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Abstract: This study assessed the entrained flow co-gasification characteristics of coal and biomass
using thermodynamic equilibrium modelling. The model was validated against entrained flow
gasifier data published in the literature. The gasification performance was evaluated under different
operating conditions, such as equivalence ratio, temperature, pressure and coal to biomass ratio. It is
observed that the lower heating value (LHV) and cold gas efficiency (CGE) increase with increasing
temperature until the process reaches a steady state. The effect of pressure on syngas composition
is dominant only at non-steady state conditions (<1100 ◦C). The variation in syngas composition
is minor up to the blending of 50% biomass (PB50). However, the PB50 shows a higher LHV and
CGE than pure coal by 12%and 18%, respectively. Overall, biomass blending of up to 50% favours
gasification performance with an LHV of 12 MJ/kg and a CGE of 78%.

Keywords: co-gasification; CO2 reactant; coal; biomass; syngas; aspen plus modelling

1. Introduction

Since the industrial revolution in 1750, CO2 in the atmosphere has increased by 45%,
resulting in climate change and global warming [1]. The main contributor to CO2 emission
is power generation, accounting for 39.7%, followed by industry, transport, building and
others with 25%, 21.2%, 8.5% and 5.6%, respectively [2]. As the second-largest source of
power generation, coal emits 41% of total CO2 worldwide [2]. Hence, various technologies
have been employed to reduce, capture and utilise CO2 from power generation. One such
technique is integrated gasification combined cycle (IGCC) power generation with carbon
capture and storage (CCS) [3].

The gasification produces syngas (CO, H2, CH4 and CO2, etc.) by partial oxidation
of carbonaceous solid fuels such as coal and biomass [4]. The syngas generated from
gasification is used for power generation using gas turbines and chemical synthesis with
appropriate downstream treatment [5]. CO2 generated from gasification plants can be
reused in the same cycle as a reactant, which helps cut costly oxygen-enriched air, oxygen
and steam [6]. Thus, besides environmental benefits, the cost of producing steam and
oxygen from air separation units can be reduced substantially [7]. Furthermore, the
recycling of CO2 offers a wide range of CO/H2 production, which is the precursor for a
wide range of chemicals [8].

Numerous studies on coal and biomass gasification have been conducted using CO2
as a reactant [9–15]. The objectives of those investigations were kinetic studies [13,16],
gas composition and subsequent char/ash characterisation [10,17] and fluid dynamic
and process modelling [18–20]. The kinetic parameters are useful for understanding the
reactivity of the fuels, which helps set the operating conditions for pilot scale analysis.
Besides, the kinetic parameters are also important for fluid dynamics and process modelling
studies [13]. The pilot-scale studies are crucial to assess the performance characteristics
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of the gasifier and operating conditions [21]. The process modelling is particularly vital,
capable of providing a wide range of data while eliminating the need for time and costly
experimental campaigns [22].

Shahabuddin et al. [22] studied the gasification characteristics of bituminous coal
using a process modelling approach under different reactants, such as oxygen, steam,
CO2 and a mixture of those. Results showed that the combination of steam and oxygen
performs better compared to other reactants. The steam–oxygen reactant showed the
highest H2/CO ratio of 0.74, while the ratio was about 0.32 using steam–CO2 and pure
oxygen. Sadhwani et al. [18] studied Aspen plus process modelling for the gasification
of biomass using CO2 reactant with known kinetics. The results were validated with
experimental data and found a co-efficient of determination between 84.38% and 98.72%
for gas compositions under different operating conditions. The co-gasification of coal
and biomass is gaining popularity due to its favourable impact on carbon conversion, gas
quality and emission, thus making the system more environmentally benign [23,24]. Ali
et al. [25] studied entrained flow co-gasification of different coals and rice straw biomass
using Aspen plus process modelling. Among the different blending ratios tested, a 10%
addition of biomass showed the best gasification performance with a CGE of 78.5%.

Similarly, Kuo and Wu [26] studied the co-gasification characteristics of coal and
biomass using Aspen plus thermodynamic equilibrium modelling under steam gasification
conditions along with a certain percentage of CO2. Results showed that the addition of
CO2 improves energy conversion and exergy efficiency. A reduction in CO2 emission by
38% was reported by co-gasification compared to pure coal gasification.

Despite some thermodynamic modelling for the co-gasification of coal and biomass
using CO2 reactants partially, limited or no studies are available on the co-gasification
characteristics of coal and biomass using pure CO2 reactants (ex situ) under thermody-
namic equilibrium modelling, especially under entrained flow conditions [8,27]. Besides
developing fuel-specific data, this process modelling has studied the effect of coal (Bara-
pukurian bituminous coal) and pine bark (Pinus Radiata) biomass ratio on the gasification
performance. In addition, various performance parameters such as carbon conversion,
H2/CO ratio, heating value and cold gas efficiency have been analysed under different
operating conditions.

2. Methodology

This study investigated the steady state co-gasification behaviour of coal and biomass
under CO2 gasification conditions using Aspen plus process simulator. The following
sections describe the theoretical background, simulation approach, assumptions and vali-
dation of the thermodynamic equilibrium model.

2.1. Theoretical Background

The current process modelling consists of the decomposition of fuel, gasification and
equilibrium calculation, as shown in the process flow sheet (Figure 1). The decomposition
of coal and biomass takes place in the RYield reactor. The RYield reactor works with the
principle of known yield composition, where reaction stoichiometry is not known [28].
The yield composition is given according to the proximate and ultimate data of the fuel
samples. In addition, the enthalpy liberated due to the decomposition was based on the
heating value of the sample. After decomposition, the elements are oxidised partially with
a sub-stoichiometric oxygen supply. Various homogenous and heterogeneous reactions,
reported in Table 1, occur in the RGibbs reactor [22,29].
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Figure 1. Process flow sheet of the thermodynamic equilibrium model.

Table 1. Major gasification reactions (adapted with permission from [22]).

Reaction Name Chemical Formula Enthalpy ( KJ
mol ) Eq. No.

Boudouard reaction C(s) + CO2 → 2CO (∆H = +159.7) (1)
Steam gasification C(s) + H2O 
 CO + H2 (∆H = +118.9) (2)
Hydrogen combustion C(s) + 2H2 
 CH4 (∆H = −88.4) (3)
Water–gas shift reaction CO + H2O 
 CO2 + H2 (∆H = −41.1) (4)
Steam methane reforming CH4 + H2O 
 CO + 3H2 (∆H = +206.3) (5)
Dry methane reforming CH4 + CO2 
 2CO + 2H2 (∆H = −247) (6)
Sabatier reaction CO2 + 4H2 
 CH4 + 2H2O (∆H = +73) (7)

The RGibbs reactor does not need any chemical reaction to be defined. However, it
requires operating temperature and pressure to determine possible product compositions
under chemical and phase equilibrium. Due to the sub-stoichiometric oxygen supply,
carbon may not burn fully. The unburnt carbon and ash are filtered out using a filter in
the subsequent stage [30]. After that, the syngas from another filter stream is cooled down
using a cooler to a temperature typically used for steam reforming. The details of the unit
blocks used in the process modelling are explained in Table 2.

Table 2. Description of the unit blocks used in the process modelling [28].

Type Model Schematic Descriptions and Operating Conditions

Reactors

RYield
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This unit is used as a decomposition reactor to break down coal/biomass
into components based on the proximate and ultimate data. This reactor is
used when component yield distribution is the only known parameter. This
reactor is isothermal, and the operating parameters for this reactor are
temperature and pressure.

RGibbs
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This equilibrium reactor works based on rigorous or multiphase equilibrium
according to the Gibbs free energy minimisation technique, subject to atom
balance constraints. This model does not require reaction stoichiometry or
reaction kinetics to be specified and can determine phase equilibrium
without any chemical reaction. The operating parameters are either
temperature and pressure or pressure and enthalpy. This model is used for
thermodynamic equilibrium calculation in the gasifier to determine the final
syngas composition.
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The SSplit is the sub-stream splitter. This unit divides feed based on splits
specified for each sub-stream. The operating parameter for this unit is split
fraction. The current modelling study used this unit to separate ash and
unburnt carbon from the syngas.

Heat Exchangers Cooler
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2.2. Model Description and Simulation Procedures

This thermodynamic equilibrium study uses commercial Aspen plus process mod-
elling software, with version V10. The details of the simulation procedures are described
in our earlier publication [22]. Hence, only a synopsis of the modelling procedures is
described here. The simulation performs mass and energy balance to reach chemical
equilibrium. This software features an inbuilt physical, chemical and thermodynamic
database for different elements [31]. In this study, the Peng–Robinson–Boston–Mathias
(PR–BM) property method is used due to its ability to model non-ideal behaviour under
high-temperature entrained flow conditions [25,32]. In Aspen plus simulation, coal and
ash were defined as nonconventional components (NC), while conventional components
include elemental compositions, CO, H2, CH4, CO2, H2O, H2S and HN3. The NC com-
ponents were defined based on the proximate and ultimate data of the fuels, as shown in
Table 3. HCOALGEN and DCOALIGT features of the software were used to model the
enthalpy and density of the nonconventional components.

Table 3. Chemical properties of coal and biomass samples (wt.%, dry basis).

Sample * Proximate Analysis Ultimate Analysis LHV
(MJ/kg)

Moisture VM FC Ash C H N S O Ash
PB0 3.10 30.61 57.79 11.60 74.19 4.59 1.52 0.55 7.55 11.60 30.26
PB20 3.13 37.69 52.81 9.50 67.57 5.12 1.15 0.38 16.28 9.50 27.72
PB50 3.17 48.31 45.39 6.30 62.51 5.63 0.78 0.23 24.55 6.30 23.91
PB80 3.20 58.92 37.88 3.20 57.29 6.21 0.36 0.08 32.86 3.20 20.09
PB100 3.23 66.02 32.88 1.10 53.89 6.54 0.14 0.01 38.32 1.10 17.55

* The numerical value in the sample name denotes its percentage of pine bark biomass (PB), which is balanced to 100% with coal.

2.3. Assumption of the Model

The following assumptions are made to model complex entrained flow gasification:

• The gasifier is steady state and isothermal [25]
• The residence time is sufficiently long to reach chemical equilibrium [33]
• A gasifier heat loss of 2.0% is considered with no pressure loss from the system [34,35]
• The major pyrolysis product consists of H2, CO, CH4, CO2 and H2O, which are

instantaneous [25,36]
• Gasification does not produce any NOx or tar under a high-temperature CO2 atmo-

sphere [37]
• There is no separate purge or fuel-conveying gas in the system. CO2 is used as a purge

or fuel-conveying gas, which is accounted for in the CO2 stream of the process flow
sheet

• Ash does not take part in chemical reactions [25,36]

2.4. Model Validation

The validation of the model was firstly carried out against Texaco entrained flow
gasifier data under various operating conditions. The operating conditions reported in
Table 4 are adapted from Ref. [25], originally collected from Ref. [31]. The current model
was further verified against our large bench-scale entrained flow gasifier data at 1000 ◦C,
as published in the literature [22]. The key operating conditions were 1 gm/min of fuel
flow, 12.0 L/min of CO2 and 4.0 L/min of purge N2. However, the details of the reactor
configurations and other operating conditions can be found in Ref. [38].
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Table 4. Operating conditions of Texaco entrained flow gasifier (adapted with permission from [25]).

Run
Feed Rate (kg/h) Reactant/Fuel Ratio

Fuel O2 Steam O2/Fuel Steam/Fuel

Run-1 275.976 238.995 66.510 0.866 0.241
Run-2 292.248 224.446 92.935 0.768 0.318
Run-3 295.920 240.583 91.439 0.813 0.309
Run-4 286.056 230.847 92.396 0.807 0.323
Run-5 257.804 212.946 90.747 0.826 0.352
Run-6 315.828 244.451 91.906 0.774 0.291
Run-7 327.492 254.134 92.353 0.776 0.282
Run-8 331.668 264.339 81.922 0.797 0.247
Run-9 316.044 248.727 84.700 0.787 0.268

The syngas composition (dry basis), presented in Figure 2, shows that the results
obtained from the current model agree with those from the literature. Some discrepancies
between the experimental and modelling results are due to the simplification in modelling
and error in experimental measurements. Following model validation, a range of sensitivity
studies has been carried out under various operating conditions.
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3. Results and Discussions
3.1. Effect of Equivalence Ratio on the Gasification Performance of Coal

Figure 3 shows the effect of equivalence ratio (ER, Ø) on carbon conversion at various
gasifier temperatures (Tg). It can be seen that increasing the equivalence ratio increases
the carbon conversion [39]. The result also indicates that the carbon conversion increases
with increasing temperatures [7]. Apparently, at a temperature of 1100 ◦C, available CO2
is fully consumed. Hence, further increasing the temperature does not affect the carbon
conversion [40]. The current result is in line with the results reported by Billaud et al. [39]
for wood biomass gasification using steam and CO2 reactants. Noticeably, at an ER of 0.99
(nearly combustion), the carbon conversion is 100% even at a temperature of 800 ◦C, due to
the assumption of infinite residence time to reach equilibrium.
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The effect of ER on syngas composition is shown in Figure 4. It is observed that
increasing the ER increases the yield of CO up to the ER of 0.66 due to the favoured
endothermic Boudouard (Equation (1)) and steam gasification (Equation (2)) reactions [41].
However, the yield of H2 decreases consistently [42] with increasing ER, primarily due to
the reverse water gas shift reaction (Equation (4)) [43,44].
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The yield of CH4 was negligible, which decreases with increasing ER due to the
favoured steam methane reforming reaction (Equation (5)) [45]. The conversion of CO2
(XCO2) was 100% at an ER of 0.66, which dropped to 74% at an ER of 0.99 due to the
complete carbon conversion. Similar results have been reported in the literature using
different reactants and fuel types [39,41,46]. The results reveal that an ER of 0.33 is most
favourable in this study due to significantly higher H2 concentration. It is to be noted that
the higher the H2 concentration in syngas, the better the quality is, due to an at least ten
times higher heating value compared to CO on a mass basis [22]. Commercial entrained
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flow gasifiers using steam and oxygen are operated with an ER of <0.5, mostly between
0.3 and 0.4 [45,47]. Hence, the rest of the analysis in the study is conducted under the ER
of 0.33.

3.2. Effect of Temperature on the Gasification Performance of Pure Coal

The effect of temperatures on gas composition and CO2 conversion (XCO2) is shown
in Figure 5. The modelling was conducted over 800–1600 ◦C at atmospheric pressure. The
result shows that increasing temperature increases the concentration of CO and H2 until
CO2 conversion becomes ~100% at around 1100 ◦C, similar to the findings reported in
Ref. [18]. At 1100 ◦C, the yield of CO and H2 reaches a steady state, indicating that the
process reaches equilibrium. The total concentration of CO, H2 and CH4 were summed to
0.99%. The yield of CO was 60% higher than that of H2, leading to the ratio of H2/CO at
~0.40 under steady state conditions. In addition, the result indicates that the Boudouard
reaction is more dominant compared to the water–gas shift reaction.
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The yield of CH4 is negligible, which decreases exponentially with increasing tem-
perature [44]. The yield of pollutants such as H2S and NH3 are presented in Figure 5b.
It is revealed that the yield of NH3 decreases exponentially with increasing temperature,
while the H2S remains constant. The results indicate that a gasifier temperature of 1100 ◦C
might be feasible for the gasification of current coal with an adjustment of residence time.
A mass balance for PB0 gasification with respect to different temperatures and atmospheric
pressure is shown in Table 5. The results show a good match between input and out mass
flow rate with insignificant variation, which might be due to a calculation error.

Table 5. Mass balance for the gasification of pure coal (PB0) at different temperatures and atmospheric pressure.

Tg
(◦C)

PB0
(kg/h)

Feed
CO2

(kg/h)

Total
in

(kg/h)

CO
(kg/h)

H2
(kg/h)

CH4
(kg/h)

CO2
(kg/h)

H2O
(kg/h)

H2S
(kg/h)

NH3
(kg/h)

Unconverted
C (kg/h)

Ash
(kg/h)

Total Out
(kg/h)

800 100 110 210.0 134.62 4.25 0.39 20.35 3.35 0.56 0.0006 35.56 11.6 210.7
900 100 110 210.0 157.19 4.55 0.17 5.36 1.11 0.56 0.0004 30.14 11.6 210.7

1000 100 110 210.0 163.17 4.65 0.08 1.52 0.40 0.56 0.0002 28.69 11.6 210.7
1100 100 110 210.0 164.83 4.69 0.04 0.51 0.17 0.56 0.0002 28.29 11.6 210.7
1200 100 110 210.0 165.36 4.70 0.02 0.20 0.08 0.55 0.0001 28.16 11.6 210.7
1300 100 110 210.0 165.56 4.71 0.01 0.09 0.04 0.55 0.0001 28.11 11.6 210.7
1400 100 110 210.0 165.65 4.71 0.01 0.05 0.02 0.55 0.0001 28.09 11.6 210.7
1500 100 110 210.0 165.69 4.72 0.01 0.03 0.01 0.55 0.0001 28.08 11.6 210.7
1600 100 110 210.0 165.71 4.72 0.00 0.02 0.01 0.55 0.0000 28.08 11.6 210.7
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3.3. Effect of Pressure on the Gasification Performance of Pure Coal

The effect of pressure on syngas and CO2 conversion at different temperatures is
shown in Figure 6. The result depicts that pressure plays a significant role at a lower
temperature under non-steady state conditions. However, upon reaching a steady state,
a minor effect is observed [41]. At a temperature of 800 ◦C, the concentration of CO at
one bar was 0.63, which decreased exponentially at 0.26 with increasing pressure at 30 bar.
The result can be explained as the conversion of CO2, which decreases with increasing
pressure [41]. On the other hand, at a temperature of 1200 ◦C, the yield of CO decreases
slightly with increasing pressure as reactions reach equilibrium [48].
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As the pressure increases, the hydrogenation of CO and CO2 become dominant [49].
In addition, the consumption of H2 increases due to the water–gas shift reaction. In
contrast, the production of CH4 increases with increasing pressure, and results from the
favoured Sabatier reaction in reverse direction [22]. Overall, the effect of pressure on syngas
composition is significant before reaching the process steady state, i.e., at a temperature
below 1100 ◦C. The effect of the biomass blending ratio reported in the next section has been
tested under atmospheric pressure, similar to the pilot-scale study reported in Ref. [47] for
entrained flow gasification of lignites.

3.4. Effect of Blending Ratio on The Co-Gasification Performance

Figure 7 shows the effect of coal and biomass blending ratio on syngas composition.
As observed in Figure 7a, increasing the biomass concentration in the blend decreases
the yield of CO. However, a drastic decrease in CO was observed with a blending ratio
above 50%.

Above 1100 ◦C, the addition of biomass with 20%, 50% and 80% leads to a decrease
in the CO concentration by 0.7, 1.1 and 5.3 percentage points, respectively. Compared to
pure coal, pure biomass resulted in a decrease in CO by 10 percentage points. The decrease
in CO with increasing biomass ratio is presumably due to the decrease in carbon content
in the sample [26]. A decrease in carbon content in the samples between 9.0% and 27%
results in the decrease of CO by 1.0 to 10 percentage points. However, further research to
fully elucidate the cause of this phenomenon is sought. The conversion of CO2 follows a
similar trend to that of CO, meaning that the variation in conversion is negligible below
PB50, while significant over a biomass ratio of 50% (Figure 7h).
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According to Figure 7b, increasing biomass ratio leads to an increase in the concentra-
tion of H2, reaching a maximum at PB50. Further increasing the biomass leads to a decrease
in the concentration of H2 significantly, particularly for pure biomass. The increase in H2
yield up to PB50 might be explained by the higher gasification rate and higher concentra-
tion of H in biomass [38]. Increasing H2 concentration with increasing biomass ratio is
reported in the literature [50]. However, a thorough study to find the cause of reduction in
H2 yield using biomass over PB50 needs to be undertaken in the future.

The syngas composition reaches a steady state at 1100 ◦C with an H2/CO ratio of
about 0.40 (Figure 7g). According to Figure 7c, the yield of CH4 was negligible, with
almost no difference up to PB50. However, using PB80 and PB10, the concentration of CH4
decreases drastically and become almost nil at a temperature over 900 ◦C. The concentration
of H2O overlapped among PB0, PB20 and PB50, above which an increase with increasing
the biomass ratio was observed (Figure 7d). The final compositions of CH4 and H2O are
governed by the reverse water–gas shift and Sabatier reactions.

The yield of two pollutants—H2S and NH3—decrease with increasing biomass concen-
tration, which is in the ppm range (Figure 7e,f). The pollutant emission from pure biomass
is nearly zero. A proportional relationship between inherent N and S content and with
those of NH3 and H2S is observed. While comparing coal and biomass, the N and S content
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in biomass are 10 and 50 times lower than in coal. Thus, increasing biomass concentration
in the blend results in the decrease of H2S and NH3. The overall gas composition suggests
that biomass blending up to 50% is optimum for the fuels studied.

Figure 8 shows the effect of biomass ratio on total syngas, LHV and CGE. It is observed
that increasing biomass ratio increases the total syngas flow rate up to PB50. Further
increasing the biomass in the blend leads to a decrease in the total syngas flow rate due to
the significant decrease in carbon for gasification reactions [26]. The LHV overlaps each
other among PB0, PB20 and PB50 due to the insignificant variation in the concentration of
CO and H2. However, increasing the biomass ratio above 50% results in the decrease of
LHV consistently [38]. A maximum LHV of 12 MJ/kg and a CGE of 78% was determined
using PB50. Due to the insignificant difference in LHV among the samples, the CGE is
predominantly governed by total syngas yield at different biomass ratios. Figure 8d shows
the relationship among CGE, the total syngas and temperature using PB50. It is revealed
that increasing temperature increases the total syngas flow rate and thereby the CGE [7].
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4. Conclusions

In this study, an assessment of coal and biomass co-gasification has been carried out
using Aspen plus process simulator. The effect of equivalence ratio, temperature, pressure
and biomass to coal ratio have been investigated using CO2 reactant. The results show that
increasing temperature increases the yield of CO and H2 up to the steady state temperature
(1100 ◦C). The pressure effect is significant only at a lower temperature (<1100 ◦C), con-
sidering syngas composition. Increasing biomass ratio up to 50% in the blends increases
the concentration of H2, above which a significant drop appears. However, the concen-
tration of CO decreases consistently with increasing biomass ratio in the blend, with very
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little variation up to 50% biomass. The blended sample with 50% biomass resulted in a
maximum LHV of 12 MJ/kg and a CGE of 78%. The concentration of pollutants decreased
consistently with increasing biomass ratio. Thus, co-gasification using CO2 reactants can
potentially increase gasification efficiency besides reducing pollutant emissions.
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