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Abstract: The world’s energy consumption is outpacing supply due to population growth and tech-
nological advancements. For future energy demands, it is critical to progress toward a dependable,
cost-effective, and sustainable renewable energy source. Solar energy, along with all other alternative
energy sources, is a potential renewable resource to manage these enduring challenges in the energy
crisis. Solar power generation is expanding globally as a result of growing energy demands and
depleting fossil fuel reserves, which are presently the primary sources of power generation. In
the realm of solar power generation, photovoltaic (PV) panels are used to convert solar radiation
into energy. They are subjected to the constantly changing state of the environment, resulting in
a wide range of defects. These defects should be discovered and remedied as soon as possible so
that PV panels efficiency, endurance, and durability are not compromised. This paper focuses on
five aspects, namely, (i) the various possible faults that occur in PV panels, (ii) the online/remote
supervision of PV panels, (iii) the role of machine learning techniques in the fault diagnosis of PV
panels, (iv) the various sensors used for different fault detections in PV panels, and (v) the benefits
of fault identification in PV panels. Based on the investigated studies, recommendations for future
research directions are suggested.

Keywords: fault detection; machine learning; solar panel; power efficiency

1. Introduction

Reliability analysis has been carried out in the field of solar energy, after taking into
consideration the variation in operational and environmental conditions. Solar irradiation
is a vital variable that facilitates the solar energy process. The prediction of faults in
solar panels necessitates some suspicions depending on environmental parameters such as
temperature, cloud amount, dust, irradiance level, and relative humidity [1]. Solar panel
faults are not only the reason for the less efficient and frequent services of the plant but also
could culminate into abnormal contexts. As a result, fault detection, when not given due
attention, could end in power losses, and sometimes with the presence of faults in solar
arrays, the whole system can meet with accidents. Several strategies may be used to provide
promising failure detection in grid-connected solar systems. Some of them utilize weather
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and astronomy data to detect faults in GCPV plants. However, other PV defect detection
systems, such as Taka-Shima’s capacitance measurements, do not require any climatic data
(irradiance, module temperature, shading quantity). Furthermore, sensor diagnosis signals
are employed to warn of potential defects in the PV module of a grid-connected PV (GCPV)
plant [2].

The algorithm used for fault detection of a PV system can provide detailed information
of current generation during the normal operating condition and, by way of corrective
action, improves the performance of the solar power system through eliminating faults,
thereby reducing power losses [3]. When one uses the one-diode model, which has to be
calibrated because of its limited calibration variables, using observed temperatures and
irradiances, PV arrays are able to forecast the maximum power coordinates of current,
voltage, and power [4]. Fault detections can be performed another way with real-time
monitoring and fault diagnostics of solar systems by estimating their starting ranges.
Hence, when one can find the minimum and maximum threshold for a particular fault;
this method enables the prompt monitoring of the solar system [5]. Another milestone in
the realm of alternative energy resources was the application of infrared thermography
(IRT) technology, which is a reliable, non-destructive, rapid, and cost-effective approach
for determining the nature of defects in electrical installations. An IR camera is used to
acquire infrared pictures. The picture of the faulty panel has to be compared with the view
of a trim PV panel while considering the decision regarding the computation of a thermal
condition [6].

A parameter-based model has been used in several articles to report on the use of
crucial parameters, such as total productive solar energy, coefficient of the total heat
exchange and the surrounding ambient temperature. These parameters were calculated
using two working places on the PV module and a thermal camera focusing on the radiation
for the relevant temperature A defect diagnosis for a specific solar cell may be demonstrated
using this parameter-based model. Building-integrated photovoltaic (BIPV) materials could
be facades, roofs, windows, walls, and such related things that have been combined with
solar material. For building owners, using such material for construction is quite expensive.
For BIPV systems, the PV array needs to be modeled by using its real data. Multi-fault
consequences on a real PV string can be used to investigate differences in I-V curves. To
distinguish between the various flaws, a PVG simulator established with a metaheuristic
method must be used to examine a variety of parameters. Several fault identification tables
have been presented to analyze PV plant malfunctions [7]. Moreover, some researchers
have studied an intelligent fault diagnosis system using a kernel extreme learning machine
(KELM) by using the inputs of a parametric model and, based on the model parameters,
KELM was used to develop a fault diagnosis model. Finally, an improved Simulink-
based PV modeling approach has been developed for fast simulation and data sample
acquisition [8].

Jianing Wu [9] released his suggestion on solar array failure utilizing tree fault analysis
and FRPN models for determining the mechanism and cause of a solar array fault, while
considering a spacecraft design. Online monitoring allows the consumers to maintain
power control, reduce their maintenance work, avoid additional power cuts that lead
to preventive maintenance. Santiago Silvestre et al. discussed OPC technology-based
monitoring. The PV array’s major characteristics, such as output voltage, current, and
power, are evaluated by the remote monitoring system, which analyses the observed data.
The fault can be identified by comparing the measured data and evaluating parameters
in the PV system. Cristina Ventura [10] presented a novel proposal in a power plant
where a SCADA system had been implemented and operational data had been collected.
Comparison of measured and estimated data predicted the faults taking place in the PV
plant. Dhimish et al. [11] proposed a methodology about parallel fault detection algorithm
for GCPV. Within a set of operational conditions, various parameters were measured with
the assistance of LabVIEW software. The algorithm would then aid in the classification of
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different issues such as a defective PV module or string, a faulty bypass diode, an MPPT
device, or a bad DC/AC inverter unit.

Coşgun et al. discussed the involvement of robot vehicles in fault detection. In
this process, they implemented the thermal energy monitoring by using a wireless robot
car equipped with an RF and thermal camera, motor, and X-bee modules for assigning
commands. Hence, the complete plant was monitored with less human involvement [12].
The literature has looked into several defect detection approaches for power electronics
and fault detection. To the best of the authors’ knowledge, no work on a generalized defect
detection approach for components or fault detection that is suited for arbitrary switching
power converters and PV system configurations has been disclosed. This article provides
an engaging notion for research academics to understand the impact of flaws on solar
panels and what studies have been conducted using different methodologies including
a machine learning approach to identify problems. This research also provides insight
into how to carry out fault repair and increase solar panel power efficiency. The paper
is organized as follow: in Section 2 we discuss the faults occurring in PV panel followed
by the online/remote supervision of PV panel in Section 3. The role of machine learning
techniques in fault diagnosis is provided in Section 4 and various sensors are used for
different fault detections in Section 5. Future directions to improve power efficiency in
PV panel by identifying the faults is provided in Section 6 followed by the conclusion and
future directions regarding the monitoring of PV panels.

2. Faults Occurring in PV Panels

In addition to large-scale solar panels initiatives, a major chunk of studies analyze var-
ious faults caused by issues such as installation faults, poor maintenance by the consumer,
system overload, hardware issues, connection faults, malfunctions, and other environ-
mental influences such as dust, water droplets, bird droppings, and partial shadowing
conditions. Figure 1 shows the classification of faults that occur in PV panel arrays and
Figure 2 shows the possible faults that occur in the life cycle of a PV panel. Recent research
into PV systems failure has resulted in the development of novel approaches for detecting
and locating the different kinds of defects existing. These methods have assisted in the
improvement of PV systems dependability and longevity. Figure 1 depicts the classification
of several defect discovery procedures used to determine the kind and locality of faults in
PV systems on both the DC and AC sides [13].
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If the defect is found on the PV system’s DC side, a microscopic study can be per-
formed to determine the cause. Analytical approaches have been found to be quite bene-
ficial for microscopic analysis. ATIR, SEM, and X-ray microtomography are some of the
most important and latest microanalysis methods documented in the literature [14]. The
decline in DC power output is the first sign that a PV system is malfunctioning. How-
ever, after examining the electrical properties of a PV system, it can be determined that
a problem exists. The modules are visually inspected when the defect location has been
determined [15]. Yellowing, cell fractures, corrosion in connectors links, electrical short
circuit defects, bypass diode failure, back-layer polyethylene fractures, bubble formation
and matrix cracking in the encapsulate, oxidation and discoloration in intersection wires,
encapsulate discoloration, and other defects are visually inspected on the module. If a
malfunction occurs on the PV system’s AC side, the system’s power flow will be zero.
Concerning Figure 1, from the literature [16], the DC side of PV panels are more affected
compared to the AC side and thus the major faults of the DC side of PV panels are discussed
below such as partial shading fault, short circuit (SC) fault, open circuit (OC) fault, and
faults in diode-blocking and bypass diode.

2.1. Partial Shading Fault

The chief source of power for solar panels is sunlight. Whenever the radiation of
the sun is interrupted, the solar panels cannot be utilized efficiently. Most of the solar
panels fail to receive sunlight due to passing clouds, snowfall, the panel being covered by
water, dirt and bird droppings, and due to tree shadow, which finally results in power loss.
Referring to Figure 3, in perilous situations, it is necessary to diagnose and indicate the
problem to the operator [13].

2.2. Short Circuit (SC) Fault

The solar panel suffers not only when it is exposed to sunlight but also during rain and
snowfall; the water droplets might by chance descend into the PV modules. In addition to
the above-mentioned situations, aging is a main factor for the short circuit fault, particularly
when the solar panel is used for a long period. Figure 3 shows the short circuit fault.
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2.3. Open Circuit (OC) Fault

In solar panels, the manufacturer uses many connections between PV modules or solar
cells. Due to the aging of low-quality electrical wires and more loads, some disconnection
might occur in the circuit. In such situations, the solar power panel fails to produce
electrical energy. This kind of fault is called an open circuit fault. An example of an open
circuit fault is shown in Figure 3.

2.4. Faults in Diodes—Blocking and Bypass Diodes

The diode used in solar PV panels is used as a feed check valve. Most commonly, two
types of diodes are used: one is blocking diode and the other one is bypass diode. Blocking
diodes are used to allow the electrical current only in one direction and are connected in
series to the solar cell. Bypass diodes are connected in parallel and are used to prevent the
backflow of current from strongly exposed cells to a weaker solar cell. Hence, it is highly
essential to diagnose faults in solar panel diodes [14]. The online/remote supervision
approach helps improve the fault detection of a solar system. The faults mentioned above
are to be monitored with the help of remote supervision methodology as it helps the
consumer with further maintenance activity [15].

3. Online/Remote Supervision of PV Panel

Online monitoring systems comprise various sensors such as a temperature sensor, a
voltage sensor, and a smart monitoring system with prescribed machine learning techniques
adapted for system monitoring. The sensors measure the voltage and the temperature.
Moreover, solar radiation is measured using reference solar cells [16]. In this type of
monitoring system, communication is carried out via existing DC power lines, requiring
no extra installation. This technology is called power line communication. The PV systems
are arrayed to measure solar irradiance, voltage, and temperature. Santiago Silvestre et al.
describe the monitoring of current, voltage, power, cosine, frequency, irradiance, partial
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shading, and module temperature. The parameters mentioned above are measured using
Pt100 sensors and various sensors with calibrated solar cells closer to the geometric center.
The invertor’s data acquisition system is used to record the data. Downloading data is
handled by software that employs OPC HDA technology, and OPC uses fault detection
algorithms for day-to-day review [17].

Specific sets of fault test data must be selected under different operating situations to
maximize the fault detection in PV power generation. In certain temperature and irradiance
conditions, a combination of PIC18F8720 microcontroller and Zigbee wireless sensor has
been used to carry out the fault diagnosis [18]. One researcher used a wireless sensor for
fault diagnosis in solar power panels by placing WSN nodes along with opposite sensors
on the group of panels. After sensing a particular parameter, the diagnosing sensor is taken
into consideration for continuing the simulation process. Furthermore, the fault diagnosis
system must be equipped with telemonitoring panels for the successful implementation of
a graphic user interface [19]. Another paper analyzed the characteristics of the terminals
used in faulty PV strings and arrays. The paper primarily focused on how to decrease
the current and voltage sensor by optimizing the sensor location and investigated the
connections to analyze both healthy and faulty PV panels with MPPT tracking and solar
array configuration [20].

Based on the survey discussed above, it can be concluded that usually most of the
people-using sensors can directly communicate through the power line and cables. How-
ever, nowadays in large-scale solar power plants, both combined management and security
maintenance are essential for the timely detection of problems, ensuring efficiency in the
functioning of the equipment. This work proposes a combined usage of an ATMEGA
processor and IoT. These are all the techniques used for data processing thanks to which
unwanted wiring, accessories, and unwanted expenditures could be controlled in solar
panel fault diagnosis. Figure 4 shows the proposed experimental work for fault diagnosis
in PV panels +.

Energies 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 4. Proposed experimental work for fault diagnosis in PV panel. 

Table 1 shows the factors/faults which affect the performance of PV panels in the 

home grid, small-scale (mini) grid, and large grid farms. These faults are the most promi-

nent problems in PV panels around the world and a monitoring suggestion is provided 

concerning the grid. 

  

Figure 4. Proposed experimental work for fault diagnosis in PV panel.

Table 1 shows the factors/faults which affect the performance of PV panels in the
home grid, small-scale (mini) grid, and large grid farms. These faults are the most promi-
nent problems in PV panels around the world and a monitoring suggestion is provided
concerning the grid.
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Table 1. Comparison of methodologies used for predominant defects in PV panel.

Monitoring Factors Methodology Used Methodology Adopted in the Grid System Monitoring Method

Shading
Multi-objective optimization [21] Home/large grid Online

Hungarian PV system [22] Mini-grid/large grid Online
Sky illumination model [23] Large grid Online

Soiling

Quantile regression neural
network [24] Home/large grid Online

Machine learning approach [25] Mini-grid/large grid Online
Infrared thermography [26] Home/large grid Offline

Dust Accumulation
Deep residual neural network [27] Mini-grid/large grid Online

Acoustic wave method [28] Mini-grid/large grid Online
Imaging technique [29] Mini-grid/large grid Offline

Weather
Inverse distance weighting [30] Home/mini-grid/large grid Online

Data analytics [31] Home/mini-grid/large grid Online
Theta-krill herd algorithm [32] Home/mini-grid/large grid Online

Delamination
Electric discharge channel [33] Mini-grid/large grid Online

Thermal imaging [34] Mini/large grid Offline
Aging test [35] Mini/large grid Offline

Discoloration
I-V characteristic analysis [36] Mini/large grid Offline
Accelerated testing (AT) [37] Mini-grid/large grid Online

Spectroscopic investigation [38] Mini-grid/large grid Offline

4. Role of Machine Learning Techniques in Fault Diagnosis in PV Panels

Machine learning (ML) systems learn to recognize patterns in data with little or
no human interaction. PV panels’ efficiency, faults, and production can all be forecasted
because they are dependent on environmental conditions. Improved forecasting techniques
can assist energy firms and users in making the most of these installations [39]. Renewables
have reduced long-term running costs, but initial equipment expenditures are usually
considerable. If the user can forecast when the grid will be threatened, they can avoid it,
saving a lot of money. Predictive analytics is one of the most effective machine learning
applications in this field. Machine learning algorithms are used in this process to analyze
how the equipment operates to forecast when it will need to be repaired. Technicians
can avoid costly breakdowns and avoid doing unneeded maintenance this way. Human
inspectors can try to perform the same thing on their own, but they aren’t as successful.
AI-assisted predictive maintenance is up to 25.3 percent more efficient and 24.6 percent
more precise, according to one research [40]. These savings can help renewable energy
projects become more cost-effective, allowing them to expand even further. As a result,
machine learning plays a critical role in detecting defects in PV panels. Table 2 shows
a wide variety of comparisons between machine learning algorithms used by different
academics to acquire knowledge of the best ways to solve problems and maintain solar
panels. According to Izgi et al. [12], data obtained from 750 W solar PV panels using an
ANN to identify the horizon are capable of providing electricity forecast for small-scale
solar power system applications. Upon observation, within a 5-min duration of frequency,
it provided optimum solar prediction. Luca Bonsignore et al. [41] have published a paper
on ANFIS using the Sugeno model, which has the time consumption limited to any other
model. They use a hybrid model and I-V curves in the different sets of a PV module
attained in various operating conditions. Chine et al. [42] performed an experimental study
of 775 patterns of various data sets. Using a Matlab/Simscape simulation tool, they divided
the data set into 80% and 20% training and testing, respectively, to test their model. The
researcher attempted to choose the most efficient architecture for their ANN, based on the
comparison between MLP and RBF.

Loftis A. Zadeh, Professor of Computer Science at the University of California in
Berkeley invented fuzzy logic. It could mimic human thinking. It has been used with
various linguistic variables holding IF-THEN rules as the base [43]. Qingqing Yang et al.
worked on fault diagnosis on PV solar systems. They focused on two faults, namely,
pole-to-pole faults and pole-to-ground faults. Mechanical stress causes pole-to-pole faults.
When any branch drops or when there is lightning, a pole-to-ground fault occurs. The
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current signal explains the current of the power system. During the occurrence of the
fault, the current might increase to an uncontrollable range by affecting the other electronic
devices [44]. Yue Wu et al. have introduced a technique for fault detection of the solar
array which has been validated using an SA-RBF extreme learning machine. It has a strong
ability to classify the fault occurrences in solar panels. This method consumes less time and
offers better accuracy in training and testing. The complete experiment was verified using
the SA-RBF-ELM fault diagnosis model [45]. Mahmoud Dhimish et al. have established
that the short circuit fault can be detected precisely. The accuracy of fault detection was 95%
after the implementation of a fuzzy logic system which was higher than that of the accuracy
of fault detection before implementing the fuzzy logic system [46]. The comprehensive
review of possible faults in PV systems discussed in this review paper, along with the
machine learning techniques, is summarized in Table 2.

Table 2. Wide range of comparisons between machine learning techniques of various researchers.

Description of the Fault Effects of Fault Machine Learning Techniques Use of Algorithm

Fault in orientation to the sun,
unlock mechanism fault, faults
during locking process,
deadlocking in hinges, faults of
the transmission unit and
vibration of panels, faults of the
cutter, faults of the mechanical
system [9].

It has the potential to distort and
vibrate solar panels. Fuzzy reasoning Petri net. To perform propagation.

Partial shading situation, upper
earth, lower earth fault, diode
short circuit fault [41].

Power loss and fire hazard. Neuro-fuzzy approach.

The neuro-fuzzy model combines
the capabilities of neural
networks and fuzzy logic. One is
to gain knowledge from the
experience, while the other is to
deliver a perfectly accurate result.

Module, connection fault, partial
shadow fault, shadow effect with
faulty bypass diode, shadow
effect with connection fault [42].

Power losses. Artificial neural network. Isolates failures that have a
unique set of characteristics.

Short circuit and open circuit
faults [47].

OC and SC faults in large PV
systems create a significant
variance in string current.

Grey wolf optimizer.

The method tracks the string
current to account for the effect of
nonuniform irradiance and
associated module temperature.

Power inverter and solar tracker
malfunctions [48].

Degradation in energy
production. Artificial neural network.

The amount of failure data
accessible allows for early
detection of breakdowns in PV
systems.

Critical flaw, major flaw, medium
flaw, small flaw, minor flaw, and
no flaw [49].

Excessive overheating reduces the
power output causing failure in
solar panels.

Fuzzy system. The overall reliability of the
system can be improved.

Line-to-ground faults, double
line-to-ground faults, line-to-line
faults, cell faults, module faults,
and bypass diode faults are all
examples of line-to-ground
faults [50].

Other losses include instabilities,
poor power generation, and other
mishaps.

Fuzzy-logic-based method,
support vector machine,
feature-extraction-based
classifiers.

This classifier uses a model-based
method to diagnose and localize
line faults in cables and
transmission lines.

Fault localization [51]. Enterprise overall
decision-making mistakes. Fuzzy logic.

The use of group decision theory
in PV array fault diagnostics
enhances detection accuracy and
anti-interference capabilities.

5. Various Sensors Used for Different Fault Detections in PV Panels

To attain the possible outcomes, the proposed method requires both electrical and
environmental data during the PV panel operation. Successful fault detection of the PV
system fully depends on the various methodologies that have been implemented by various
researchers. According to [5], for the passive part of the diagnosis, fault detection must be
determined by fitting a normal threshold and a failure threshold. Here, each residue value
was generated using the diagnostics method based on the model. The inactive part of the
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diagnosis data was measured distinctly with the instantaneous power produced by the
PV system. The basic idea behind defect detection methods is that for a big solar system,
the entire string must be exposed to various irradiance and temperature ranges. For a
combination of defects and positions of the defective modules in the string, the resultant
string current may be observed. These techniques have been used to formulate fitness
functions [47]. Based on the survey [52,53], the action of the inverter might not consider
some faults because during the occurrence of a failure, the inverter negates the fault reverse
current by a voltage reduction of the system. The potential roles of sensors in the PV system
and their configurations are summarized in Table 3.

Table 3. Comparisons of various sensors with their configuration used in the experimental setup.

References Model of the Sensor Influence of the Sensor on Fault Detection

[3]
• Voltage sensors.
• Low-cost microcontroller-based smart monitoring system

(SMS) (K-type thermocouple).

To determine the cell temperature (Tc) using solar radiation (G)
and the normal operating cell temperature (NOCT).

[8]

• I-V tester PROVA1011.
• Incident irradiance sensor.
• Infrared thermometer.
• Temperature transducer.

Module temperature, irradiance levels are measured.

[10]

• Four Pt100 (class B) temperature sensors (−20 to 120 ◦C)
• A 4–20 mA temperature transmitter for Pt100
• Two PYRA 02 pyranometers from LP.
• Seneca T201DC current transducer, Thytronic NV10P

interface protection control unit (4 to 20 mA).

• Temperature-dependent photovoltaic (TPV) measurement
• To obtain temperature information and determine the

temperature of the surrounding environment
• GHI and GPOA are being measured.
• To measure the current and monitor the voltage and

frequency relay.

[11]
• Davis weather station console (pyranometer).
• Davis external temperature sensors.

The voltage and current levels are measured using MPPT
device sensors.

[18] • Davis external temperature sensor.
• Davis pyranometer.

To measure the global solar irradiance levels used to measure
all PV module temperatures.

[54] • Pt100 sensor and irradiance sensor Module temperature and irradiance conditions are measured.

[55]

• DS18B20 digital temperature sensor.
• TSL320B optical frequency.
• Conversion chip.
• Voltage sensor.

• To measure irradiance and temperature.
• The initial branch on the first and second malfunctions in

the solar (PV) monomers is measured.

[56] • Current sensor.
A current sensor measures the current flowing across each PV
module string, with MPPT current flowing in both a healthy
and a fault series.

[57]

• The TRITEC Spektron 300 is a silicon sensor with a sensor
accuracy of 5%.

• Pt1000 is the PV module temperature sensor, T (K).
• NI DAQ-P 6015 is the DAQ module.

• Used to measure the solar irradiation on the PV modules
plane and positioned on the side of the PV modules.

• Mounted to the rear surface (Tedlar) of the PV string’s
center module.

[58]
• An LM35 temperature sensor and a second-class

pyranometer with an RS-232 port.

• Irradiance and module temperature are measured using
these devices.

• Voltage and current are measured with this device.

[59] • Low-cost multi-sensor smart monitoring system (SMS).
Multiple inexpensive sensors are employed in the PV system
module to acquire/monitor solar irradiance, PV module
temperature, voltage, and current.

6. The Benefits of Fault Identification in PV Panels

Permanent power losses can be defined as faults in solar panels, but if there are failure-
specific patterns that can be used, a more fine-grained analysis may be appropriate. The
fault identification results in an improvement of the efficiency of solar panels. The ability
of a solar panel to convert sunlight into useful energy is measured by its performance [60].
When the sun shines on two solar panels with different ratings for the same amount of
time, the more productive panel produces more energy than the less productive panel. The
power generated by photovoltaic cells determines the efficiency of a solar panel, which is
impacted by cell composition, electric arrangement, components, and other factors. For
maximum energy utilization and bill reductions, a top-tier solar panel efficiency is essential.
If one solar panel has a 21 percent efficiency rating and the other has a 14 percent efficiency
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rating, the 21 percent efficient panel will generate 50% more kilowatt-hours (kWh) of power
under identical conditions [61,62].

The most efficient solar panels on the market today have efficiency ratings of up to
22.8 percent, although most solar panels have ratings of 15 to 17 percent. To maximize
the amount of energy a system generates or make sure the least amount of electricity is
bought from the utility, one should consider installing higher-efficiency solar panels. This
will ensure that the solar panel system generates the most energy possible. Several factors
affect a solar panel’s efficiency. The efficiency of a solar panel is determined by the quantity
of incoming sunlight it can convert into useable power. However, which factors contribute
towards the ultimate conversion rate [63]. Solar cell researchers and manufacturers consider
a variety of criteria while creating and producing successful solar panels, including the
kind of material (polycrystalline silicon, cadmium telluride, monocrystalline silicon, and
so on) that affects how light is converted to energy. Wiring and busing—the arrangement
of wires and busbars on a solar panel that gather and transfer power have an impact on
efficiency.

The ability of a solar cell to absorb light on both sides of the cell (bifacial solar panels)
is an important factor in the efficiency equation for solar panels, as is their ability to produce
different wavelengths of light [64]. Overall, scientists and researchers have a plethora of
levers to pull when striving to improve solar panel efficiency [65]. It all comes down to
turning more incoming sunshine into electricity in the end. The article emphasizes the
necessity for solar PV panel to increase efficiency to meet climate targets. It also discusses
cost-cutting, technological developments, and the necessity to prepare power systems for
increased solar PV panel penetration [66]. Among the findings:

• By 2050, an increased solar PV system deployment combined with deep electrification
may reduce CO2 emissions by 21% (almost 4.9 gigatonnes per year).

• By the mid-century, solar PV systems might provide a quarter of worldwide power,
making it the second largest generation source behind wind [67].

• By 2050, global capacity must be 18 times the current levels, or over 8000 gigawatts.
• Asia will continue to dominate solar PV deployment, accounting for more than half of

all installed capacity, followed by North America (20%) and Europe (10%).
• Solar PV project costs, which are now lower than marginal fossil-fuel prices on a

worldwide scale, are expected to continue to fall in the coming decades [68].
• Solar PV technology is a rapidly changing sector, with cost reductions being driven by

advancements across the whole value chain. Floating PV technology is an excellent
example, with global cumulative installed capacity surpassing one gigawatt in 2018
and significant room for expansion.

• Rooftop solar PV systems have grown in popularity because of legislation such as net
metering and tax incentives [69].

• The energy revolution has had a positive impact on society. By 2050, the worldwide
solar business might employ more than 18 million people [70].

7. Conclusions and Future Scope

In this paper, several articles have been gathered and reviewed concerning the recent
advancement and research on five aspects: (i) various possible faults that occur in PV panel,
(ii) online/remote supervision of PV panels, (iii) role of machine learning techniques in
fault diagnosis of PV panels, (iv) various sensors used for different fault detections in PV
panels and (v) benefits of fault identification in PV panels. From the fault classification
point of view, various possible causes of faults, such as partial shading fault, short circuit
fault, and open circuit fault, faults in diodes—blocking and bypass diodes—were discussed
in detail. The various online techniques that are meant to monitor the errors occurring
in PV panels based on the type of sensor used and the monitoring of the PV panels were
discussed in this paper. Finally, this paper included the future and possible scope of the
optimization of fault detection techniques. Through that, the cost and time incurred in
the fault diagnosis of solar power panels can be reduced. This review concludes with
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a few suggestions based on the knowledge gap on certain perceptions, in pursuit of a
comprehensive analysis through a literature survey, the following methodologies were
identified and proposed for the future scope:

1. In solar panels, equipment-grounding conductors are one of the crucial elements
that would start as grounding wires on the array and continue with the power wires
through the rest of the system. WEEB is one of the alternatives for conventional
grounding. However, in the washer–electrical equipment bond, diagnosing the
grounding fault is highly challenging.

2. If one needs to measure fault current readings and transient state readings, it might
not be possible to record the temporary state of current since the instruments have a
slow sampling rate. The IoT can update the data only with a sampling rate of 30 s,
which is far from the sampling rate meant to capture the fault current event. When
one uses a digital storage oscilloscope, it becomes possible to record the fault event in
real time.

3. The IoT can be used to update the status of the panel and data rate less than the 30 s
sampling rate. If a signal varies much faster than this rate, it may not be updated
in the cloud since it depends on the network’s speed and web updating speed. A
single-shot external signal out is required for an analog oscilloscope, as well as a
particular camera to record the image. With the advent of digitalization, the same
signal may now be saved in memory and displayed on a DSO screen, as well as
transferred to a PC through USB, RS-232, GPIB, LAN, and other means. Oscilloscopes
are increasingly using high-speed serial data bus technologies such as PCI Express,
SATA, and HDMI. These connections enable quicker data transfers since the memory
depth of digital storage oscilloscopes has been raised to two giga-points. It offers
inventive techniques such as a quick response and an efficient and robust network.
To meet the expenditure spent towards intelligent sensing platforms, it is highly
recommended for medium and large-scale solar power generation systems.

This paper would recommend two important aspects to the plant owners who want
to ensure their plant’s safety. One is remote supervision through the application of the
Internet of things (IoT) and the other is to ensure the safety of the operator and protects
them from shocks and accidents due to the ground faults in solar panels.
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Abbreviation

ANN Artificial neural network
ATIR Attenuated total reflectance infrared microscopy
BIPV Building-integrated photovoltaic panels
DSO Digital storage oscilloscope
FRPN Fuzzy reasoning Petri net
FTA Fault tree analysis
GCPV Grid-connected photovoltaic panels
GPIB General purpose interface bus
HAD Historical data access
HDMI High-definition multimedia interface
IoT Internet of things
IRT Infrared thermography technology
KELM Kernel extreme learning machine
LAN Local area network
MLP Multilayer perceptron
MPPT Maximum power point tracking
OC Open circuit
OPC Open platform communications
PV Photovoltaic panels
PVG Photovoltaic generator
RBF Radial basis function
SATA Serial advanced technology attachment
SC Short circuit
SCADA Supervisory control and data acquisition
SEM Scanning electron microscopy
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