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Abstract: A de-loaded real power control strategy is proposed to decrease the real power output and
increase the reactive power output of a grid-connected offshore wind farm in order to improve the
voltage profile when the wind farm is subject to a grid fault. A simplified linear model of the wind
farm is first derived and a fixed-gain proportional-integral (PI) real power controller is designed
based on the pole-zero cancellation method. To improve the dynamic voltage response when the
system is subject to a major disturbance such as a three-phase fault in the grid, a self-tuning controller
based on particle swarm optimization (PSO) is proposed to adapt the PI controller gains based on the
on-line measured system variables. Digital simulations using MATLAB/SIMULINK were performed
on an offshore wind farm connected to the power grid in central Taiwan in order to validate the
effectiveness of the proposed PSO controller. It is concluded from the simulation results that a better
dynamic voltage response can be achieved by the proposed PSO self-tuning controller than the
fixed-gain controller when the grid is subject to a three-phase fault. In addition, low voltage ride
through (LVRT) requirements of the local utility can be met by the wind farm with the proposed
power controller.

Keywords: doubly fed induction generator; low voltage ride through; particle swarm optimization;
real and reactive power control; rotor side converter; self-tuning controller; wind farm

1. Introduction

According to the nuclear-free energy policy in Taiwan, more than 20% of the electrical
energy will come from renewable energy by 2025. Furthermore, the installed capacities of
the island and offshore wind farms will reach 1.2 GW and 5.7 GW, respectively. With the
increasing percentage of wind power generation, how to improve the fault ride through
(FRT) capability of a wind farm when it is subject to a grid fault very close to the wind farm
has received much attention in recent years [1].

Doubly fed induction generators (DFIGs) have been widely employed for wind en-
ergy conversion due to their variable speed operation capability, low converter cost, and
independent controllability of real and reactive power. However, the DFIG is sensitive to
grid voltage variations as its stator is directly connected to the grid [2–4]. Numerous papers
have been published to protect the DFIG and the power electronic devices in the rotor side
converter (RSC) and grid side converter (GSC) from over-current and over-voltage under
disturbance conditions [5–21]. A rotor side crowbar circuit [5,6] has been proposed to divert
transient rotor over-currents to prevent the RSC power semiconductor devices from being
damaged under grid fault conditions. A DC-link brake chopper across the converter dc
link was presented in [7] to ensure satisfactory dc link voltage during a fault. In [8], a series
dynamic resistor (SDR) combined with a crowbar resistor and a DC-link brake chopper
was designed. A proper value for the SDR was derived. A series voltage compensator in
the stator was proposed in [9] to provide the required compensation voltage such that rotor
over-current could be avoided. In [10], a dc-link chopper-controlled braking resistor and a
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series dynamic braking resistor were studied. A passive resistive network consisting of
shunt and series elements was installed at the stator [11,12] in order to achieve grid-fault
tolerant operation. In [13], a protection scheme using series dynamic braking resistor was
proposed to reach a desirable terminal voltage under voltage dip conditions. Grid side
dynamic voltage restorers have been proposed in [14–17] to avoid rotor over-current and
provide voltage support for the stator voltage. Although the aforementioned works are
effective in protecting the DFIG and the associated power electronic devices under grid
fault conditions, additional hardware components are required in order to implement these
fault ride through techniques.

Another way to attain an improved fault ride through operation of DFIG is the
software improvement and control algorithm method which requires no additional cost.
In [22], a virtual damping strategy was proposed to control the stator transient flux under
disturbance conditions. A control strategy that temporarily stored the output power in
the generator rotor during grid faults was presented in [23] in which a pitch angle control
was activated when the rotor speed exceeds its upper limit. In [24], a fuzzy controller was
designed to control the real and reactive powers of the wind farm in order to maintain
constant voltage at the point of common coupling (PCC). An optimal controller designed
using a genetic algorithm was proposed in [25] to prevent over-currents during faults.

In this paper, a novel de-loaded power control algorithm without additional hardware
components is proposed to improve the terminal voltage and to increase the reactive power
output of a DFIG subject to grid faults. When a low voltage is detected at the DFIG stator,
the real power command P∗e is de-loaded from maximum power point tracking (MPPT)
value to a level proportional to terminal voltage. After a simplified linear model of the
wind farm is derived, a fixed-gain proportional-integral power controller is designed based
on pole-zero cancellation method to yield the desired quadrature axis (q-axis) rotor current
command i∗qr from the real power command. To prevent rotor current from overloading,
the direct axis (d-axis) rotor current command i∗dr is selected such that the rotor current
is equal to its rated value (1 pu). By decreasing the real power command P∗e and q-axis
rotor current command i∗qr, the d-axis rotor current command i∗dr and the reactive power
output of DFIG can be increased. As a result, the terminal voltage is improved. Since the
gains for the fixed-gain proportional-integral (PI) controllers have been designed based on
a particular operating point, the dynamic responses of the PI controller may deteriorate
when there is a drastic change in system variables due to a major disturbance such as a
three-phase fault in the grid. In this work, a self-tuning controller based on particle swarm
optimization (PSO) [26–28] is presented to adapt the real power controller gains Kp and Ki
in real-time.

MATLAB/SIMULINK was employed to simulate the dynamic performance of an off-
shore wind farm connected to the power grid in central Taiwan under grid fault conditions.
The simulation results indicate the proposed PSO self-tuning power controller can reach
better voltage profile than the fixed-gain PI controller. It is also observed that the wind
farm with the proposed controller meets the low voltage ride through (LVRT) requirements
of the local utility in Taiwan. Based on the simulation results, it is concluded that a better
voltage profile can be achieved by the proposed PSO self-tuning power controller than the
fixed-gain PI controller. It is also observed from the simulation results that the wind farm
with the proposed controller meets the low voltage ride through (LVRT) requirements of
the local utility in Taiwan.

2. System Model

The system under study is an offshore wind farm connected to the utility grid in
central Taiwan as shown in Figure 1.

The wind farm comprises 80 wind generators, each rated 2.5 MW. These wind gen-
erators are lumped as an equivalent 200 MW DFIG generator in order to reduce the
computational burden of MATLAB/SIMULINK simulations. In addition, the system be-
yond Chung-Liao South substation is modeled as an infinite bus since its capacity is much
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higher than the wind farm. As a result, only the portion of the system surrounded by the
dashed line in Figure 1 is simulated by MATLAB/SIMULINK.
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Figure 1. An offshore wind farm connected to the utility grid in central Taiwan.

The real and reactive power outputs of the wind farm are controlled by the RSC. By
aligning the d-axis to stator flux linkage, the real power is controlled by the q-axis rotor
current iqr while the reactive power is controlled by the d-axis rotor current idr [29,30].

Figure 2 depicts the functional block diagram for real and reactive power control
of a DFIG using a dq-axis rotor current regulator. As shown in Figure 2, a wind turbine
simulator is employed to yield the DFIG mechanical torque Tm and mechanical power Pm
under the specified wind speed Vw and rotor speedωr.
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Figure 2. Functional block diagram for real and reactive power control of a doubly fed induction generator (DFIG).

2.1. Non-Linear Model of the Doubly Fed Induction Generator (DFIG) Current Regulator

Under stator flux orientation, the DFIG state equations with stator flux variations
being considered can be written as follows [29].

d
dt

 idr
iqr
λds

 =


−(Rr+L2

mRs/L2
s )

σLr
ωslip

LmRs
σLr L2

s

−ωslip − Rr
σLr

−ωslip Lm
σLr LS

Lm
LS
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 idr

iqr
λds

+


vdr
σLr
− Lmvds

σLr Lsvqr
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vds

 (1)

To achieve dq-axis decoupling, feed-forward compensators are included in the d-axis
and q-axis current regulators as described below:

vdr = xdr +
Lm

Ls
(vds −

λds
Ls

Rs)−ωslipσLriqr (2)

vqr = xqr + ωslip(
Lm

Ls
λds + σLridr) (3)



Energies 2021, 14, 6670 4 of 15

where xdr and xqr are the d-axis and q-axis control signal from the PI current regulators as
shown in Figure 3.
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2.2. Non-Linear Model of the Real and Reactive Power Controller

The commands for d-axis and q-axis current regulators, i∗dr and i∗qr, in Figure 3 are
determined by the real and reactive power controller as described in Figure 4.
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As shown in Figure 4, the real power output command P∗e of the DFIG in normal
operation is determined based on MPPT as follows [29]:

P∗e = P∗e,opt = Koptω
3
r (4)

where Kopt is a constant. When there is a fault in the grid causing a voltage dip at PCC
(|VPCC| ≤ 0.8 pu), the real power output command P∗e is decreased to a level proportional
to the voltage at PCC, i.e.,

P∗e = P∗e,optVPCC = Koptω
3
r VPCC (5)

where VPCC is the PCC voltage per unit. Based on the error ∆P∗e between the real power
output command P∗e and the actual real power output Pe, a PI real power controller is
proposed to generate the desired q-axis rotor current command i∗qr. In order to improve
the dynamic power and voltage responses under fault conditions, the gains of the PI real
power controller are adapted in real time using PSO based on on-line measured wind speed
Vw, real power Pe, PCC voltage VPCC, rotor speed ωr, stator and rotor currents, voltages,
and flux linkages. Details on the design of the fixed-gain PI real power controller and PSO
self-tuning controller will be described in the following sections.

It is also observed in Figure 4 that the d-axis rotor current command i∗dr is usually set
to be zero [29] in order for the DFIG to have the largest q-axis rotor current command i∗qr
and maximum real power output as the following constraint must be satisfied by the two
rotor current commands i∗dr and i∗qr:

i∗dr
2 + i∗qr

2 ≤ |ir ,max|2 = 1 (6)

When there is a fault causing a voltage dip, the real power output command P∗e and
the resultant q-axis rotor current command i∗qr are decreased and the d-axis rotor current
command i∗dr is increased to a level as described below:

i∗dr =
√

1− (i∗qr)
2 (7)

Thus, by increasing the d-axis rotor current according to Equation (7), the DFIG
reactive power output can be increased and the voltage at PCC can be improved under
fault conditions.

3. Design of Fixed-Gain Real Power Controllers
3.1. Linearized Model of the DFIG Gain Real Power Controller

In the design of the fixed-gain real power controller, the non-linear power equation
Pe= Teωr is first linearized as follows:

∆Pe(s) = Te0∆ωr(s) + ωr0∆Te(s) (8)

where the rotor speed deviation can be derived from the block diagram in Figure 2
as follows:

∆ωr(s) = (
1

2Hs + D
)(∆Tm(s)− ∆Te(s)) (9)

The increment in mechanical torque can be estimated using the following formula:

∆Tm(s) =
∂Tm

∂ωr
∆ωr(s) = k∆ωr(s) (10)

Note that the constant k can be estimated from the wind turbine mechanical torque
using the curve fitting technique around the maximum power point [28].

The increment in stator flux linkage, ∆λds, can be derived from Equation (1) as follows:

∆λds(s) =
1

s + Rs
Ls

(∆vds(s) +
Lm

Ls
Rs∆idr(s)) (11)

The electromagnetic torque Te can be expressed as follows:

Te =
Lm

Ls
iqrλds (12)
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By linearizing the torque equation in Equation (12), we get the increment in electro-
magnetic torque as follows:

∆Te(s) =
Lm

Ls
λds0∆iqr(s) +

Lm

Ls
iqr0∆λds(s) (13)

From the block diagrams in Figure 3 for d-axis and q-axis current regulators, the
following transfer functions can be derived:

∆idr(s)
∆i∗dr(s)

=

(Kpd+ + Kid
s ) 1

σLrss+Rr+
L2

m Rs
L2

s

1 + (Kpd+ + Kid
s ) 1

σLrs+Rr+
L2

m Rs
L2

s

(14)

∆iqr(s)
∆i∗qr(s)

=
(Kpq+ +

Kiq
s ) 1

σLrs+Rr

1 + (Kpq+ +
Kiq
s ) 1

σLrs+Rr

(15)

From Equation (7), we obtain:

2i∗dr0∆i∗dr + 2i∗qr0∆i∗qr = 0 (16)

Therefore, the increment in d-axis rotor current command ∆i∗dr is related to the incre-
ment in q-axis rotor current command i∗qr as follows:

∆i∗dr = −
i∗qr0

i∗dr0
∆i∗qr (17)

Based on Equations (8)–(11) and (13)–(17), the complete linearized model of the DFIG
real power controller can be depicted by the block diagram of Figure 5.
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3.2. Simplified Linear Model of the DFIG Real Power Controller

To compare the response speeds of the inner current regulator loop and outer power
controller loop in Figure 2, the dynamic response curves to step changes in the inputs to
the current regulator loop and power controller loop are compared in Figure 6a. Note that
the current regulator gains were determined by using the method in [30]. It is observed
from the response curves in Figure 6a that the rise time for the current regulator is about
0.1 s, which is much smaller than 5 s for the power controller. Thus, it is concluded that the
response speed of the current regulator is much faster than the power controller.

In addition, only a very insignificant change in the dynamic response of the power
controller is observed in Figure 6b when the transfer function of the current regulator is sim-
plified to be unity as done in the simplified linearized model for power controller design.

When the change in stator flux linkage ∆λds is neglected [29], the simplified linear
model as shown in Figure 7 can be reached for DFIG real power control.

Details on the design of the gains Kp and Ki for the PI controller are described below.
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inputs to the current regulator loop and power controller loop. (b) Dynamic response of the power controller with and
without current controller.
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3.3. Design of the Fixed-Gain Proportional-Integral (PI) Real Power Controller

The open-loop transfer function of Figure 7 can be expressed as:

G(s) =
Kp(s +

Ki
Kp

)

s
(

Lmλds0
Ls

)(
ωr0(2Hs + D− k)− Te0

2H(s + (D−k)
2H )

) (18)

To avoid oscillations and overshoots in a second order system, the gains of the PI
controller, Kp and Ki, are selected as follows to achieve first-order system response through
pole-zero cancellation: Ki

Kp
=

D− k
2H

(19)

From Equations (18) and (19), the closed-loop transfer function is given by:

T(s) =
G(s)

1 + G(s)
=

2HKpωr0(
Lmλds0

Ls
)s + Kp(

Lmλds0
Ls

)(ωr0(D− k)− KpTe0)

2H(1 + Kpωr0(
Lmλds0

Ls
)s + Kp(

Lmλds0
Ls

)(ωr0(D− k)− Te0))
(20)

The proportional gain Kp can be determined from Equation (20) based on the selected
bandwidthωp of |T(s)|. As evidenced by the response curves in Figure 6a, the response
speed of the current regulator is much faster than that of the power controller. Therefore,
the bandwidthωp of the power controller is chosen as follows:

ωp = 0.01ωi (21)

where ωi is the bandwidth of the current regulator as described below:

ωi = 7ωslip = 7slip×ωe (22)

whereωe is the synchronous speed. The wind speed Vw0, rotor speedωr0, electromagnetic
torque Te0, the constants k, D, H, and the reached PI controller gains under the steady-state
operating point are listed in Table 1.
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Table 1. System constants and proportional-integral (PI) controller gains under the steady-state
operating point.

Vw0 ωr0 Te0 k D H Kp Ki

11 0.9417 0.76 −0.845 0 1.75 1.181 0.2851

4. Design of Particle Swarm Optimization (PSO) Self-Tuning Controllers

As mentioned in the previous section, the gains Kp and Ki for the fixed-gain real power
controller in Figure 7 have been determined based on a particular operating point. In other
words, the gains Kp and Ki are functions of system variables such as q-axis rotor current
iqr, stator flux linkage λds, rotor speedωr and electromagnetic torque Te. Therefore, these
controller gains must be updated based on the on-line measured system variables iqr, λds,
ωr, Te, . . . , etc., in order to maintain best performance when there are significant changes
in system variables due to a major disturbance such as a three-phase fault in the grid. In
this paper, a PSO self-tuning controller as shown in Figure 4 is proposed in order to adapt
the real power controller gains Kp and Ki in real-time. A better voltage profile can thus be
achieved by the proposed PSO self-tuning controller than the fixed-gain PI controller.

The procedures to adjust the desired controller gains Kp and Ki followed by the
proposed PSO self-tuning real power controller are summarized in Figure 8 [26–28]. The
details of these procedures are described as follows.
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Step (1): Measure PCC voltage VPCC, wind speed Vw, rotor speed ωr, stator currents ids,
iqs, rotor currents idr, iqr, stator voltages vds, vqs, rotor voltages vdr, vqr, stator flux
linkages λds, λqs, and rotor flux linkages λdr, λqr every 0.2 s.

Step (2): The PSO self-tuning controller is initiated when |VPCC| ≤ 0.8 pu.
Step (3): Set initial iteration count i = 0. Generate N (= 20) random initial particles with po-

sition vector K(0)
n =

[
K(0)

n,p K(0)
n,i

]T
and velocity vector V(0)

n =
[
∆ K(0)

n,p ∆K(0)
n,i

]T

for particle n (=1,···, 20). Set initial weight w(0)
n = wmax = 0.1.

Step (4): Compute the evaluation function as defined below for each particle.

E =

0.5∫
0

|P∗e − Pe(t)| dt ∼=
10

∑
h=1
|P∗e − Pe(t)|∆t (23)

where Pe(t) is the predicted real power in the future 0.5 s which can be estimated by the
following equation:

Pe(t) = −(vds(t)ids(t) + vqs(t)iqs(t) + vdr(t)idr(t) + vqr(t)iqr(t)) (24)

A subroutine based on Euler method is developed to estimate the voltages and currents
in Equation (24) in the future 0.5 s.

In order to make real power Pe(t) as close to the desired value P∗e as possible, the
evaluation function is selected as the integral of |P∗e − Pe(t)|dt in the future 0.5 s, as shown
in Equation (23).

Step (5): The best particle position is updated as Kn= K(i)
n when the evaluation function

E for particle n with position K(i)
n at iteration i is less than that for the best particle

position pbest,n= Kn for particle n. Otherwise, Kn remains unchanged. Let particle m

(1 ≤ m ≤ 20) with position K(i)
m be the one with smallest evaluation function among

the 20 particles at the i-th iteration. The best global position, K, is updated as K = K(i)
m

at the i-th iteration if E(K(i)
m ) < E(K). Otherwise, K remains unchanged.

Step (6): Update weights, particle velocities, and particle positions for the next iteration
using the following Equations (25)–(27):

w(i)
n = wmax −

wmax − wmin

M
i (25)

V(i+1)
n = w(i)

n V(i)
n + r1(Kn − K(i)

n ) + r2(K− K(i)
n ) (26)

K(i+1)
n = K(i)

n + V(i+1)
n (27)

where wmax = 0.1, wmin = 0.01, M = 10, and r1 and r2 are random numbers between 0 and 1.

Step (7) and (8):The PSO algorithm is repeated for M (= 10) iterations in order to reach the

desired optimal power controller gains gbest= K =
[

Kp Ki
]T .

5. Simulation Results

To demonstrate the effectiveness of the proposed PSO self-tuning real power, the
dashed position of the system in Figure 1 was simulated using MATLAB/SIMULINK. The
parameters for the DFIG are given in the Nomenclature. The simulated dynamic responses
of the wind farm subject to a three-phase fault at point “Fault” in Figure 1 are presented
as follows. As the settling time reduces with increasing integral gain Ki, the gain Ki for
the fixed-gain PI controller in Table 1 was tripled in the simulations in order to reduce the
simulation time.

5.1. Dynamic Responses for a Fault Voltage of 0.5 pu

Figure 9 compares the dynamic response curves by using MPPT operation mode and
by using the proposed de-loaded power control method with fixed-gain PI controller when
the wind farm is subject to a three-phase fault at the PCC causing a voltage drop from 1 pu
to 0.5 pu.
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Based on the response curves in Figure 9, the following observations are in order:

(1) When a low voltage due to a fault is detected at t = 10 s, the real power in Figure 9b
for the de-loaded control method with fixed-gain PI controller is reduced by 50%
according to Equation (5) through the reduction in q-axis rotor current iqr as shown in
Figure 9d. According to Equation (7), the d-axis rotor current idr in Figure 9e can be
increased as a result of the decrease in iqr. Thus, the reactive power in Figure 9c is
increased and the wind farm terminal voltage in Figure 9f is improved.

(2) To compare wind farm terminal voltages from the proposed fixed-gain PI de-loaded
controller and MPPT operation mode, the dynamic voltage response curves in
Figure 9f are enlarged and depicted in Figure 9g. It is observed from Figure 9g
that the lowest voltage from the MPPT operation mode is 0.3044 pu while that from
the fixed-gain PI de-loaded controller is 0.4083 pu. The lowest voltage is improved by
34.13% when MPPT operation mode is replaced by the fixed-gain de-loaded controller
during the faulted period.

Figure 10 compares the dynamic response curves of the wind farm with fixed-gain PI
de-loaded controller and PSO self-tuning controller when the grid is subject to a fault of
0.5 pu. Based on the response curves in Figure 10, the following observations can be made:

(1) To compare the wind farm terminal voltages from the proposed fixed-gain PI de-
loaded controller and PSO controller in Figure 4, the dynamic voltage response curves
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in Figure 10f are enlarged and depicted in Figure 10g. It is observed from Figure 10g
that the lowest voltage from the fixed-gain PI controller is 0.4083 pu while that from
the PSO controller is improved to 0.4759 pu. A 16% improvement in the lowest voltage
can be achieved by the proposed PSO controller than the fixed-gain PI controller.

(2) The PSO self-tuning controller can yield a better voltage response than the fixed-gain
PI controller since its gains Kp and Ki are updated in real time every 0.2 s based on
on-line measurements, as shown in Figure 10i.
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Figure 10. Dynamic response curve for fixed-gain PI de-loaded controller and PSO self-tuning de−loaded controller when
the grid is subject to a fault of 0.5 pu. (a) Voltage at point of common coupling (PCC). (b) Wind farm real power. (c) Wind
farm reactive power. (d) q-axis rotor current. (e) d-axis rotor current. (f) Wind farm terminal voltage. (g) Enlarged version of
the terminal voltage. (h) Generator rotor speed. (i) PSO controller gains Kp and Ki.

As the real power output is decreased in the proposed de-loaded power controller in
Figure 4 in order to increase the reactive power output and to improve wind farm terminal
voltage, generator speed increases during the faulted period. It is thus essential to ensure
that the wind farm meets the LVRT requirement set by the local utility (Taiwan Power
Company) as depicted in Figure 11.
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Figure 11. Low voltage ride through (LVRT) curve for Taiwan Power Company.

It is observed from Figure 10h that the generator exceeds the speed limit of 1.2 pu
at t = 13.63 s and t = 13.13 s, respectively, for the proposed fixed-gain PI controller and
PSO self-tuning controller. This means that the wind farm will remain in a stable op-
eration for a period of 3.63 s and 3.13 s for the fixed-gain controller and self-tuning PI
controller, respectively.

Since the required operation time for a fault voltage level of 0.5 pu in Figure 11 is
1.733 s, it is concluded that both the proposed fixed-gain PI controller and the proposed
PSO self-tuning controller meet the LVRT requirement.

5.2. Dynamic Responses for a Fault Voltage of 0.3 pu

To examine the effectiveness of the proposed fixed-gain PI controller and PSO self-
tuning controller under very low grid voltage, the dynamic responses for the wind farm
subject to a 0.3 pu fault voltage at PCC were simulated using MATLAB/SIMULINK and
the results are illustrated in Figure 12.

It is observed from Figure 12g that the lowest voltage from the fixed-gain PI controller
is 0.2291 pu while that from the PSO controller is improved to 0.2846 pu. A 24.23% improve-
ment in the lowest voltage has been achieved by the proposed PSO controller than the
fixed-gain PI controller.

It is also observed from Figure 12h that the durations for the generator to run within
the speed limit of 1.2 pu are 2.4 s and 2.18 s for the wind farm with fixed-gain PI controller
and PSO self-tuning controller, respectively. Since the minimal operation time is 1.1 s from
Figure 11, both controllers meet the LVRT requirement.
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6. Conclusions

To improve the wind farm terminal voltage and to provide reactive power support to
the system under grid fault situations, a de-loaded real power control strategy implemented
with both a fixed-gain PI controller and a PSO self-tuning controller has been proposed. The
effectiveness of the proposed de-loaded real power control strategy has been demonstrated
on an offshore wind farm in Taiwan using MATLAB/SIMULINK simulations. Specific
conclusions are as follows:

(1) When the wind farm is subject to a grid fault, the wind farm terminal voltage drops
to a very low level if the wind farm remains in MPPT operation mode. The terminal
voltage can be improved if the wind farm is operated using the proposed real power
de-loaded control strategy with a fixed-gain PI controller. The reactive power output
of the wind farm can also be increased. Further improvement in voltage profile
can be achieved if the fixed-gain PI controller is replaced by the proposed PSO self-
tuning controller.

(2) Since the improvement in voltage profile is achieved by increasing reactive power
output and decreasing real power output, generator speed will increase at a higher
rate than that in the MPPT operation mode. In addition, the de-loaded strategy with
a PSO self-tuning controller, which gives a better voltage profile than that with a
fixed-gain PI controller, has a higher rate of increase in generator speed and a shorter
duration for the generator to operate within the speed limit of 1.2 pu. However, the
LVRT requirement is met by both the fixed gain and PSO controllers.
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(3) Future works will be devoted to the coordination of pitch angle controller and de-
loaded strategy in order to improve the voltage profile and duration of stable opera-
tion further.

(4) Only the design of the rotor side converter is investigated in this work. Proper design
of the grid side converter may help improve the voltage profile.

(5) Only LVRT is studied in this work. The high-voltage ride through (HVRT) will be
investigated in future works.
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Nomenclature
D Damping coefficient
H Inertia time constant
ids, iqs d-axis and q-axis stator currents
idr, iqr d-axis and q-axis rotor currents
i∗dr, i∗qr The commands for d-axis and q-axis current regulators
Kp, Ki Proportional and integral gains of real power controller
Ls, Lr, Lm Stator, rotor, and magnetizing inductances
P∗e , Pe Real power output command and actual real power output
Rs, Rr Stator and rotor resistances
Tm, Te Mechanical torque and electromagnetic torque
VPCC Voltage at the point of common coupling
Vw Wind speed
vds, vqs d-axis and q-axis stator voltages
vdr, vqr d-axis and q-axis rotor voltages
λds, λqs, d-axis and q-axis stator flux linkages
ωr Rotor speed
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