α.
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The confidence level α can be calculated by [21]

α ≤
r+s−1

∑
k=0

(
N
k

)
(1− p)k pN−k (18)

When a one-sided upper/lower tolerance limit is considered, r/s has to be set to 0.
When two-sided tolerance limits are expected, normally, r is set to be equal to s to ensure a
consistent grade of upper and lower limits. Given r, s, p (population proportion of interest)
and α, the required sample size (N) is given by Equation (18).

In this work, 59 runs were performed to obtain the one-sided upper tolerance limit
based on the 1D computer model. Making the confidence level equal to 0.95, the population
proportion of interest p would be 0.95 according to Equation (18).

3.3.3. Sensitivity Quantification

The effect of the sensitivity of input uncertainty on the system output can be inves-
tigated by the following four types of methods: graphical methods, screening analysis,
regression-based analysis, and variance-based analysis. The sensitivity is quantitatively
analyzed by the latter two methods in this paper, as the former two methods are qualitative.

Regression-based techniques are often used to quantitatively analyze sensitivity when
the system has a linear response between the input and output. The computational
cost is lower than that of the variance-based technique. In this work, the standardized
regression coefficient (SRC), which is given by Person’s ordinary correlation coefficients
(Equation (19)) based on standardized variables (Equation (20)), is selected as the index
to quantify the importance of input variables. The squared value of SRC is considered to
be the fraction of the output variance linearly explained by the input [22]. The coefficient
of multiple determination [23] (Equation (21)) is used to examine the linearity of this
relationship. Only when it is larger than 0.6 (cut-off value) can a high enough fraction of the
output variability be explained by the input variability under a linear relation. The closer
its value to 1.0, the more significant the linear relationship.

r(Xj, Y) =
∑N

i=1(yi − Ȳ)(xi,j − X̄j)[
∑N

i=1(xi,j − X̄j)2 ∑N
i=1(yi − Ȳ)2

] 1
2

(19)

Z̃ =
Z− E(Z)

σ(Z)
(20)

R2 = (r(Y, X1), ..., r(Y, Xk))[Corr(X)]−1(r(Y, X1), ..., r(Y, Xk))
T (21)

The variance-based technique (Sobol indices) was proposed by Ilya M. Sobol [24,25].
The output variance is decomposed, and the contribution of each input variable to output
variance is identified by a certain percentage. This technique can quantify the global sensi-
tivity regardless of whether or not the system is linear, while the interaction between input
variables properly occurs. The major drawback of this method is the high computational
cost: (k + 2) · N, where k denotes the amount of input variables and N denotes the sample
size, with a value typically larger than 1000. By defining two commonly used Monte-Carlo
estimators, S1 and ST, the first-order sensitivity index and the total effect index [25,26],
the sensitivity can be quantified taking into account the linear and non-linear relationships.
A detailed discussion of the Sobol method is beyond the scope of this paper; more details
on its algorithm and estimators can be found in the literature [10].

3.4. PSO Optimization with Uncertainties

Particle swarm optimization is a technique used to optimize a problem [27]. By moving
the candidate particles in the search space according to the defined formula, the particles
are guided toward the best positions based on a given criterion. Finally, the best position
will be found as the optimal solution. Since this paper focuses on the uncertainty-based
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design and optimization of the control system, a more detailed discussion of the algorithm
of particle swarm optimization and its development is beyond the scope of this work.
Further details can be found in the literature [27–29]. In this work, the Matlab toolbox,
Constrained Particle Swarm Optimization version 1.31.4 [30], is used for the PSO algorithm.

The process of the PSO algorithm with uncertainties of the control system is shown in
Figure 6. Firstly, the input parameters are sampled based on the given distributions shown
in Table 4, and then the initial conditions of the computer models are set. After setting the
controller parameters, the system uncertainty is quantified, and then the performance of
the given control system is assessed. By continuously adjusting controller parameters using
the PSO algorithm, the optimized control system considering the existence of uncertainty
will be achieved. Notably, not only can this working flow be applied to the design of the
control system of the nuclear system, but it can also be used for the control system of any
other energy systems subjected to uncertainties.

Start

Set controller 
parameters Kp, Ki

Set initial conditions

Determination of 
uncertain parameters & 

Sampling

Uncertainty propagation

Quantified performance 
of the control system with 

uncertainty 

Meet the fitness 
criterion?

End

Adjust controller 
parameters using the 

PSO algorithm

Generation of uncertain 
models

Randomly initialize the swarm 
positions, inertia weight, 

iteration count

Evaluation the fitness of the 
swarm, locate the personal best 

and global best of the swarm

Update the velocity and position 
of each particle in the swarm

Update the inertia weight, 
iteration count

Figure 6. Flowchart of the design of the uncertainty-based control system.

4. Results and Discussion

The Results and Discussion Section is divided into four parts: verification, feasibility
of the control system, optimization, and performance assessment.

4.1. Verification

Since the SMDFR is a new concept, and no experimental data are available at this
stage, the 1D Matlab model has to be verified against the high-fidelity 3D COMSOL
model. A comparison is shown in Figure 7, where asterisks represent the temperature
of fuel, the downward-pointing triangle represents the temperature of piping wall, and
the cross represents the temperature of the coolant. The results from COMSOL model are
depicted in red and those from the Matlab model in black. Taking the COMSOL model as
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a reference, it can be seen that the shapes of temperature distributions of fuel, the piping
wall, and the coolant are generally well captured by the Matlab model. Besides Node 12,
the temperature differences in all of the other nodes are within ±20◦C. Matlab model was
demonstrated to have sufficient capacity to capture the system behaviors and correctly
predict the temperature distributions, which means that this 1D Matlab model can be used
for the design and investigation of the control system.
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Figure 7. Verification of the 1D Matlab model against the 3D COMSOL model.

4.2. Feasibility of the Control System

In order to investigate the feasibility of the control system, three transients, with and
without the control system, are calculated: ±100 pcm insertion of reactivity, ±20 ◦C
variation in the inlet temperature, and ±10% variation in the coolant mass flow rate.

The results of the system response for ±100 pcm insertion of reactivity are shown in
Figure 8. The power evolution of the system without a control system is depicted in red
and that with a control system in black. Without a control system, as shown in Figure 8a,
100 pcm reactivity is inserted into the core at t = 10 s, causing the power to increase by
around 6%. Since more power is generated to heat the fuel and coolant, their temperatures
are increased. Due to the negative reactivity feedback of the fuel and coolant, a negative
reactivity is introduced, and, thus, the power returns to 102.5% of its nominal power and
stays constant at this level. However, the power level changes due to this perturbation,
which is not preferred during the normal operation when an unchanged power level is
expected despite perturbation. With the control system, the power goes back to its nominal
value after several oscillations, and the peak value of the power is 1% lower than that
without a control system. For the transient with –100 pcm reactivity insertion (Figure 8b),
the system with a control system is also capable of retaining the nominal power after
perturbation. For both cases, the time needed for the system to go back to its original state
is within 150 s.

The results of the system response for ±20 ◦C variation in the inlet temperature are
shown in Figure 9. Without a control system, as shown in Figure 9a, the coolant inlet
temperature increases by 20 ◦C at t = 10 s, causing the power to decrease by around 8%
due to the negative reactivity feedback of the coolant. The decreased power results in a
decrease in fuel temperature. Thus, the negative reactivity introduced by the coolant is
countered by the positive reactivity introduced by the decrease in fuel temperature. Finally,
the power stays constant at the level of 92.5% of its nominal power. With a control system,
the power returns to its nominal value after several oscillations, and the peak value of the
power is 1% lower than that without a control system. For the transient with the decrease of
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20 ◦C (Figure 9b), the system with a control system is also capable of retaining the nominal
power after perturbation. For both cases, the time needed for the system to return to its
original state is 150 s.
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Figure 8. System response of the insertion of reactivity: (a) insertion of reactivity at 100 pcm; (b) Insertion of reactivity at –100 pcm.
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Figure 9. System response of variation in inlet temperature: (a) inlet temperature increased by 20 ◦C; (b) inlet temperature
decreased by 20 ◦C.

The results of the system response for±10% variation in the coolant mass flow rate are
shown in Figure 10. Without a control system, as shown in Figure 10a, the coolant mass flow
rate increases by 10% at t = 10 s, causing the power to increase by around 4%. As soon as the
coolant mass flow rate increases, the heat transfer between the fuel and coolant enhances,
and their temperatures thus decrease, resulting in an introduction of positive reactivity due
to the negative reactivity feedback. Once the power increases, the temperatures of fuel and
coolant increase, and, then, the introduced positive reactivity is countered by the negative
reactivity introduced due to the temperature increase in the fuel and coolant. Finally, the
power stays constant at the level of 100.4% of its nominal power. With a control system,
the power returns to its nominal value after several oscillations, and the peak value of the
power is 1% lower than that without a control system. For the transient with the decrease
in the coolant mass flow rate (Figure 10b), the system with a control system is also capable
of retaining the nominal power after perturbation. For both cases, the time needed for the
system to return to its original state is 150 s.
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Figure 10. System response of the variation in the coolant mass flow rate: (a) coolant mass flow rate increased by 10%;
(b) coolant mass flow rate decreased by 10%.

4.3. Optimization

Although the control system is proved to be capable of handling various transients, its
parameters have to be optimized to achieve the best performance. For the optimization of
the control system, two scenarios are selected as benchmark cases: step load change: 100%
FP to 90% FP; linear load change: 100% FP to 50% FP to 100% FP, as shown in Figure 11.

The integral time-weighted absolute error (ITAE), as defined by Equation (22), is
selected as the criterion of performance of the control system for the case of step load
change, since the errors that exist after a long time have to be weighted much more heavily
than those at the start of the transient. For linear load change, the integral absolute error
(IAE), as defined by Equation (23), is chosen as the criterion of performance, since the
error should not be time weighted in this case any more. For both cases, the uncertain
parameters in Table 4 are used to calculate the one-sided upper tolerance limit of the ITAE,
which is chosen as the output of the fitness function of the PSO process. The achieved
optimized solution has the following meaning: under the given uncertainty parameter
ranges, at least 95% of the possible system states would have a better performance than
that of the final optimized value achieved from the PSO process, with a probability of
95%. By applying the optimized parameters, the control system has a probability of 95% to
deliver an optimized performance for more than 95% of the system states.

ITAE =
∫ tmax

0
t|e(t)|dt, (22)

IAE =
∫ tmax

0
|e(t)|dt, (23)

where e(t) is the error between the measured value of the controlled variable and its
desired value.
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Figure 11. Two benchmark cases: (a) step load change: 100% FP to 90% FP; (b) linear load change: 100% FP to 50% FP to 100% FP.
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4.3.1. Step Load Change

The major parameters for the PSO process are shown in Table 5. After 232 generations,
the average cumulative change in the value of the fitness function over 50 generations is
less than 1× 10−6, and the final best point is: Kp = 7723.2, Ki = 872.29, with a fitness value
of 70.78. The evolution of fitness value during the PSO process is shown in Figure 12, where
the maximum and minimum values of the particles in each generation are depicted by the
error bar. For the first 60 generations, large variations can be observed, as the particles were
going through the entire domain to identify the best point (Figure 13). Then, they started
to focus on a smaller region, where the best point can be found. After 130 generations,
all particles were close to the final best point, and the optimization process finished after
232 generations.

Table 5. Major parameters for the PSO process of step load change.

Parameters Value

Fitness function
∫ tmax

0 t|e(t)|dt
Number of variables 2
Constraints none
Kp 10~10,000
Ki 10~1000
Population size 20
Generations 300
Social attraction 1.25
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Figure 12. Evolution of fitness value for the case of step load change.
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Figure 13. Evolution of parameters for the case of step load change: (a) Kp; (b) Ki.
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4.3.2. Linear Load Change

The major parameters for the PSO process are kept the same as those for the step load
change, as shown in Table 5. After 66 generations, the average cumulative change in the
value of the fitness function over 50 generations is less than 1× 10−6, and the final best point
is: Kp = 10,000.0, Ki = 1000.0, with a fitness value of 0.014. The evolution of fitness value
during the PSO process is shown in Figure 14, where the maximum and minimum values of
the generation are depicted by the error bar. Unlike the step load change, the particles found
the location of the best point after only 20 generations (Figure 15), and the optimization
process was terminated after 66 generations. The amount of generation needed to identify
the best point is much lower, since it is not so challenging for the control system to follow
the load for the linear load change. Without the preset limits, Kp and Ki would obtain
other values since they already reached their limits. However, the integral absolute error
considering the limits lies below 0.015, which means that a well-optimized control system
is obtained and no further optimization is necessary.
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Figure 14. Evolution of fitness value for the case of linear load change.
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Figure 15. Evolution of parameters for the case of linear load change: (a) Kp; (b) Ki.

4.4. Performance Assessment

The performance of the optimized control system must be assessed considering its
uncertainty and compared with its performance before optimization. Unlike the tolerance
limits technique used in the optimization process, a Monte-Carlo method is adopted to
assess the performance before and after optimization: 1000 uncertain runs are performed,
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and their confidence intervals (95% confidence) for quantiles 95% and 5% are chosen as the
upper and lower boundaries, respectively.

For step load change, the control system-introduced reactivity during the transient is
shown in Figure 16, and the system responses before and after optimization are shown in
Figure 17. The desired value is depicted in red; the median value of the real power (system
response) is depicted in black; the blue and green lines depict the upper (95%) and lower
(5%) uncertain boundaries of the system response, respectively.

The evolution of the introduced reactivity after optimization can be found in Figure 16.
In the first stage of the transient (from t = 10 s to t = 60 s), the introduced reactivity reached
its lower limit (–15 pcm/s), as the PI controller tried to eliminate the error introduced by
the step signal as much as possible and thus made the output value equal to its lower limit
to decrease the power. In the second stage (from t = 60 s to t = 90 s), since the reactor power
was decreased by the introduced negative reactivity in the first stage, the fuel and coolant
temperatures were lower than their original values. Due to the negative reactivity feedback
coefficient of both fluids (Table 2), an additional positive reactivity was introduced and
thus made the power higher than the set value. In order to counteract this effect, the PI
controller switched its output from the lower limit to the upper limit (15 pcm/s) to reduce
the reactor power. Finally, the power reached its set value at a new steady-state, and then
the output signal of the PI controller returned to zero.

It is clear that the system response cannot be presented by a single fixed curve in time
but by a region that is bounded by the upper and lower uncertain boundaries, which means
that the system performance cannot be assessed by a simple curve but can be achieved
based on the results of statistics with a certain confidence. However, after optimization,
the performance of the control system is largely improved, as shown in Figure 17b, despite
the existence of uncertainty, as it has a lower overshoot, less oscillation, and less time
consumed to reach the new steady state.

The integral time-weighted absolute errors before and after optimization are shown in
Figure 18. Before optimization, the upper boundary, the largest value that the system could
deliver taking into account the existence of uncertainty with a confidence of 95%, is around
252.6 s2, and its value is reduce to 70.5 s2 after optimization, which is consistent with the
results presented in Section 4.3. Considering the uncertainties of the computer model and
the physicochemical properties, the integral time-weighted absolute error of the optimized
system has a probability of 95% to stay below 71 s2 with a confidence of 95%.
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Figure 16. Introduced reactivity of the case of step load change.
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Figure 17. System responses of the case of step load change: (a) before optimization; (b) after optimization.
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Figure 18. Integral time-weighted absolute error of the case of step load change: (a) before optimization; (b) after
optimization.

The system responses and IAE of the second case: linear load changes are shown in
Figures 19 and 20. It can be seen that the system response matches the desired power very
well, and there is almost no discrepancy between the curves, which means that the control
system can adjust the power according to the linear load change without any significant
deviations or oscillations. However, before optimization, minor oscillations are observed
right after the power ramps, which are eliminated after optimization.

The upper boundary of IAE is reduced from 0.7 s to 0.014 s through optimization.
Considering the uncertainties, the integral absolute error of the optimized system has a
probability of 95% to stay below 0.014 s with a confidence of 95%.
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Figure 19. System responses of the case of linear load change: (a) before optimization; (b) after optimization.
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Figure 20. Integral absolute error of the case of linear load change: (a) before optimization; (b) after optimization.

4.5. Sensitivity Analysis

As shown in Figure 21, parameter 2, the temperature feedback coefficient of fuel,
has a major influence on the performance of the control system. The reason is that this
feedback on reactivity plays an important role in adjusting neutron flux, and, thus, the
power changes. Moreover, since its value is several times larger than that of other reactor
concepts due to the large expansion rate of molten salt, its impact on power is significant,
and determining its value should be prioritized to deliver a reliable model with less
uncertainty. Moreover, parameter 8, the heat transfer coefficient between fuel and wall,
has a non-negligible influence on output power. Careful calibration of the heat transfer
coefficient has to be conducted in order to reduce the output uncertainty introduced by the
heat transfer process. Since the coefficient of multiple determination R2 is fairly close to
1.0, the system response can be assumed to be totally linear. This means that the results
delivered by the regression-based technique have the same high quality as those from the
variance-based technique. However, this does not imply that the system model is linear.
This linear relationship can be only applied between the input variables and the selected
system response: performance of the control system. From Figure 21b it can be observed
that for parameter 2 and 8, the total effect indices, ST, are slightly higher than the first-order
sensitivity indices, S1, which means these two parameters have certain co-effects on the
system response together with other parameters, and these effects are captured by the
total-effect indices.

Another option to reduce uncertainty is the application of a high-fidelity model,
such as the CFD model or Monte-Carlo model. However, this will considerably increase
the computational cost and, thus, is not suitable for the design and optimization of the
control system under the given computational resources. A compromise between model
accuracy and its computational cost is the employment of a fast model together with the
corresponding uncertainty quantification, which could perfectly envelop the introduced
error by uncertainty boundaries.
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Figure 21. Sensitivity analysis: (a) regression-based: SRC; (b) variance-based S1/ST.
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5. Conclusions

A one-dimensional model of the SMDFR core was established based on the equivalent
parameters achieved by the coupled three-dimensional model, taking into account delayed
neutron precursor drifting, and its accuracy was verified against the high-fidelity 3D
COMSOL model. It was demonstrated that the built one-dimensional model in Matlab
had sufficient capacity to capture and predict the system responses. A control system was
designed, and its feasibility was verified under various scenarios.

The methodology of uncertainty based optimization of the control system was pro-
posed and conducted for two cases, namely, step load change and linear load change,
during which uncertainty was quantified by the tolerance limits technique, and its influ-
ence was quantitatively considered during the optimization process. The performances
before and after optimization were assessed and compared with the uncertainty quantified
by the Monte-Carlo method. Through the usage of different uncertainty propagation
methods, namely, the tolerance limits and Monte-Carlo methods, the validity of the un-
certainty quantification process in this work was cross-validated. It must be noted that
the developed methodology of uncertainty-based optimization is not only suitable for
the design of control systems of nuclear systems, but it is also applicable to the design of
control systems of other energy systems subjected to uncertainties.

The achieved results showed that the designed control system was able to maintain the
stability of the system and regulate the power as expected. By applying the methodology
of uncertainty-based optimization, the delivered control system was optimal and demon-
strated to have the best performance, demonstrating lower overshoot, less oscillation,
and less time needed to reach the new steady state after optimization.

By performing quantitative sensitivity analysis, two key parameters were identified.
A reference for the dimension reduction was delivered, and more efforts in this area must
to be made in future modeling to effectively reduce the overall uncertainty of the system.
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Abbreviations
The following abbreviations are used in this manuscript:

SMDFR Small modular dual fluid reactor
PSO Particle swarm optimization
DNP Delayed neutron precursors
FP Full power
IAE Integral absolute error
ITAE Integral time-weighted absolute error
CFD Computational fluid dynamics
SRC Standardized regression coefficient
S1 First-order sensitivity index
ST Total effect index
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All of the quantities in this work are expressed according to the International System of Units (SI)
and to the nomenclature listed below:

Λ Mean neutron generation time
βi Fraction of the i-th DNP group
β Overall fraction of the DNP groups
λ Decay constant
φtot Total neutron flux
1
v Inverse of the neutron velocity
N0 Initial neutron density
P0 Nominal power
τc Transit time inside the core
τe Transit time outside of the core
λc Drifting-induced decay constant inside the core
λe Drifting-induced decay constant outside of the core
α f Reactivity feedback coefficient of fuel
αc Reactivity feedback coefficient of coolant
ρ0 Initial reactivity
Ci,0 Initial concentration of the i-th DNP group inside the core
Cei,0 Initial concentration of the i-th DNP group outside of the core
A f w Heat transfer area between fuel and pipe wall
Awc Heat transfer area between coolant and pipe wall
ṁ f Mass flow rate of fuel
ṁc Mass flow rate of coolant
M f Mass of fuel
Mw Mass of pipe wall
Mc Mass of coolant
cp, f Heat capacity of fuel
cp,w Heat capacity of pipe wall
cp,c Heat capacity of coolant
h f w Heat transfer coefficient between fuel and pipe wall
hwc Heat transfer coefficient between coolant and pipe wall
Tf Fuel temperature
Tw Pipe wall temperature
Tc Coolant temperature
Tin

f Fuel inlet temperature
Tin

c Coolant inlet temperature
e(t) Difference between the set value and the real (measured) value
Kp Proportional gain
Ki Integral gain
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