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Abstract: Considering the pressing challenges of supply security and climate change, advanced
processes to produce electricity and biofuels from biomass have to be developed. Biomass gasification
is a very promising technology, but there is a lack of comprehensive reviews, specifically on the
technologies for hydrogen chloride hot gas cleanup, which are necessary in order to work at the
same temperature and respect the limits of advanced downstream components. In this review, the Cl
content of the main biomasses in Europe is given, and data on syngas content and the tolerance of
downstream equipment are highlighted. Hot gas cleaning technologies, which have the advantage of
improved thermal efficiency are reviewed, analyzing the thermodynamic and primary and secondary
methods. This review identifies NaAlO2 and Na2CO3 within 450–550 ◦C as the most effective
sorbents, which are able to reduce the concentration of HCl below 1 ppm. Nevertheless, H2S cannot
be simultaneously removed and has to be removed first, because it reduces the HCl adsorption
sorbent capacity.

Keywords: hydrogen chloride; hot gas cleaning; biomass gasification; syngas; dechlorination;
hydrogen sulfide

1. Introduction

In order to accomplish the requirement for national energy independence and the
reduction of fossil fuel consumption, which bring a consequent mitigation of climate
change and greenhouse gas emissions, the application of renewable resources for chemical
and energy substitution is nowadays very important. Among the technologies based on
renewable resources, biomass-based plants have huge commercial potential, owing to the
great biomass availability, the possibility of reaching negative greenhouse gas emissions,
and having greater impacts on and cross-fertilization with other sectors; however, efficient
and reliable low emission technologies still have to be developed [1–8]. Biomass gasification
is one of the most practicable applications within biomass-based power plants, allowing
achieving a high-rate production of fuel gas, with small investment costs [9–14]. Among
the reactors that can be used in biomass gasification processes, fluidized-bed (FB) reactors
seem to be the most efficient, since they guarantee high reaction rates and conversion
efficiencies, due to very good mixing and gas–solid contact [5,15–20]. The resulting fuel
gas, which is named syngas, is a mixture of a combustible gases, consisting of hydrogen,
methane, carbon monoxide, carbon dioxide, and steam, together with some unwanted
by-products; the quantity of which is related to the feedstock, process conditions, and
gasifier design [21–26]. The syngas can be directly burnt in order to produce heat, only, or
it can be used in energy conversion systems to produce electricity and heat or, moreover,
it can be used to produce biofuels and biochemicals [27]. Before being used in these
kind of applications, raw syngas from the gasifier needs to be cleaned since the organic
contaminants (tar) and inorganic contaminants (alkali, sulfur compounds, mainly H2S,
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and halides, mainly HCl) contained in the syngas are a big risk factor for the lifetime of
the plant equipment [28]. Chlorine compounds may cause corrosion of metal equipment,
health problems, and environmental issues [29–34]. In the gas phase, HCl may react
to form other contaminants (e.g., ammonium chloride (NH4Cl) and sodium chloride
(NaCl)). These contaminants cause heavy deposition and fouling on the downstream
processes [35]. Moreover, chlorides deactivate the catalysts used for chemical synthesis.
In order to prevent this kind of damage, the content of HCl that has been demonstrated
to not be dangerous for the most syngas applications (such as, gas turbines, fuel cells,
ammonia production, methanol synthesis) is less than 1 ppm [32,36–40]. In the literature,
there have been few comprehensive reviews on gas cleaning technologies in recent years.
Woolcock and Brown produced a full and complete review about hot, warm, and cold
technologies for particulate, tar, sulfur, ammonia, and chlorine compounds and alkali
removal [41]. In addition, other authors have recapitulated the most common applications
of hot gas cleaning for the removal of tar [42–45], hydrogen sulfide [46,47], and for both
hydrogen sulfide and hydrogen chloride [48]. However, there is a lack of a comprehensive
review, specifically on technologies for hot gas cleanup for hydrogen chloride, and many
researchers did not emphasize removing HCl [49–51]. The present review is focused on
the investigation of the most recent and effective ways to reduce the hydrogen chloride
contained in biomass-derived syngas under 1 ppm by means of hot gas cleaning. The
article is organized as follow: the average level of hydrogen chloride in syngas is discussed
in Section 2, the hot gas cleaning techniques for HCl removal are in Section 3, the possibility
of the simultaneous removal of HCl and H2S is discussed in Section 4, and the risk of
exposure to hydrogen chloride is discussed in Section 5.

2. Average Level of Hydrogen Chloride in Biomass-Syngas

Biomass contains a low concentration of halides, especially chloride, and the amount
of HCl in the gas produced depends on the initial concentration of chloride in the feedstock.
Table 1 reports some of the most abundant biomasses and their HCl concentration.

Table 1. Chloride content for the most common biomass feedstocks.

Category Biomass Quantity
(kton/year)dry

Cl (%wt) Ref

Forest Branches and leaves from forest - 44,533 0.02–0.72 [52]
Agricultural Wheat straw for agricultural 167,181.94 0.07–0.21 [53,54]

Sub-product agricultural low Cl Empty shells of dried fruit 9000.00 0.01–0.03 [52]
Municipal Wastes Municipal Wastes 54,101.43 0.45–0.71 [55]

Industry Black liquor 25,671.72 0.20–2.00 [56]
Sub-product agricultural high Cl Olive pomace 1187.14 0.09–0.80 [57]

A few studies report precise quantities of HCl in syngas. Barisano et al. [58] showed
experimentally that the amount of Cl from almond shell biomass that converts into HCl, in
a FB gasifier at 850 ◦C with an equivalent ratio (ER) in the range 0.25–0.28 and steam to
biomass (S/B) in the range 0.4–0.5, is 80% of the total. Depending on the biomass feedstock
and on the gasification conditions, the produced gas may contain from 40 ppm of HCl to
900 ppm [59]. As previously explained, HCl at such a concentration level corrodes the
downstream equipment, for this reason it is necessary to remove it.

Since an FB gasifier is most commonly used, as explained in the Introduction of the
present paper, Figure 1 shows the calculated HCl levels obtained by the bubbling fluidized-
bed (BFB) steam gasifier in Güssing [60], which worked at 850 ◦C and 1 bar at an S/B
ratio equal to 0.6, with five representative biomasses. Pine side shells, miscanthus, olive
prunings, and wood chips are representatives of the category of branches and leaves from
forest biomass. Wheat straw and almond Shells are representatives of agricultural biomass.
The other biomasses quoted in Table 1 are not reported in Figure 1, because black liquor
does not appear to be very promising as a possible feedstock for biomass gasification
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in a FB reactor, due to its low melting temperature compared to typically used in this
type of gasifier. Moreover, from the data about proximate and elemental analysis, sub-
coal, municipal solid waste, and digestate appear as difficult feedstocks for application in
gasification, due to the high amount of ash produced and high Cl and S contents [61,62]. For
the other remaining feedstocks, all of which are woody and herbaceous biomass types, no
special issues are foreseen with regard to their use as feedstocks in a process of gasification
in a FB reactor.
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Figure 1. Predicted HCl level in the “Güssing” gasifier [63].

3. Gas Cleaning Technologies

Gas cleaning can be performed as a low-temperature process (e.g., amine scrubber) or
as a mid- to high-temperature cleaning process (e.g., sorbent reactor) [46,64].

Low-temperature clean-up, performed by means of chemical absorbers in the liquid
state at low temperature (under 50 ◦C) in a counter-current with syngas, which is over
800 ◦C (at its current gasification temperature), has many disadvantages, such as the
reduction of the efficiency of the power plant due to the consumption of water and the
production of polluted water, which must then be purified [65,66]. For this reason, low-
temperature gas cleaning approaches are discouraged.

Mid- (400–600 ◦C) to high-temperature (600–850 ◦C) syngas cleaning technologies,
which include sorbent technologies, are more suitable for syngas applications, since syn-
gas has a high temperature, and carrying out the process at mid- to high-temperature
allows achieving an optimum cycle efficiency and protects downstream equipment and
catalysts [67,68].

For making the choice of which sorbent is better to deploy, the following characteristics
have to be taken into account [39,69–73]:

• The porosity of the material;
• The ability to work in the presence of high concentrations of H2, CO, CO2, and H2O

in the temperature range of 650–950 ◦C;
• The resistance to deactivation that could be provoked by carbon fouling, sintering,

and poisoning (especially sulfur poisoning);
• The ability to regenerate easily;
• The price, which has to be as low as possible;
• Fast adsorption kinetics (kinetic of dechlorination has to be a first-order dependence

in HCl);
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• High equilibrium constant;
• The resistance to attrition.

3.1. Thermodynamics of HCl Removal

Alkali (Na, K) and alkaline earth (Ca) carbonates are among the most investigated
sorbents for HCl removal [40,42]. General sorption reactions (1) and (2) are given below.
Since alkaline earth carbonates such as CaCO3 may decompose under the process condi-
tions, depending on the temperature and CO2 partial pressure, reaction (3) of the respective
oxide with HCl also needs to be considered.

(Na,K)2CO3 + 2HCl→ 2(Na,K)Cl + H2O + CO2 (1)

CaCO3 + 2HCl→ CaCl2 + H2O + CO2 (2)

CaO + 2HCl→ CaCl2 + H2O (3)

Figure 2 shows the standard free energy of the formation of the alkali and alkaline
earth chlorides, which gives a first indication of the relative suitability of the various sorbent
materials. Calculations were performed with FactSageTM version 7.3 (GTT-Technologies,
Herzogenrath, Germany), which has be proven to be suitable for the simulation of biomass
syngases, including trace gases [74–76]. From a thermodynamic point of few, alkali car-
bonates should achieve much lower HCl concentrations in syngas than alkaline earth
carbonates, with potassium performing better than sodium. Furthermore, calcium oxide
should perform better than calcium carbonate at lower temperatures, which means that in
cases where calcium-based sorbents are used, the CO2 concentration in syngas should be
sufficiently low to stabilize the CaO, if possible. A major drawback of alkali carbonates is
the relatively high volatility of the formed alkali chlorides, which are an order of magnitude
higher than CaCl2, as shown in Figure 3. If the limit for alkali chlorides is set to 1 ppm,
sodium and potassium carbonate should be used below 592 ◦C and 565 ◦C, respectively,
whereas calcium based sorbents can theoretically be used up to 848 ◦C.
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According to reactions (1)–(3), the achievable HCl level in syngas depends on the
syngas composition, i.e., the concentration of H2O and CO2, which in turn depends on
the type and ratio of gasification agent. In order to show the magnitude of this influence,
unique parameters, such as the H2/C ratio and relative oxygen content of the whole
system (ROC) [77] are used in Figure 4 to describe the syngas composition and influence
on the HCl concentration achievable with Na2CO3 as a sorbent material. Nevertheless,
Nunokawa et al. did not find any effects of steam concentrations of up to 28 vol% on HCl
reduction in their investigations [78].
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Figure 4. Achievable HCl concentrations after absorption by Na2CO3 at 500 ◦C, depending on the
syngas composition.

It should be noted, that the very low concentration of HCl in syngas predicted for
some biomass feedstocks in Figure 1 is not only caused by their low chlorine content, but
also by their high content of available alkalis, forming respective alkali chlorides according
to reaction (1). If these alkali chlorides are adsorbed by aluminosilicates, as part of a
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comprehensive hot gas cleaning concept, the HCl concentration in the syngas will increase
correspondingly [62].

3.2. High Temperature Primary Methods for HCl Removal

All the cleaning treatments that happen within a gasifier are called primary methods,
and even if they are mostly known for tar removal, they are also effective for an initial
reduction of HCl.

The most common catalyst used for contaminant removal is natural dolomite CaMg(CO3)2,
which is very cheap [79–81]. Pinto et al. [82] found that in the presence of dolomite the highest
gas yield and a higher heating value (HHV) of syngas were reached, concluding that dolomite
is a highly attractive catalyst. Roche et al. [83] conducted an experiment in a BFB gasifier of
dried sludge at 800 ◦C and at a S/B ratio 1 and demonstrated that the effectiveness of dolomite
increases when steam is used as a gasifying agent. In fact, the H2/CO ratio increased from 1.1
to 2.6 when a dolomite and air-steam combination was used instead of dolomite and pure air.
Several studies from laboratories and pilot plants [72,84–89] have reported calcined dolomite
CaO-MgO as the best solution, where both the pore-volume and pore-diameter enhanced the
mass transfer.

Mura and Lallai [90] investigated the reaction that happens between calcium oxide and
hydrogen chloride, determining that the activation energy of the reaction is 45 kJ mol−1.

Weinell and Jensen [91] analyzed the HCl reaction with lime and limestone at 60–1000 ◦C.
They showed that lime and limestone are able to capture the majority of HCl at 500–600 ◦C.
Then, over 500 ◦C, the adsorption capacity is reduced by the chemical equilibrium between
gas and solid.

Lin et al. [92] investigated the removal of dry HCl using calcined limestone, in a
fixed-bed reactor, taking into account the effect of the presence of SO2, CO, and CO2 on the
chlorination reactivity of calcined limestone. The study demonstrated that the adsorption
of HCl is less affected under various gas atmospheres at 650 ◦C and the chlorination is
faster when CO2 is present. In the temperature range of 750–850 ◦C, the presence of SO2 or
O2 affects the reactivity of calcined limestone toward HCl, causing a reduction of it. In fact,
the concurrent sulfidation of chlorides determines the subsequent re-release of HCl to the
gas phase; therefore, lowering the achievable level of the chlorination reaction. Instead,
the presence of O2 obstructs the conversion of calcined limestone to chlorides, probably
through some type of reaction involving dechlorination of the sorbent particles.

Partanen et al. [93] investigated the adsorption of HCl by means of limestone in a
fluidized bed reactor. The study revealed that the adsorption of HCl at 850 ◦C is strongly
related to the content of humidity in the syngas; in fact, the presence of steam reduces the
achievable conversion at a certain reaction time. The adsorption was higher at temperatures
around 650 ◦C. At 850 ◦C, the effect of the particle size on the conversion of CaO most
likely interfered with the formation of a molten product phase.

Experiments by Gullett et al. [94], Li et al. [95], Petrini et al. [96], and Wang et al. [97],
conducted in fixed-bed gasifier, in order to facilitate a rate controlling step, indicated that
the limestone and CaO adsorption of HCl, when N2 is used as the reacting gas, is higher at
temperature lower than 600 ◦C. They also showed that the reaction rate and the conversion
were influenced by the properties of the sorbent material; smaller particles ensure a better
conversion rate, and the reactivity of the sorbent is directly proportional to the particle
porosity and the specific surface area.

Weinell et al. [91] investigated the adsorption of HCl using lime and limestone at tem-
peratures up to 1000 ◦C; they demonstrated that the binding capacity is best at 500–600 ◦C.
They noticed that, at temperatures above 750 ◦C, a liquid phase of CaCl2 saturated with
CaO was produced, but the influence of this liquid phase on the kinetics is not responsible
for the reduced adsorption capacity of CaO at higher temperature; the cause is the chemical
equilibrium between the gas and solid. Therefore, only a low adsorption is possible at the
common gasification temperatures (700–900 ◦C). This is the reason why high-temperature
secondary methods for HCl removal are needed; therefore, the research of recent years has
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focused on gas cleaning downstream of the gasifier, in order to reach the tolerance limit
under 1 ppm.

3.3. High Temperature Secondary Methods for HCl Removal

Na2CO3, K2CO3, and NaAlO2 are among the most efficacious sorbents for HCl re-
moval [38,98].

Krishnan et al. [99] investigated the adsorption capacity of nahcolite (NaHCO3),
shortite (Na2CO3 2CaCO3) and dawsonite (NaAl(OH)2CO3) in a fixed bed reactor in the
temperature range of 400–600 ◦C, fixing the space velocity at 3000 h−1. Nacholite over
150 ◦C became porous Na2CO3, and reacts quickly with HCl to be converted into NaCl.
Reactions (4) and (5) resulted, in addition to reaction (1).

NaHCO3(s) + HCl(g)→ NaCl(s) + H2O(g) + CO2(g) (4)

2NaHCO3(s)→ Na2CO3(s) + H2O(g) + CO2(g) (5)

Nunokawa et al. [100] studied the capacity of sorbent containing NaAlO2 to adsorb
HCl. The experiment was conducted at 550 ◦C, with a space velocity of 3000 h−1 and
1000 mg/m3 as the initial concentration of HCl. The raw materials of the sorbent were
sodium carbonate (Na2CO3), alumina-sol (Al2O3-sol), and alumina powder(-Al2O3). The
results indicated that the sorbent is able to reduce the level of HCl under 1 ppm.

Verdone et al. [101] performed an experiment in order to investigate the behavior of
Na2CO3 sorbent. The feeding ensured a constant rate of HCl during the run time. A mixture
of hydrogen chloride and steam in a nitrogen flow were the reactor feed. This mixture
was prepared by injecting a calibrated amount of an aqueous solution of HCl 0.1N into a
measured nitrogen flow. Using nitrogen rather than air allowed avoiding the oxidation of
HCl to Cl2, according to the Deacon reaction. The mixture, before entering the reactor, was
vaporized and heated up to a temperature of 200 ◦C. The temperature of the reactor was
investigated in a range from 200 to 600 ◦C, with steps of 100 ◦C. Concentrations of 3000,
6000, and 9000 ppm of HCl were considered, in a constant nitrogen flow (1.10 L(SPT)/ min).
The sorbent particle size was between 120 and 209 µm. The molar ratio HCl/Na2CO3 was
fixed at 0.5. The best results were those obtained at temperature of 400 and 500 ◦C. In fact,
in this temperature window, all the HCl that entered the reactor was captured and removed
when it reached the carbonate layer, and the saturation was higher than 90%. The second
carbonate layer was reached by HCl after the complete saturation of the first layer and so on.
The results changed drastically outside the “windows” of 400–500 ◦C. Lower than 400 ◦C,
the conversion of each layer was very small and almost the same throughout all the layers.
When the temperature was 300 ◦C, the conversion of the carbonate layer was around 40%
and reduced to 20% at 200 ◦C. In fact, at such low temperatures, the solid carbonate could
not remove all the HCl. These kinds of results can be explained by noticing that under
400 ◦C, even if the thermodynamics of the reaction between sodium carbonate and HCl
are favorable, the overall kinetics of the reaction are too slow to guarantee a considerable
reduction of hydrogen chloride. Instead, the explanation for the behavior of the layer at
600 ◦C and at 300 ◦C, which is almost constant, can be attributed to sintering phenomena,
which lower the particle porosity and then the surface area where the gas–solid reactions
happen. Since the melting point temperature of sodium carbonate is 851 ◦C, there are
not negative consequences correlated to sintering, which occurred under 426 ◦C. This
paper indicated that the sintering phenomena provoke a moderate effect at temperatures
higher than 400 ◦C and it are evident over 600 ◦C. The investigations conducted at 500 ◦C
did not directly show the presence of sintering phenomena, but by interpretation of the
results by means of a mathematical model, it is possible to infer indirect information
about its occurrence. These analyses [102] indicated that the content of water vapor in
the gas affected by a definite amount the equilibrium concentration of the gaseous HCl
over an NaCl/Na2CO3 solid system. Furthermore, the hydrogen chloride equilibrium
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concentration between 20 and 600 ◦C is very low, and the effect of the presence of water or
changes in its concentration in the gas phase can be neglected [103,104].

Fellows and Pilat [105] investigated the influence of the particle size of NaHCO3 on
adsorption capacity and pointed out that the adsorption capacity does not change with
an increase of particle diameter and the increase of temperature. Their experiments were
carried out at 135 ◦C and at 190 ◦C; at the lower temperature NaHCO3 was decomposes,
while, reacting with HCl and at the higher temperature, the NaHCO3 was almost totally
decomposed, but this factor seemed not to influence the effect of particle diameter on the
adsorption capacity.

Dou et al. [106,107] investigated experimentally the performance of a sorbent mix of
Na- Ca- and Mg- based compounds in a fixed-bed reactor at 550 ◦C, with a space velocity
of 2000 h−1. The inlet concentration of HCl was 640 ppm. The reaction rate remained
constant for almost 20 h before decreasing gradually. The chemical reaction between HCl
and Na-,Ca-, and Mg- based sorbent was evaluated to become a first-order reaction.

Weinlaender et al. [108] demonstrated that an increase of HCl concentration in the inlet
stream allows achieving a 15% higher sorbent uptake; achieved because of the increased
concentration gradient, which is a driving force of adsorptive separation. Moreover, the test
run time was reduced by a factor of 10 when the inlet concentration of HCl was increased
by a factor 10.

Liu et al. [109] synthesized an Na-Mg-Al layered double hydroxide based sorbent,
indicated here as LDH or cLDH in its calcined form, keeping Mg:Na:Al ratios of 3.1:3.5:1
and 3.1:2.9:1 for the uncalcined and calcined forms, respectively. The synthesized sorbent
was then benchmarked against a commercially available Mg-Al LDH, indicated here as
ComLDH or cComLDH in its calcined form. The aim was to investigate the capacity of
hydrogen chloride from 400 to 600 ◦C in a fixed-bed reactor. In Figure 5, the thermogravi-
metric (TGA) profiles show the thermal stability of the sorbents. Calcined Na2CO3 showed
the highest stability, with a maximum mass loss of 0.11 wt%, followed by calcined NaAlO2
and Na-Mg-Al-LDH, with less than 1.84 and 3.33 wt% mass loss, respectively. The calcined
commercial LDH (cComLDH) had the lowest thermal stability, with less than 9.85 wt%
mass loss.
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The study also evaluated the concentration of HCl in the effluent for each sorbent
at 400, 500, and 600 ◦C (see Figure 6). Figure 5 shows that at the output of cComLDH
there was the highest concentration of HCl, and this sorbent was the one with the short-
est breakthrough time, this means it is ineffective for HCl removal. The most effective
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in the study was cLDH, which had a breakthrough time greater than 14 h for all the
temperatures considered.

Energies 2021, 14, 6519 10 of 17 
 

 

 

Figure 6. Concentration of HCl in the effluent at 400 (a), 500 (b), and 600 °C(c) for each sorbent. 

(The horizontal red dashed line represents the 1 ppm breakthrough threshold) [109]. 

In the study, they also evaluated the breakthrough time of the sorbents at the three 

different temperatures considered, see Table 2. 

Table 2. Summary of the 1 ppm HCl breakthrough times of sorbents. 

Breakthrough Time (h) 

Temperature (°C) 400 500 600 

cLDH >14 >14 >14 

cComLDH <0.5 <1 <1 

cNaAlO2 10.6 >14 >14 

cNa2CO3 4.8 13 >14 

Ohtsuka et al. [58] analyzed the capacity of NaAlO2 to adsorb HCl in a fixed-bed 

reactor and showed that the concentration of HCl passed from 200 ppm to below 1 ppm 

at 400 °C. They also observed that the adsorption capacity of NaAlO2 was slightly higher 

than Na2CO3, and both reduced their adsorption capacity when H2S was present. 

Baek et al. [38] analyzed the performance of unprocessed and processed potassi-

um-based CO2 sorbents for removing HCl by means of a micro fluidized-bed reactor and 

by means of a bench-scale bubbling fluidized-bed reactor, which worked, respectively, 

at 300 and 540 °C and 20 bar. They showed that the concentrations of HCl decreased 

from 150–900 ppmv to 5 ppmv and from 130–390 ppmv to 1 ppmv. 

Figure 6. Concentration of HCl in the effluent at 400 (a), 500 (b), and 600 ◦C (c) for each sorbent. (The
horizontal red dashed line represents the 1 ppm breakthrough threshold) [109].

In the study, they also evaluated the breakthrough time of the sorbents at the three
different temperatures considered, see Table 2.

Table 2. Summary of the 1 ppm HCl breakthrough times of sorbents.

Breakthrough Time (h)

Temperature (◦C) 400 500 600

cLDH >14 >14 >14
cComLDH <0.5 <1 <1
cNaAlO2 10.6 >14 >14
cNa2CO3 4.8 13 >14

Ohtsuka et al. [58] analyzed the capacity of NaAlO2 to adsorb HCl in a fixed-bed
reactor and showed that the concentration of HCl passed from 200 ppm to below 1 ppm
at 400 ◦C. They also observed that the adsorption capacity of NaAlO2 was slightly higher
than Na2CO3, and both reduced their adsorption capacity when H2S was present.

Baek et al. [38] analyzed the performance of unprocessed and processed potassium-
based CO2 sorbents for removing HCl by means of a micro fluidized-bed reactor and by
means of a bench-scale bubbling fluidized-bed reactor, which worked, respectively, at
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300 and 540 ◦C and 20 bar. They showed that the concentrations of HCl decreased from
150–900 ppmv to 5 ppmv and from 130–390 ppmv to 1 ppmv.

Stemmler et al. [110] investigated HCl removal using an alkali (Na and K) biomass ash
from DDGS, in comparison with pure sodium and potassium carbonate. According to ther-
modynamic equilibrium calculations, both alkali carbonates should be able to reduce the
HCl concentration in flue gas from a Güssing gasifier to <1 ppm at temperatures <550 ◦C,
with potassium carbonate achieving even lower concentrations than sodium carbonate.
The experimental investigations showed that the limit of 1 ppmv HCl was achieved at a
space velocity of 4900 h−1 for the Na2CO3 sorbent, 3750 h−1 for the K2CO3, and 7350 h−1

for the biomass ash. The much better performance of the latter was mainly attributed to
a high specific surface area and porosity, resulting from the release of volatiles during
gasification of the biomass.

4. Simultaneous Removal of Hydrogen Chloride and Hydrogen Sulfide

The possibility of removing hydrogen sulfide and hydrogen chloride at the same
time is very attractive, because it would allow reducing gas cleaning costs (unifying two
steps in a single reactor) and simplify the process [111,112]. Therefore, some researchers
investigated this possibility.

Gupta et al. [31] studied the simultaneous removal of HCl and H2S using zinc-ferrite
and zinc-titanate based sorbents, and they highlighted that HCl has a deleterious short-term
effect on the desulfurization of these kinds of sorbents.

Nunokawa et al. [100,113,114] investigated the influence of H2S on NaAlO2 sorbent
during the adsorption of HCl at 400 ◦C and showed that the capacity for adsorption of HCl
reduced drastically when H2S was added. The time needed for the breakthrough of 1 ppm
HCl passed from 1100 min without any H2S, to 930 min when 2000 ppm of H2S was added,
and the Na conversion decreased to 30%, as shown in Figure 7.
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Figure 7 shows that H2S causes a more severe deactivation of the Na2CO3 sorbent
rather than the NaAlO2 sorbent.

Ohtsuka et al. [58] showed that it is possible to minimize the sulfur influence on
Na2CO3 by the addition of Al2O3, in order to form NaAlO2. In this way, the sorbent could
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tolerate 0.2 mL l−1 of sulfur and reduced 0.2 mL l−1 of HCl under 1 µL l−1 at 400 ◦C.
However, this strategy is not always effective [115].

Therefore, even if a multifunctional reactor, able to remove H2S and HCl at the
same time is preferable, this choice seems to be not practical, since the contaminants may
interfere in the adsorption of each other (e.g., HCl inhibits the adsorption of H2S in many
metal oxides).

5. Conclusions

In the actual context of sustainable energy, the application of biomass waste for
combined heat and power production has acquired great interest. However, it is not
possible to directly feed downstream applications (such as gas turbines, SOFC, etc.) with
the gas produced by the gasifier. In fact, the syngas contains contaminants that could
severely affect the equipment. The scope of this review was to investigate the removal of
hydrogen chloride, an inorganic contaminant with a corrosive nature, which is present in
syngas. The tolerance limit, for most syngas applications, established by the experimental
literature is <1 ppmv for HCl. The literature research indicated that hot gas cleaning is
the preferred method, ensuring the advantage of improved thermal efficiency. Calcium
oxide sorbents demonstrated effectiveness for binding HCl, but they decomposed over
500 ◦C, resulting in a reduction of adsorption capacity and, eventually, in the release of
the adsorbed HCl. NaAlO2 and Na2CO3 have been demonstrated as very good sorbents
for HCl removal, showing adsorption capacities of 40 and 10%, respectively, at 400 ◦C.
However, their adsorption rate decreased when H2S was present. This is the reason why
the adsorption of HCl and the adsorption of H2S have to be considered as two separated
steps, in two different reactors.
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