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Abstract: Due to the low efficiency and high pollution of conventional internal combustion engine
vehicles, the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean
energy transportation attributed to the long driving range, short hydrogen refueling time and
environmental advantages. The development of energy management strategies has an important
impact on the economy and durability, but most strategies ignore the aging of fuel cells and the
corresponding impact on hydrogen consumption. In this paper, a rule-based fuzzy control strategy is
proposed based on the constructed data-driven online estimation model of fuel cell health. Then, a
genetic algorithm is used to optimize this fuzzy controller, where the objective function is designed
to consider both the economy and durability by combining the hydrogen consumption cost and the
degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy
is more sensitive to operating conditions, this paper uses an artificial neural network for predictive
control. The results are compared with those obtained from the genetic algorithm optimized fuzzy
controller and are found to be very similar, where the prediction accuracy is assessed using MAPE,
RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good
generalization capability for variable driving cycles.

Keywords: fuel cell hybrid electric vehicle; fuzzy control; energy management strategy; state of
health; genetic algorithm; neural network

1. Introduction

Nowadays, the world is facing problems such as energy shortage, environmental
pollution and climate warming caused by non-renewable fossil energy. Automobile energy-
saving and emission-reduction technologies and stricter emission regulations have alle-
viated the above problems to a certain extent, but it is difficult for traditional internal
combustion engine vehicles to make a qualitative leap [1–3]. The emergence of fuel cell
hybrid electric vehicles (FCHEV) has become a practical solution to the upcoming social
and environmental problems, which is considered as an important direction for future
automobile development [4]. Compared with traditional internal combustion engine ve-
hicles, the biggest difference of FCEVs is that they use fuel cells instead of traditional
internal combustion engines as the power source. The electric energy generated by the
fuel cells drives the motor and then drives the vehicle. Therefore, FCEVs have the ad-
vantages of high energy conversion efficiency, environmental friendliness, long driving
range, a fast hydrogenation process and low operating noise [5]. However, in the process
of commercialization of fuel cells, the important performance indicators such as safety and
durability have not yet reached the level of large-scale promotion [6,7]. Therefore, power
sources such as batteries or super capacitors are usually introduced into FCEVs to form the
powertrain system [8–10]. Among them, the powertrain system contained the fuel cell, and
the battery has been widely used by mass production models, such as Mirai, Clarity, NEXO
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and GLC-F-Cell. Therefore, such configuration of FCEVs is selected as the research object
of this article. For powertrain systems with multiple energy sources, energy management
strategies (EMSs) considering state of health (SOH) play an important role in delaying the
degradation process of fuel cells and improving the durability of the vehicles.

Before formulating an EMS considering SOH, it is necessary to clarify the definition
of SOH. Summarizing previous research on fuel cell SOH monitoring and calculation,
SOH is defined using health indicators, which mainly contain characteristic parameters
such as impedance, voltage and power [11]. The electrochemical impedance spectra
(EIS) of the fuel cell with different SOH are obviously different, which are measured
under normal water content, electrode flooding and membrane dehydration conditions.
Therefore, Kurz et al. [12] and Giner-Sanz et al. [13] selected parameters fitted from EIS as
the health indicators for fuel cell SOH monitoring. However, the operation state of the
fuel cell depends on the load, which can hardly meet the approximate stable condition
required for EIS test. Especially when using the frequency domain method to measure
low-frequency signals, the long test time leads to the reduction of the system stability
and the inaccuracy of the test data. Therefore, some researchers such as Meng et al. [14]
and Li et al. [15] chose the voltage drop as the health factor, which is greatly affected
by fuel cell degradation. In this article, SOH of a fuel cell is defined as the ratio of the
output voltage drop to the maximum allowable voltage drop. Since the measurement of
the output voltage needs to be carried out under the same current density, this definition
cannot be applied online in real time to estimate SOH. In order to solve this problem,
Yue et al. [16] fitted an empirical formula for fuel cell voltage degradation, but this formula
can only predict SOH online under a fixed current. Wang et al. [17] proposed another
SOH definition method, which integrated the geometric characteristics extracted from the
EIS and polarization curves to calculate the Mahalanobis distance between the current
state and the initial state to characterize SOH. Although the accuracy of these methods is
relatively high, these methods are still limited to offline measurement. The behavior of
FCEVs is largely dependent on the environment and driving cycles, whose parameters
change accordingly. Because offline models cannot track system changes in real time, online
prediction is particularly important. In order to achieve online prediction, a data-driven
prediction model is a good option [18]. This method extracts the law of change by analyzing
a large amount of experimental data and does not require a comprehensive understanding
of the system. In summary, this article constructs an empirical model of fuel cell output
power degradation based on experimental data to estimate the SOH and establish the EMS.
The data is based on the power degradation curve fitted from the fuel cell degradation test.

The energy management strategies of FCHEVs so far can mainly be categorized into
rule-based and optimization-based algorithms [19]. Rule-based EMS includes thermostat
strategy [20], power follower strategy [21], frequency division strategy [22], fuzzy logic
control theory [4,23], or hybrid strategy [24,25]. Because the distribution of power demand
is managed by several prearranged rules which are based on existing experiment results
or research experiences, prior information about a predefined drive cycle is not needed.
Among them, fuzzy control theory can add multiple inputs to solve the multi-objective
problem through appropriate rules [26,27]. However, the optimality of power distribution
cannot be guaranteed under different driving conditions due to a lack of road information.
On the contrary, optimization-based strategies transform the aim of energy management
into an optimal solution for a globally optimized problem, which include linear program-
ming [28], dynamic programming [29], Pontryagin’s minimum principle (PMP) [30,31],
equivalent consumption minimization strategy [21,32] and genetic algorithm [31,33]. Ge-
netic algorithm [34,35] is often used in parameter optimization of rule-based strategies
to obtain approximate optimal solutions. Ahmadi et al. [35] proposed a fuzzy controller
optimized by genetic algorithm for a FCHEV using fuel cell, battery and UC composi-
tion. When driving conditions change in actual usage, the optimal parameters obtained
by offline optimization are not suitable under different driving cycles. In order to solve
this problem, Ryu et al. [36] established a fuzzy controller and used genetic algorithm
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for optimization. Combined with adaptive membership functions based on a stochastic
method, this controller ensured the optimal performance under different driving cycles. In
addition, owing to the strong learning and adaptive capabilities of neural networks, it has
been widely used in the field of predictive control [37]. Therefore, as shown in the research
of [38,39], the neural network can be used to predict the driving conditions of the vehicle,
and the fuzzy controller parameters under different operating conditions can be selected
according to the prediction results to achieve the approximate optimal energy management
strategy under unknown operating conditions. When establishing an optimized EMS,
more than just fuel economy needs to be considered. In fact, as the use time increases, due
to different control strategies, the performance of the fuel cell will be degraded to varying
degrees, and finally the durability of the fuel cell will be different [40]. Therefore, using
genetic algorithm to optimize the parameters of the fuzzy controller, an EMS that considers
the health state of the fuel cell is proposed and then applied for predictive control based on
the neural network

The research done so far has added the SOH into energy management strategies as
an influencing factor. In the rule-based EMS, a hierarchical control strategy was proposed
in the research of Marx et al. [41]. This strategy reduced degradation by starting as few
fuel cells as possible using the state machine method, and reduced fuel consumption
by operating as efficiently as possible. Because these rules were designed based on the
human expertise, the optimality has not yet been discussed. Considering the SOH of
the fuel cell, Faivre et al. [7] designed a fuzzy controller, which took SOH and state
of charge (SOC) as input, and the reference current of the fuel cell as output. When
degradation or failure occurred, the fuel cell operated at its high efficiency point while
maintaining the battery’s SOC. However, the author has not made a comparative analysis
of the hydrogen consumption and durability before and after considering the fuel cell
SOH. In the optimization-based EMS, Martel et al. [42] formulated a cost function that
considered battery degradation, hydrogen consumption, and charging fees to realize the
power allocation in the dynamic programming algorithm. However, this article did not
consider the impact of fuel cell degradation and did not conduct health management on
fuel cells. Besides this, the dynamic programming algorithm is computationally intensive
and sensitive to the driving cycle. In order to prolong the lifetime of the fuel cell, Liu
et al. [43] solved the problem of minimizing fuel consumption through PMP optimal control
under the constraints of battery SOC and current. This instantaneous optimization strategy
aims to minimize the cost function in the current control step, which cannot achieve global
optimization. In addition, wavelet transform [44] has also been adopted into EMSs that
consider fuel cell life protection. However, since this method requires the driving cycles of
the vehicle in advance, its application is limited. To conclude, this article proposes a fuzzy
controller based on genetic algorithm to realize global optimization, which can balance
the economy and durability. Considering the problem that the rule-based EMS cannot
be optimal in real time under different driving cycles, back propagation neural network
(BPNN) is adopted to predict the fuel cell output power, which uses the results of the offline
optimization of the genetic algorithm under multiple driving conditions as the training
data set.

The remainder of this paper is organized as follows. In Section 2, the relevant param-
eters of the fuel cell vehicle are introduced, and the simulation model of the powertrain
system and its key components is completed. Considering the fuel cell SOH, Section 3
proposes an energy management strategy, which uses the genetic algorithm to optimize the
fuzzy controller, in order to achieve the optimal state of health and equivalent hydrogen
consumption of the fuel cell. In addition, the neural network (NN) is used for predictive
control to meet the needs of optimal control under different driving conditions. Compared
with other strategies, simulation results under different driving cycles are analyzed in
terms of durability and economy in Section 4. Section 5 provides concluding remarks and
proposes future work.
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2. Fuel Cell Hybrid Electric Vehicle Model

As shown in Figure 1, here is the fuel cell electric vehicle powertrain system of this
study, consisting of the main energy source fuel cell, DC/DC converter, auxiliary energy
source battery, drive motor and gearbox. The role of the hydrogen storage tank is to
provide fuel for the fuel cell. A DC/DC is connected in series at the rear end of the fuel cell
system to maintain the fuel cell system output voltage as stable and consistent with the bus
voltage. In this article, the fuel cell and the battery are used as the two energy sources of
the powertrain, which supply energy to the motor together. Then, the torque output from
the motor directly drives the vehicle. Among them, the fuel cell is the main energy source,
and the battery improves the overall efficiency of the system. When the demand power
is low, the battery supplies power to the motor to avoid the fuel cell working in the low
efficiency range. When the demand power exceeds the maximum power of the fuel cell,
the battery supplements the remaining power. In addition, due to the irreversibility of fuel
cell energy conversion, the battery can recover braking energy for charging.
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Figure 1. The powertrain system topology of the fuel cell electric vehicle.

2.1. Vehicle Model

The key parameters of the FCEV in this article are shown in Table 1. The vehicle model
is established mainly based on the longitudinal dynamics of the vehicle [45]. The vehicle
needs to overcome rolling resistance Ff , wind resistance Fw, acceleration resistance Fj and
gradient resistance Fi during operation. Therefore, the traction force ∑ F in this model is
calculated as follows: 

∑ F = Ff + Fw + Fi + Fj
Ff = mg f cos α

Fw = CD Au2

21.15
Fi = mg f sin α

Fj = δm du
dt

(1)

Preq =
u

3600ηT
∑ F (2)

where m is the mass of the vehicle; g is the acceleration of gravity; f is the coefficient of
rolling resistance; α is the slope; CD is the coefficient of air resistance; A is the front area; u
is the vehicle speed; δ is the correction coefficient of rotating mass; and ηT is the efficiency
of the transmission system. By calculating the driving resistance, the required power of the
powertrain system can be obtained. The vehicle model calculates the deviation between
the required speed determined by the driving cycle and the actual speed of the vehicle,
which is used as an input to calculate and output the required power of the FCEV.
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Table 1. Vehicle specification.

Characteristic Unit Value

Vehicle gross weight kg 1930
Front area m2 2

Coefficient of rolling resistance – 0.012
Coefficient of air resistance – 0.33

Battery peak power kW 70
Battery nominal capacity Ah 8

Fuel cell peak power kW 45
Effective area of cell cm2 270

Hydrogen bottle pressure MPa 35
Weight of hydrogen storage kg 3.6

Motor rated/peak power kW 48/110
Motor rated/peak speed rpm 4600/11,500
Motor maximal torque Nm 230

Motor rated voltage V 375
Motor voltage V 335–410

DC/DC efficiency – 0.98

2.2. Fuel Cell Stack Model

As long as the continuous supply of the hydrogen is ensured, the fuel cell, as the
power source, can continuously convert the chemical energy of the hydrogen into the
electrical energy for the powertrain. The combustion reaction of the hydrogen is spatially
decomposed into two semi-chemical reactions, and the resulting electrons flow out through
an external circuit to drive the load. The efficiency curve of the fuel cell system (FCS) in
this article is shown in Figure 2, with a rated output power of 40 kW.
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It can be seen from Figure 2 that the efficiency of the FCS is closely related to the
net output power of the fuel cell. As the output power increases, the efficiency of the
FCS increases rapidly in the low power range (0–5 kW). After the maximum value (49%)
at around 15 kW, the efficiency gradually decreases, and the decreasing speed is much
smaller than the increasing speed. This figure provides ideas for the design of EMSs. While
keeping the static operating point of the fuel cell in the high efficiency range, EMS should
try to avoid the fuel cell working in the low efficiency range.

The hydrogen consumption of the fuel cell m1 is calculated by the power of the fuel
cell Pf c and the corresponding efficiency η f c(Pf c), as shown in Equation (3), which was
proposed by our research team in the previous work [45]. In this equation, MH2 is the
molar mass of hydrogen; I f c is the fuel cell stack current; n is the number of the fuel cells; F
is the Faraday constant; and EH2 is the low heating value of the hydrogen.

m1 =
∫ MH2 I f cn

2F
dt =

1
EH2

∫ Pf c

η f c(Pf c)
dt (3)
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2.3. Battery Model

The LiMn2O4-based lithium-ion battery used in this article is composed of two parallel
battery packs. Each pack contains 96 single cells, in which the minimum and the maximum
voltage of a single cell are 2.7 V and 4.2 V. The rated capacity of the battery pack is 8 Ah.
As shown in Figure 3a, the open circuit voltage and the charge or discharge resistance
of a single cell change with the SOC at 298.15 K. The battery model established in this
article only needs to reflect the chemical and electrical characteristics of the battery, so it
ignores the influence of the consistency and the temperature on the performance of the
battery. Referring to the study of Nejad et al. [46], the mathematical models characterizing
batteries mainly include the resistor-capacitor (RC) model, Rint model, Randles’ model,
the theoretical model based on lead-acid battery, and the battery model based on the
neural network. Considering the difficulty of parameter identification and the energy
management strategy implementation, the Rint battery model is selected for simplification
to characterize the battery’s voltage and internal resistance [47,48]. The equivalent circuit
is shown in Figure 3b.
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The Rint model simplifies the battery into a circuit structure in which a power supply
and a resistor are connected in series. Based on this model, as Tribioli et al. mentioned
in [49], the relationship between battery output current Ibat and output power Pbat and
the relationship between open circuit voltage Uoc and internal resistance Rbat are shown
in the following Equation (4). Rbat in this equation represents the discharge and charging
resistance respectively. Among them, when Pbat is positive, Ibat is also positive, which
means the battery is discharging; when Pbat is negative, Ibat is also negative, which means
the battery is charging. The calculation method of charge and discharge efficiency is
shown in Equation (5). In this article, the ampere-hour integral method [50,51], is used for
SOC calculation of the power battery as shown in Equation (6). Among them, SOC(0) is
the initial SOC value, and Ccap represents the battery rated capacity, which is measured
under standard conditions. As for ηC, referring to Han et al. [52], it is the battery Columb
efficiency, and the value of this variable is 0.98 in the charging state and 1 in the discharging
state.

Ibat =
Uoc −

√
U2

oc − 4RbatPbat
2Rbat

(4){
ηdis =

UOC−IbatRdis
UOC

Pbat ≥ 0

ηchg = UOC
UOC−IbatRchg

Pbat < 0
(5)

SOC(t) = SOC(0)− 1
Ccap

∫ t

0
ηC Ibat(τ)dτ (6)

In order to calculate the economy of the vehicle, the energy produced by the battery
needs to be converted into the equivalent hydrogen consumption of the battery m2 accord-
ing to the average value of the fuel cell efficiency, which is calculated in Equation (7) and
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proposed by Xu et al. [53]. Among them, ηdis and ηchg is the average efficiency of battery
discharging and charging; m f c,avg is the average instantaneous hydrogen consumption of
the fuel cell; and Pf c,avg is the average power of the fuel cell.

m2 =


Pbatm f c,avg

ηdisηchgPf c,avg
Pbat ≥ 0

Pbatηchgηdism f c,avg
Pf c,avg

Pbat < 0
(7)

2.4. Electric Motor Model

The motor used in this article is a permanent magnet synchronous motor, and its
efficiency map is shown in Figure 4. In addition to providing the driving force for the
vehicle, the motor can also recover braking energy. The model of the motor and its controller
should fully consider the operation characteristics and principles of the selected motor.
The relationship between motor speed, torque and efficiency is shown in Equation (8), as
Song et al. mentioned in [51]. The output torque TM−out and required power PM−req of the
motor can be calculated by Equations (9) and (10), respectively [45]. In these equations, ηM
is the motor efficiency; nM is the motor speed; TM is the motor torque; Pout is the output
power of the motor; δT is the power torque conversion coefficient; nM−out is the actual
rotating speed of the motor; TM−req is the demand torque; and δp is the torque power
conversion coefficient.

ηM = f (nM, TM) (8)

TM−out =
PoutδTηM(nM−out, TM−req)

nM−out
(9)

PM−req =
TM−reqδpnM−out

ηM(nM−out, TM−req)
(10)
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3. Fuzzy Control Energy Management Strategy Formulation

The energy management strategy of the fuel cell powertrain system influences the
performance of the fuel cell vehicle deeply. The economy of the powertrain system and the
health state of the fuel cell are both important indicators for evaluating the EMS. Therefore,
on the basis of the simulation model of the powertrain system, this article formulates an
energy management strategy using the fuzzy logic. At the same time, taking economy
and SOH as the optimization targets, parameters of this EMS are optimized using the
genetic algorithm (GA). The driving conditions of the vehicle are very complicated, and
the demand power of the vehicle changes greatly. The offline optimization control strategy
formulated for a certain driving condition cannot be maintained optimal under various
conditions. Therefore, the neural network is used to construct a predictive model, so that
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the proposed energy management strategy can be applied online. The framework of the
energy management strategy proposed in this paper is shown in Figure 5.
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3.1. Rule Establishment of Fuzzy Control Energy Management Strategy

The FCHEV in this article adopts the dual-input single-output Mamdani fuzzy in-
ference model to realize the fuzzy control in EMS. This fuzzy model does not require an
accurate mathematical model of the controlled system and is more adaptable for systems
with nonlinear, time-varying, hysteresis and other complex processes [54]. The input of
the fuzzy controller is the required power of the motor Pload and the state of charge SOC
of the battery pack, and the output is the output power of the fuel cell Pf c. According to
the parameters of each component in the FCEV, the value range of the input and output
variables are shown in Equation (11). Then, the quantization factors of parameters k1, k2
and w are selected so that the fuzzy domain of input and output variables is normalized to
[0, 1]. The established fuzzy control energy management strategy (FCEMS) can realize the
power distribution between the fuel cell and the battery. Considering the actual meaning
of each input and output, the designed non-uniformly distributed membership functions
are shown in Figure 6. In this figure, it indicates the braking process of the vehicle when
Pload is negative, and the output power of the fuel cell Pf c cannot be negative.

Pload ∈
[
0, 6× 104]W k1 = 1/(6× 104)

SOC ∈ [0, 1] k2 = 1
Pf c ∈

[
0, 4.5× 104]W w = 1/(4.5× 104)

(11)

Based on the Mamdani fuzzy controller, the fuzzy logic of this FCEMS constructed
in this paper is as follows. The power demand of the vehicle during the whole driving
process should be ensured. This EMS should optimize the operating range of the PEMFC
to improve the powertrain efficiency and thereby improve the economy. The SOC of the
battery pack should be maintained near the expected value, so that the energy stored and
absorbed by the battery can be fully utilized to extend its lifetime. The output power of
the fuel cell should be reduced when SOCbat is large and Pload is small; and Pf c should be
increased when SOCbat is small and Pload is large. Based on the above principles, the rules
of the fuzzy controller formulated according to the literature and experience are shown in
Table 2 [55]. The area center equivalent effect is selected as the clarification method, and the
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three-dimensional relationship between the input and the output for this EMS are shown
in Figure 6d.
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Table 2. Rules of the fuzzy controller in FCEMS.

Pfc
Pload

NH NL Z PL PH

SOCbat

L VL L M H VH
M VL VL L M H
H VL VL VL L M

3.2. Fuzzy Controller Optimal Design Based on Genetic Algorithm

The fuzzy control EMS formulated in the previous section can only guarantee the basic
power requirements of the vehicle. However, it can be seen from the previous analysis that
the driving conditions affect the health state of fuel cells seriously. Therefore, it is necessary
to optimize the rules or membership functions of the fuzzy controller so that it can ensure
the dynamic performance while achieving the optimization of economy and health. The
genetic algorithm is used to optimize the parameters of the membership function in this
article. GA is a self-organizing and self-adapting artificial intelligence technology that
simulates the evolution process and mechanism of natural organisms, which is based
on Darwin’s theory of natural selection and Mendel’s theory of genetic variation [56].
This method mainly uses genetic operations to implement structural reorganization of
individuals with a certain structural form in the population, so as to continuously search
for the structural similarity between individuals in the population. Then, building blocks
are formed and optimized to gradually approach the optimal solution. Owing to the good
global search ability in a complex space, GA has potential parallelism and scalability, which
can be combined with various control rules to optimize the controller parameters [57].
Therefore, the effective combination of the GA and the fuzzy control named by GA-FCEMS
is used to optimize the fuzzy controller, as shown in Figure 5b.

At first, the parameters are initialized. In this article, the initial population P is selected
by a uniform random method, and the population size is set to n = 20; the maximum
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evolutionary generation number is set to G = 100; the crossover probability is set to Pc = 0.6;
and the mutation probability is set to Pm = 0.001. Second, the range of each variable before
optimization is defined, as shown in Equation (12). The code length of 15 decision variables
to be optimized is 115 bits, which is the number of genes on the chromosome, as shown in
Table 3. 

x1 ∈ (0, 0.2) x2 ∈ (0.2, 0.4) x3 ∈ (0.4, 0.6) x4 ∈ (0.6, 0.8)
y1 ∈ (0, 0.6) y2 ∈ (0.6, 0.8) y3 ∈ (0.8, 1)
z1 ∈ (0, 0.1) z2 ∈ (0.1, 0.2) z3 ∈ (0.2, 0.3) z4 ∈ (0.3, 0.4)
z5 ∈ (0.4, 0.5) z6 ∈ (0.5, 0.6) z7 ∈ (0.6, 0.7) z8 ∈ (0.7, 0.8)

(12)

Table 3. Gene number of decision variables on the chromosome.

Variable x1 x2 x3 x4 y1 y2 y3 z1 z2 z3 z4 z5 z6 z7 z8

Gene number /bits 8 8 8 8 10 8 8 7 7 7 7 8 7 7 7

In order to find the optimal solution, the optimal goal needs to be formulated. This
article selects good individuals through GA to minimize the expected cost in the future.
The expected cost is calculated by the cost function J, as shown in Equation (13), which
includes the cost of fuel consumption and the cost of fuel cell health decline. In order to
make the evaluation scales of economy and durability consistent, price weight parameters
Cper−H2 and Cper− f c are added to Equation (13) to minimize the total operating cost of fuel
cell vehicles. The constraints of the system are shown in Equation (14). After repeated
iterations of routine operations such as selection, crossover, and mutation, the value of the
membership functions of the fuzzy controller when the cost function is the smallest can be
screened out. At this time, the durability and economy of the fuel cell meet the optimal
requirements.

minJ =
N

∑
i=1

(
Cper−H2 ·m(H2) + Cper− f c · Pf c · (1− SOH)

)
(13)

S · t


Pf c,min ≤ Pf c ≤ Pf c,max

Pb,min ≤ Pb ≤ Pb,max
SOCmin ≤ SOC ≤ SOCmax

(14)

In the cost function, the equivalent hydrogen consumption of a vehicle m(H2) is
the sum of the hydrogen consumption of the fuel cell m1 and the equivalent hydrogen
consumption of the battery m2, which are calculated in Equations (3) and (7) separately.
The weighting parameters are selected according to the various costs of fuel cells given
in Reference [58], as shown in Table 4 below. The SOH of the fuel cell can be reflected
in the degradation of the fuel cell output power. It can be seen from [44] that the decay
rate of the fuel cell is different under different operating conditions. Comparing operating
conditions such as start-stop cycle, idling operation and high output power, the perfor-
mance degradation caused by dynamic loading accounted for 41.15% of the total fuel cell
degradation, which can be regarded as the main factor leading to the reduction of fuel
cell lifetime. According to the previous study [44], the attenuation of the fuel cell under
dynamic loading conditions is shown in Equation (15). After N cycles, the SOH of the
PEMFC changes as shown in Equation (16), where Phigh is the high-power threshold, and
Plow is the low-power thresholds of the fuel cell under idling conditions. Both Phigh and
Plow are determined based on the recommended operating voltage range of the PEMFC.

Dload−change(i) = 5.93× 10−5 ×

∣∣∣Pf c(i)− Pf c(i− 1)
∣∣∣

(Phigh − Plow)
(15)
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SOH = 1−
N

∑
i=1

Dload−change(i) (16)

Table 4. Cost value of the fuel cells.

Category Cost

Hydrogen consumption (Cper−H2 ) 50 ¥/kg
Degradation of the fuel cell (Cper− f c) 4000 ¥/kW

3.3. Predictive Fuzzy Controller Based on Neural Network

The effects of the offline optimization control are influenced by driving cycles. For
real applications, the driving conditions of the vehicle are always changing, which means
it is difficult for the offline control to be convincing. Although the real-time optimization
strategy can adjust the power split according to the current state of the vehicle, it demands
large calculation. Existing methods usually choose to reduce the computational load at the
cost of optimized performance. In addition, its optimality will also be reduced without
overall understanding of driving conditions. The neural network algorithm can solve the
above problems well. The main calculation amount of the neural network is to use the
data set to train it, which can be done offline in advance. Therefore, the training time
does not affect the onboard predictive control of the vehicle. In Section 3.2, using the
fuzzy controller and genetic algorithm for global optimization, a large data set has been
produced to train artificial neural networks. Therefore, a fuel cell output power prediction
control based on the neural network (NN-FCEMS) that considers the fuel cell SOH can be
established, which takes the demand power, battery SOC, and fuel cell SOH as three inputs,
and the predicted power of the fuel cell as the output. In this article, this fuel cell output
power prediction model uses a multi-layer feedforward network and uses a backward
propagation algorithm to obtain a set of appropriate weights to make the model output meet
the accuracy requirements. The multi-layer feedforward artificial neural network is shown
in Figure 5c. In Figure 5c, Ik is the input layer, which is used to input known measured
values. The input layer includes three units, bus demand power Pload, battery state of
charge SOCbat, and fuel cell SOH. The hidden layer Hj has three units. The uppermost
output layer Oi contains one unit that outputs the fuel cell power corresponding to each set
of input data. The data set of the results obtained under the ‘Urban Dynamometer Driving
Schedule’ (UDDS) or ‘New Europe Driving Cycle’ (NEDC) driving cycles in Section 3.2 is
used as the learning sample, where s represent 1309 samples. When the original data of the
sample s is input into the network, the state of the corresponding output unit is recorded
as Os

i (i = 1), the state of the hidden unit is recorded as Hs
j (j = 1, 2, 3), and the value of

the input unit is Is
k(k = 1, 2, 3). Here the subscripts i, j, and k correspond to the output

layer, the middle layer, and the input layer in turn. Then, a set of appropriate weights{
wij, wjk

}
are selected using the back-propagation algorithm, so that for any set of learning

samples with the input of Is
1, Is

2, Is
3, the output Os

1 is the same as the fuel cell output power
that was obtained by the fuzzy controller optimized using GA, with the goal of minimum
fuel cell performance degradation and hydrogen consumption, or the difference is within
the allowable error range to realize the power prediction. Therefore, for any sample under
unknown driving conditions, as long as Pload, SOCbat and SOH are input to the network,
power can be allocated to the fuel cell based on their output. Since this method of power
split is the result of learning the algorithm in Section 3.1, it can consider the fuel cell SOH
and the hydrogen consumption. Therefore, the neural network model established in this
article is trained with 1309 sets of data, and 60 sets of data are tested. The numerical values
output of this model is denormalized to obtain the desired prediction results.

4. Results and Discussion

On the basis of meeting the dynamic demand, the energy management strategy
established in this article also considers the economy of the vehicle and the SOH of the
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fuel cell. After applying the genetic algorithm to optimize the fuzzy controller for a
single driving condition, the neural network is used to predict and control the power split
considering the practical application. This section analyzes its feasibility based on the
simulation results of the above control algorithm. Simulation conditions are as follows:
in all simulation processes, the initial value of battery SOC is set to 0.5; the ambient
temperature for vehicle operation is 298.15 K.

4.1. GA-FCEMS Results Analysis under Different Driving Cycles

This article selects three standard driving cycles of UDDS, NEDC, and ‘Highway
Fuel Economy Test Cycle’ (HWFET) as the vehicle operating conditions. It can be seen
from Figure 7 that under the UDDS driving cycle, the objective function of GA gradually
converges. Additionally, the optimized fuzzy controller membership function parameters
that minimize the objective cost function can be obtained quickly, which are shown in
Table 5. The simulation results of the power distribution before and after optimization
under UDDS are shown in Figure 8.
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Table 5. Comparison of membership functions between FCEMS and GA-FCEMS.

Variable x1 x2 x3 x4 y1 y2 y3 z1 z2 z3 z4 z5 z6 z7 z8

Original 0.0008 0.2329 0.4282 0.6235 0.1296 0.6871 0.9255 0.0654 0.1236 0.2653 0.3433 0.5914 0.6181 0.7244 0.8315
Optimized 0.0706 0.3467 0.5490 0.7890 0.5554 0.6384 0.8251 0.0386 0.1976 0.2087 0.3827 0.4149 0.6661 0.7480 0.8331

Figure 8a,b illustrated the speed of the vehicle and the power on the bus, which are
only determined by the driving cycles and the type of vehicles. Comparing Figure 8c,d, it
can be found that the EMS considering the fuel cell SOH reduces the output power of the
fuel cell from 0–40 kW to 0–30 kW. Under the NEDC and HWFET cycles, the simulation
results of fuzzy controller with and without genetic algorithm optimization are compared
when the initial SOC is 0.5, as shown in Table 6. It can be seen that the optimization range of
hydrogen consumption and fuel cell degradation has reached more than 7% under UDDS.
The fuzzy controller based on genetic algorithm optimization under NEDC optimizes the
cost of hydrogen to 1.1863%, and the cost of fuel cell degradation to 7.9026%, which is
an obvious effect. In addition, the total cost of the system is optimized to 11.66% under
HWFET, which further illustrates the rationality of this proposed EMS.
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Table 6. Results comparison between FCEMS and GA-FCEMS per cycle under UDDS/NEDC/HWFET.

UDDS NEDC HWFET

Cost/¥ GA-
FCEMS FCEMS Difference GA-

FCEMS FCEMS Difference GA-
FCEMS FCEMS Difference

Hydrogen 18.1629 19.4575 7.1277% 11.2700 11. 4037 1.1863% 14.6782 16.7012 13.7602%
FC

degradation 5.4991 6.0096 9.2833% 0.8744 0.9435 7.9026% 3.4796 3.5750 2.7417%

Total 23.6620 25.4671 7.6287% 12.1444 12.3472 1.6699% 18.1578 20.2762 11.6666%

Because the fuel cell power degraded when its SOH declines, the optimized power
split can be obtained using GA optimization, which minimizes the fuel cell SOH loss. It
can be seen from Table 7 that the SOH values after 10,000 cycles under different driving
conditions are higher than that without GA optimization. At the same time, the power
loss of a fuel cell is closely related to its operating conditions, especially dynamic loading
conditions. Therefore, the essence of the optimization algorithm when selecting the mem-
bership function parameters for the fuzzy controller is to select the set of parameters which
can minimize the fluctuation of the output power of the fuel cell. It can be seen that the
control strategy can reduce the equivalent hydrogen consumption cost and degradation
cost of the fuel cell while accomplishing the purpose of delaying the decline of SOH, which
is consistent with the simulation results shown in Table 6. And because of this, the output
power fluctuation of the fuel cell has also been significantly improved, as shown in Figure 8.
In Table 7, the optimization of the SOH under the NEDC cycle is not as large as that under
UDDS and HWFET cycles. This is because the fuel cell demand power fluctuations under
the NEDC cycle are relatively small, which provides little space for the optimization.
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Table 7. Results comparison between FCEMS and GA-FCEMS under 10,000 UDDS/NEDC/HWFET
cycles.

Driving Cycle SOH in FCEMS SOH in GA-FCEMS Difference

UDDS 0.6661 0.6945 4.2636%
NEDC 0.9476 0.9514 0.4010%

HWFET 0.7792 0.8067 3.5293%

4.2. NN-FCEMS Results Analysis under Different Driving Cycles

In order to verify the cross-generalization ability of the neural network, the predictive
control strategy NN-FCEMS is trained under the UDDS and NEDC cycles, and each cycle
contains 1309 sets of data. Then, this strategy is tested under the HWFET cycle. Sixty sets
of data and eighty-five sets of data under UDDS and NEDC cycles are reserved separately
as the test set during NN training. The prediction accuracy of the trained neural network
was evaluated, and the comparison between the obtained prediction value and the actual
value of the fuel cell output power is shown in Figure 9. As can be seen in this Figure, given
the total demand power and the battery SOC, the predicted result is not much different
from the actual value, and the change trend is consistent. This indicates that the individual
deviations of no more than 1.3% due to the insufficient training sample set will not have
a significant impact on the hydrogen consumption and performance degradation of fuel
cell vehicles. In Figure 9b,d, the fuel cell output power obtained by NN is very similar
to that obtained by GA, which shows no significant or abnormal trend. In order to make
the fuel cell operate in the high-efficiency area as much as possible to improve economy,
the minimum value of fuel cell output power is set in the fuzzy controller optimized by
genetic algorithm, as shown in Equation (14). As shown in Figure 9b, the lowest point of
the blue line is lower than the red line, because the soft margin is set, which means the
fuel cell power is allowed to be slightly lower than the minimum value Pf c,min. Since the
continuous output of the fuel cell will cause the battery SOC to accumulate, the soft margin
results in no significant charge accumulation or charge exhaustion. At the same time, it
reduces the frequency of the startup, shutdown and high-power of the fuel cell, which
means the fuel cell SOH is improved.

The training results of the artificial neural network are tested under the HWFET cycle,
and the estimated fuel cell output power is shown in Figure 10. This article uses the
root mean square error (RMSE), the mean absolute percentage error (MAPE) and k-fold
cross-validation to evaluate the accuracy of the NN in the fuel cell output power prediction,
and these methods have already been applied by Dolatabadi et al. [59], Bobyr et al. [60],
Xiong et al. [61] and Hong et al. [62]. The specific calculations for RMSE and MAPE are
shown in Equations (17) and (18). In these equations, PGA represents the target output
power of the fuel cell obtained by the fuzzy controller optimized using the genetic algo-
rithm; and PNN represents the predicted fuel cell output power using the neural network
obtained by the genetic algorithm optimized fuzzy controller. The prediction accuracy as-
sessment using MAPE and RMSE is shown in Table 8 below. As for k-fold cross-validation,
the data set of the established neural network is divided into k disjoint groups, where
k = 10 in this article. One group is selected as the test data set each time, and the others are
the training data sets. The average accuracy is obtained by iterating ten times of k-fold
cross-validation. Here, the prediction accuracy of the neural networks under UDDS and
NEDC is expressed by the determination coefficient -R2, as shown in Table 9. It can be
seen that the accuracy of the prediction results is high; that is, the strategy is well adapted
to different road conditions. Table 10 summarizes the comparison between the results
after GA-FCEMS and NN-FCEMS control for vehicles with different driving conditions
when the initial SOC is 0.5. It can be seen that the overall optimization effect is similar.
However, NN is better adapted to the NEDC cycle, where the system cost is reduced by
about 1.08% compared to GA. However, the system cost increases by approximately 4.62%
in the HWFET cycle. This can be attributed to the fact that part of the data in the NEDC
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is the training sample data, and the prediction under the HWFET cycle is based entirely
on the regular model learned by the NN, which also supports the fact that the larger and
richer the training sample data, the higher the accuracy of our prediction will be.

RMSE =

√
1
n

n

∑
t=1

(PGA − PNN)
2 (17)

MAPE =
1
n

n

∑
t=1

∣∣∣∣PGA − PNN
PGA

∣∣∣∣ (18)
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power comparison between GA-FCEMS and NN-FCEMS under NEDC.

Although the genetic algorithm produces the best results, it is not suitable in all driving
conditions because its input parameter velocity profile is not known in advance. As can be
seen in Figure 10, the proposed strategy based on the artificial neural network trained by
the results of the genetic algorithm optimized fuzzy controller executed offline determines
a near-optimal power distribution between the fuel cell and the battery, indicating whether
the battery should be charged or discharged. At the same time, the proposed artificial
neural network uses existing data as experience to obtain a model containing certain laws,
and uses the model to predict future data characteristics step by step. Therefore, the
strategy is insensitive to the driving cycles as long as the training sample is large enough.
That is, this strategy can be applied to various driving conditions.
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tion, the data set of the established neural network is divided into k disjoint groups, where 
k = 10 in this article. One group is selected as the test data set each time, and the others are 
the training data sets. The average accuracy is obtained by iterating ten times of k-fold 
cross-validation. Here, the prediction accuracy of the neural networks under UDDS and 
NEDC is expressed by the determination coefficient -R2, as shown in Table 9. It can be 
seen that the accuracy of the prediction results is high; that is, the strategy is well adapted 
to different road conditions. Table 10 summarizes the comparison between the results af-
ter GA-FCEMS and NN-FCEMS control for vehicles with different driving conditions 
when the initial SOC is 0.5. It can be seen that the overall optimization effect is similar. 
However, NN is better adapted to the NEDC cycle, where the system cost is reduced by 
about 1.08% compared to GA. However, the system cost increases by approximately 
4.62% in the HWFET cycle. This can be attributed to the fact that part of the data in the 
NEDC is the training sample data, and the prediction under the HWFET cycle is based 
entirely on the regular model learned by the NN, which also supports the fact that the 
larger and richer the training sample data, the higher the accuracy of our prediction will 
be. 
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Figure 10. Comparison of actual fuel cell output power under HWFET between GA-FCEMS and
NN-FCEMS.

Table 8. Prediction accuracy assessment of neural network using MAPE and RMSE.

UDDS NEDC HWFET

MAPE (%) 1.1154 2.3851 5.0749
RMSE (×104) 0.2009 0.3085 0.3645

Table 9. Prediction accuracy assessment of neural network using 10-fold cross-validation.

Iteration Number 1 2 3 4 5 6 7 8 9 10 Average

R2 in NEDC (%) 0.9456 0.9645 0.9720 0.9658 0.9470 0.9659 0.9733 0.9698 0.9726 0.9705 0.9647
R2 in UDDS (%) 0.8431 0.8527 0.9230 0.8908 0.8501 0.8870 0.8649 0.8545 0.8779 0.8906 0.8735

Table 10. Results comparison between NN-FCEMS and GA-FCEMS per cycle under UDDS/NEDC/HWFET.

UDDS NEDC HWFET

Cost/¥ NN-
FCEMS

GA-
FCEMS Difference NN-

FCEMS
GA-

FCEMS Difference NN-
FCEMS

GA-
FCEMS Difference

Hydrogen 18.2256 18.1629 0.35% 11.2092 11.2700 −0.54% 15.9268 14.6782 8.51%
FC degra-

dation 5.5693 5.4991 1.28% 0.8036 0.8744 −8.10% 3.0701 3.4796 −11.77%

Total 23.7949 23.6620 0.56% 12.0128 12.1444 −1.08% 18.9969 18.1578 4.62%

5. Conclusions

In order to comprehensively optimize the economy and the health state of the fuel cell
electric vehicle powertrain system, a novel energy management strategy incorporating an
optimized fuzzy controller is proposed in this article based on the establishment of a system
simulation model. The strategy uses genetic algorithms to optimize the fuzzy controller
under three driving cycles, UDDS, NEDC and HWFET, with the SOH of the fuel cell and
the equivalent hydrogen consumption of the powertrain as the optimization objectives.
The neural network algorithm is then used for predictive control of the fuzzy controller for
the onboard application. The simulation results show that, compared with the empirical
fuzzy controller, the fuzzy controller optimized by genetic algorithm can effectively reduce
the hydrogen consumption and power loss under different driving conditions, then slow
down the reduction of the fuel cell SOH. Under different operating conditions, the total
cost is reduced by up to 11%, while the fuel cell SOH optimization is up to 4%. In addition,
the neural network predictive control strategy trained with the optimal output power
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data of the fuel cell under UDDS and NEDC cycles also performs well in HWFET cycles,
and its predicted power is similar to that obtained by the genetic algorithm-optimized
fuzzy controller in HWFET cycles, which is assessed using MAPE, RMSE and 10-fold
cross-validation. Therefore, as long as the training samples are comprehensive enough, the
control system can still allocate the power requirement to the fuel cell and the battery under
multiple driving conditions in such a way that the hydrogen consumption and power loss
are the lowest and the SOH decreases as slowly as possible. Eventually, the rule-based
energy management strategy can be freed from the dependence on driving conditions. In
the next stage, besides the genetic algorithm, other evolutionary algorithms for a minimal
cost will be considered in our study to obtain an optimized solution for the fuzzy controller.
Then, the extensiveness and universality of the training data sets need to be improved for
predictive control.
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Nomenclature
Acronyms
PEMFC Proton exchange membrane fuel cell
FCHEV Fuel cell hybrid electric vehicle
FCS Fuel cell system
EMS Energy management strategy
SOH State of health
SOC State of charge
GA Genetic algorithm
BPNN Back propagation neural network
NN Neural network
EIS Electrochemical impedance spectra
PMP Pontryagin’s minimum principle
FCEMS Fuzzy control energy management strategy
GA-FCEMS Fuzzy control energy management strategy optimized

using genetic algorithm
NN-FCEMS Fuzzy control energy management strategy using neural

network for prediction
RMSE Root mean square error
MAPE Mean absolute percentage error
RC Resistor-capacitor
UDDS Urban Dynamometer Driving Schedule
NEDC New Europe Driving Cycle
HWFET Highway Fuel Economy Test Cycle
Symbols and subscripts
Ff Rolling resistance
Fw Wind resistance
Fj Acceleration resistance
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Fi Gradient resistance
m Vehicle mass
g Acceleration of gravity
f Coefficient of rolling resistance
α Slope
CD Coefficient of air resistance
A Front area
u Vehicle speed
δ Correction coefficient of rotating mass
ηT Efficiency of the transmission system
Pfc Power of the fuel cell
MH2 Molar mass of hydrogen
Ifc Fuel cell stack current
n Number of the fuel cells
F Faraday constant
EH2 Low heating value of the hydrogen
ηfc Fuel cell efficiency
Ibat Battery output current
Pbat Battery output power
Uoc Open circuit voltage
Rbat Battery internal resistance
Ccap Battery capacity
m1 Hydrogen consumption of the fuel cell
m2 Equivalent hydrogen consumption of the battery
m(H2) Equivalent hydrogen consumption of the vehicle
ηdis Average efficiency of battery discharging
ηchg Average efficiency of battery charging
TM Motor torque
PM-req Motor required power
ηM Efficiency of the motor
nM Motor speed
δT Power torque conversion coefficient
δP Torque power conversion coefficient
Cper-H2 Cost of hydrogen consumption
Cper-fc Cost of fuel cell degradation
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