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Abstract: It is the tradition for the fluid community to study fluid dynamics problems via numerical
simulations such as finite-element, finite-difference and finite-volume methods. These approaches
use various mesh techniques to discretize a complicated geometry and eventually convert governing
equations into finite-dimensional algebraic systems. To date, many attempts have been made by
exploiting machine learning to solve flow problems. However, conventional data-driven machine
learning algorithms require heavy inputs of large labeled data, which is computationally expensive
for complex and multi-physics problems. In this paper, we proposed a data-free, physics-driven deep
learning approach to solve various low-speed flow problems and demonstrated its robustness in
generating reliable solutions. Instead of feeding neural networks large labeled data, we exploited the
known physical laws and incorporated this physics into a neural network to relax the strict require-
ment of big data and improve prediction accuracy. The employed physics-informed neural networks
(PINNs) provide a feasible and cheap alternative to approximate the solution of differential equations
with specified initial and boundary conditions. Approximate solutions of physical equations can
be obtained via the minimization of the customized objective function, which consists of residuals
satisfying differential operators, the initial/boundary conditions as well as the mean-squared errors
between predictions and target values. This new approach is data efficient and can greatly lower the
computational cost for large and complex geometries. The capacity and generality of the proposed
method have been assessed by solving various flow and transport problems, including the flow past
cylinder, linear Poisson, heat conduction and the Taylor–Green vortex problem.

Keywords: deep learning; physics-informed neural networks; partial differential equation; automatic
differentiation; surrogate model

1. Introduction

The solution of many physical equations in fluid dynamics is generally obtained by
discretesizing them into finite difference equations and then solving the algebraic equa-
tions. For complicated problems with high dimension or for the sake of accurate solutions,
computational costs soar when more discrete points are required. This difficulty can be
overcome by the increasingly popular and powerful machine learning approach. Machine
learning is superior in dealing with any nonlinear problems compared to the conventional
discretization method, which often requires making appropriate prior assumptions, per-
forming linearization, and considering restrictive local time-stepping. Machine learning
makes use of multilayer neural network architectures to model various physical systems. It
has been acknowledged that standard multilayer feed-forward network architectures with
sufficiently many hidden units act as universal approximators as they can approximate
virtually any function to any desired degree of accuracy [1]. The first attempt to apply
neural networks (NNs) to solve PDEs was reported by Lee and Kang et al. [2]. The main
idea is to approximate the solution of PDEs using the NN as continuous functions and
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train the neural networks to minimize the solution residuals inside the domain and on
the boundaries. Lagaris et al. [3] demonstrated this idea by solving a number of bench-
mark problems such as the Poisson equation, subject to both Dirichlet and Neumann
boundary conditions.

However, to solve differential equations with high accuracy, great care has to be
taken when designing the neural network structure. Another challenge is that huge
amounts of data have to be fed into the neural network in the training stage, which is
a time-consuming and computationally prohibitive process. This prompts researchers
to seek room for improvement: Is it possible to inform the neural network from the
beginning for performance enhancement? Multilayer perceptions (MLP) was reported
to build a smart neural model based on predicting the proper orthogonal decomposition
modes of the Kuramoto–Sivashinsky (KS) equation and the Navier–Stokes equation [4].
Karhunen–Loéve decomposition was applied to reduce the dataset for training of neural
networks, after which the trained NN is capable of predicting the data coefficients at a
future time. Similarly, MLP was also employed to compute the solution of the Stokes
equation by decomposing it into multiple Poisson problems and then solving these Poisson
equations with neural networks. The neural network approximates the Stokes equation
using randomly sampled data points and delivers solutions that are in a differentiable and
closed analytic form [5].

Big progress was made by Raissi et al. as they introduced a new concept of ‘Physics
Informed Neural Networks (PINNs)’ to tackle PDEs defined in complex domains with
a variety of boundary conditions [6,7]. PINN exploits structured prior information to
construct neural networks with physical equation integration [8–10]. Gaussian process
regression was employed to derive functional representations of linear and nonlinear
problems. When dealing with nonlinear problems, locally linearization of nonlinear terms
in time is required, thus limiting the methods applicable only to discrete-time domains.
Furthermore, the method’s robustness is compromised with the Bayesian nature of Gaus-
sian process regression as some certain prior assumptions are introduced. Inspired by
the Galerkin method’s solution approximation strategy using linear combination of basis
functions, K. Spiliopoulos et al. put forward that the solution can also been approached
by the combined functions arising from vast number of neuron units in neural networks,
and coined this approach the “Deep Galerkin Method (DGM)” [11]. They also proved that
the neural network would converge to the solution of the partial differential equation as
the number of hidden units increases.

This idea was furthered by Lu and Karniadakis as they released the “DeepXDE”
library to handle a wide range of differential equations including partial- and integro-
differential equations [12]. The concept of PINN was extended to solve problems with
limited high-fidelity data and sufficient and readily low-fidelity data by constructing four
fully-connected neural networks, which can learn both the linear and complex nonlinear
correlations between high- and low-fidelity data. This work is pretty useful for high-
dimensional regression and classification problems with large multi-fidelity data.

This paper is focused on developing a physics-informed, data-free deep neural net-
work for surrogate modeling of various flow and heat transfer problems. A multi-layer
neural network structure has been devised to approximate the solutions of physical equa-
tions, with the initial/boundary conditions being penalized in training stage. Compared
with conventional data-driven machine learning approach, our devised neural network
is advantageous as the training process is driven by minimizing the residuals of the gov-
erning equations, and no large labeled data from expensive numerical simulations are
required. The generality and robustness of the proposed method are demonstrated in
several flow dynamics and heat transfer problems. The rest of this paper is organized as
follows. Section 2 gives a comprehensive introduction of deep learning. The proposed
physics-informed neural networks is described in Section 3. In Section 4, the developed
approach is applied to solve a variety of test problems governed by various differential



Energies 2021, 14, 7760 3 of 24

equations. Finally, the conclusion part in Section 5 summarizes this work and points out
the limitations and future directions of our method.

2. General Description of Deep Learning

Deep learning, a state-of-the-art method, has demonstrated its success in solving
complex problems in speech recognition [13], computer vision [14], natural language
processing [15] and audio processing [16]. It was originally inspired by biological neural
networks, as is shown in Figure 1. By mapping a large number of inputs into a target
output, it can approximate and estimate highly complicated functions. As the neural
networks go deeper, complicated features at various levels of abstraction can be learned
and thus better predictability and higher accuracy are available. Increasing the number
of layers enables neural networks to have superior generality as the level of features is
enriched [17]. With sufficient layers and enough transformations, neural networks are
capable of approximating any function to any desired degree of accuracy. A systematical
study by Chen et al. [18] proved the universal capability of neural networks to approximate
functionals, nonlinear operators and functions of multiple variables.

Figure 1. Biological (a,b) and artificial (c,d) neural networks.

2.1. Deep Neural Networks

A deep neural network (DNN), a multi-layer neural network, is essentially a “stack”
of nonlinear operations where each operation is prescribed by some adjustable parameters.
Compared with single-layer neural network, a DNN can learn hierarchical representations
to represent sophisticated phenomena as it has more parameters, more complex functions
and better inductive bias [19,20]. Stacked layer by layer, deep learning is realized via such
multi-layer neural networks, which act as the composite of nonlinear functions (also called
activation functions) to transform function representation from one primary level into a
higher, more abstract level (Figure 1).

From the perspective of mathematicians, the multi-layered neural networks use the
compositions of simple function to approximate complicated ones, and thus act as a
compositional model regarding function representation. A deep neural network f (x) with
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N hidden layers is composed of a series of compositional functions, linear or nonlinear.
A general DNN shown in Figure 1d can be mathematically expressed as

f (x) = F out ◦ FN ◦ FN−1 ◦ FN−2 ◦ · · · F 1 ◦ F in (1)

where the symbol “◦” denotes function composition. Here FN is the mapping from layer
N − 1 to N. The superscript “in” and “out” denote the input and output layer.

The N-hidden-layer DNN, denoted by f (x) : Rd → RD , implements the learning pro-
cedure by intaking the d-dimensional data from the layer of input units at the bottom (F in),
mapping the incoming data via certain number of intermediate layers (F j), and finally
generating the k-dimensional output from a layer of output unit at the top (F out). The j-th
layer has Nj neurons, with the associated weight matrix and bias vector being referred to
as Wj ∈ RNj×Nj−1 and bj ∈ RNj , respectively. With the employment of activation function
σ, the N-layer DNN is defined by:

Input layer: F in(x) = x ∈ Rd (2)

Hidden layer: F j = σ(WjF j−1(x) + bj) ∈ Rj where 1 ≤ j ≤ N (3)

Output layer: F out = WoutFN(x) + bout ∈ RD (4)

The labeled training set T = {(xi, yi), 1 ≤ i ≤ N} consists of input vectors xi and
output vector yi of length N. The free parameters are θ = {Wj, bj, j = 1, 2, · · · , N} and
explicitly write the neural network function parameterized by θ as f (·, θ).

2.2. Objective Function

In the training stage, the major task is to identify the optimal weights θ that produce
accurate predictions via the optimization of predefined objective functions, i.e., explicitly
minimize a cost function by gradually adjusting the free-parameter weights. DNN acts as
a mapping function f (·, θ) that approximates the true value yi using the predicted value
ŷi = f (xi, θ). The cost is usually expressed as “Mean Squared Error (MSE)” defined in
Euclidean space. The cost function is usually calculated as an average over all training
examples, as is shown below:

Cmse(X, Y) =
1
N

N

∑
i=1
‖yi − ŷi‖2 (5)

where Cmse is the mean squared error evaluated for the given set of N inputs X =
{x1, x2, · · · , xN} and the corresponding output Y = {y1, y2, · · · , yN} from neural net-
work prediction.

2.3. Activation Function

The activation maps an incoming input x to an outcoming output y using different
activation functions. Some of the most popular activation functions include Sigmoid
(y = σ(x) = 1

1+e−x ), hyperbolic tangent (y = tanh(x) = 2
1+e−2x − 1), and Rectified Linear

Unit (ReLU, y = max{0, x}). The ReLU function accelerates the training process, making
neural networks several times faster than their equivalents with tanh units [21]. Another
merit of ReLUs is that they do not require input normalization to prevent saturating.
However, for regression applications, ReLU function suffers from diminishing second
and higher-order derivatives, lowering the accuracy for cases involving such higher-order
derivatives [22]. Tanh or Sigmoid activations can overcome this issue brought by the
second or higher-order PDEs. Moreover, sigmoids or Tanh are chosen for classification
problems as they stretch the input space around a central point and can categorize elements
into different classes.
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2.4. Optimization Process

To train a neural network, the derivatives, mostly in the form of gradients and Hes-
sians, need to be computed [23]. Derivatives can be manually addressed as analytical
formula, or computed by symbolic differentiation, numerical differentiation, and automatic
differentiation (also called algorithmic differentiation, AD). The exact analytical expres-
sions of derivatives are pretty hard to get manually for complex problems. More often,
even if an analytical solution exists, its derivation is mathematically challenging, time
consuming, and error prone. While for symbolic and finite differentiation, they both suffer
from poor performance for complex functions [24]. Hence, AD has become the mainstream
for derivative calculations and serves as the real secret sauce that powers machine learning.

2.4.1. Automatic Diffraction for Derivative Evaluation

AD executes program codes and automatically computes derivatives using chain rule
for accumulation of values instead of derivative expressions. Specifically, AD interprates
computer programs by replacing the variable domains to incorporate derivative values
and redefining the semantics of operators to propagate derivatives per the chain rule of
differential calculus [24]. For symbolic differentiation, the goal is a complex and accurate
expression, whereas for AD, the goal is the numerical derivative evaluations. The main ad-
vantages of AD lie in its capability to evaluate derivatives at machine precision in constant
time, with only a small constant factor of overhead and ideal asymptotic efficiency [25].
Currently AD can be implemented in two distinct ways: Forward mode and reverse mode.
Forward mode evaluates derivatives by transversing the chain rule from inside to outside.
For instance, a general target function f expressed in the composite of k functions

y = f k( f k−1( f k−2 · · · ( f 2( f 1(x))))) = f k ◦ f k−1 ◦ · · · ◦ f 1(x)

where f k ◦ f k−1 = f k( f k−1(x)).With the variable replacement as: t0 = x, t1 = f 1(t0), t2 =
f 2(t1), · · · tk = f k(tk−1) = y, the calculation of derivatives in forward mode is:

∂y
∂x

=
∂y

∂tk−1

∂tk−1
∂x

=
∂y

∂tk−1

(
∂tk−1
∂tk−2

∂tk−2
∂x

)
=

∂y
∂tk−1

(
∂tk−1
∂tk−2

(
∂tk−2
∂tk−3

∂tk−3
∂x

))
= · · · (6)

While in the reverse mode, the dependent variable to be differentiated is fixed and the
derivatives are calculated from outside to inside, as is shown below:

∂y
∂x

=
∂y
∂t1

∂t1

∂x
=

(
∂y
∂t2

∂t2

∂t1

)
∂t1

∂x
=

((
∂y
∂t3

∂t3

∂t2

)
∂t2

∂t1

)
∂t1

∂x
= · · · (7)

The backpropagation algorithm, a specialized counterpart of AD, is the backbone of
neural network training. It is the method of fine-tuning the weights of a neural network
based on the error rate obtained in the previous epoch (i.e., iteration). Proper tuning of
the weights allows us to reduce error rates and make the model reliable by increasing its
generalization. First the sensitivity of the objective value at the output is computed as
partial derivatives of the objective function with respect to each weight utilizing the chain
rule; then the sensitivity is backpropopagated to derive the required gradients. The process
is essentially equivalent to transforming the network evaluation function composed with
the objective function under reverse mode AD. At the heart of backpropagation is the
partial derivative of the objective function with respect to any weight (or bias) in the
network, which gives detailed insights into how the changing weights and biases change
the overall behaviour of the network.

Figure 2 shows the role and key procedures of backpropagation in a simple neu-
ral network. Figure 2b illustrates the phenomena, with an example describing both the
forward and backward pass. In the forward direction, training inputs x1and x2 are trans-
formed to generate corresponding output y3. A loss function measuring the error between
predicted output yi and the true value y3 is computed. For the backward propopaga-



Energies 2021, 14, 7760 6 of 24

tion, the sensitivity of objective function J(θ) with respect to different neuron weights
∇θi J =

(
∂J
∂θ1

, · · · , ∂J
∂θ6

)
is used in a gradient-descent procedure for weights update.

(a)

(b)

Figure 2. An overview of backpropagation. (a) Role of backpropagation in a neural network;
(b) Step-by-step backpropagation example.

2.4.2. Weight Update Using Gradient Descent

Gradient descent is commonly used to minimize an objective function J(θ) with a
combination of varied neural network weights θ ∈ Rd. The minimization ends at a valley
when following the downhill direction of the surface slope of the objective function. This
minimization process updates the involved weights in the opposite direction of the gradient
of the objective function∇θ J(θ) with an assigned learning rate η; a hyperparameter controls
how much the model weights are updated in response to the estimated error at each
iteration. A small η means a long training process that could get stuck, whereas a large
value for the sake of accelerating the training process may prevent convergence due to the
large fluctuation of loss function.

Based on the data used to compute the gradient of the objective function, the gradient
descent algorithm can be classified into three variants: Batch gradient descent, stochastic
gradient descent and mini-batch gradient descent. They show different levels of accuracy
for the weight update and timescale at each iteration.

Batch gradient descent For the batch gradient descent (also referred to as vanilla
gradient descent), the entire training datasets are used to compute the gradient of the cost
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function for parameter update. It will converge to the global minimum for convex error
surfaces and to a local minimum for non-convex surfaces [26].

θ = θ − η · ∇θ J(θ) (8)

Calculation of the gradients from the whole dataset makes the update quite slow and
intractable for large datasets exceeding the memory limit. Batch gradient descent also does
not support online model update, i.e., with new examples on the fly.

Stochastic gradient descent To prevent the slow convergence of batch gradient de-
scent, stochastic gradient descent (SGD) has been introduced, where the fluctuations arising
from the randomly selected points xi allow jumps to new and potentially better local min-
ima. This algorithm is a popular choice since it is fast, reliable, and has low susceptibility
to bad local minima. In this algorithm, the weights are updated after the presentation of
each example, according to the gradient of loss [27].

θ = θ − η · ∇θ J(xi; θ) (9)

By performing the update at each iteration, SGD converges much faster than its batch-
based counterpart and enables the model to update online. However, the fluctuation of
SGD makes its jump to local minima, complicating the convergence to global minimum.
The fluctuation causes a sharp change for a large learning rate. Decreasing the learning rate
slows the convergence of SGD, and its convergence history is similar to the batch gradient
descent approach.

Mini-batch gradient descent To strike a balance between batch gradient descent and
SGD, the parameter θ is updated for every n training samples xi+n, coined as mini-batch.
This mini-batch gradient descent reduces the variance of parameter updates, shows a stable
convergence and is compatible with many state-of-the-art matrix optimization approaches.
The mini-batch sizes can range from 50 to 256, depending on the application scenario.
It has become the algorithm of choice and the term SGD usually refers to mini-batch
gradient descent

θ = θ − η · ∇θ J(xi+n; θ) (10)

It should be mentioned that this mini-batch gradient descent approach is also bounded
by the challenge of getting trapped in some suboptimal local minima when minimizing
highly non-convex error functions for many neural networks. This is because of the
existence of saddle points which are usually surrounded by a plateau of the same error [28].
The saddle points have one dimension slope up and another slope down; thus their
gradients are close to zero in all dimensions.

3. Physics-Driven Deep Learning

In fluid dynamics, many transport phenomena can be modeled by some partial
differential equations (PDEs), which can be expressed as

L(t, x; u(t, x)) = 0 (t, x) ∈ [0, T]×Ω

I(x; u(0, x)) = 0 x ∈ Ω

B(t, x; u(t, x)) = 0 x ∈ [0, T]× ∂Ω

(11)

where L(·) denotes a general differential operator consisting of temporal and spatial
derivatives, as well as some linear and nonlinear terms. The position vector x is defined on
a bounded continuous spatial domain Ω ∈ Rd, d ∈ {1, 2, 3} with the boundary denoted
as ∂Ω. The initial condition I(·) and boundary condition B(·) may contain differential,
linear and nonlinear terms. B(·) implements the Neumann, Dirichlet, Robin, or periodic
boundary conditions. In view of that the true solution u(t, x) is unknown or too costly
to derive, an approximate one ûNN(t, x) can be obtained via the minimization of the cost
function (usually the L2 norm of errors) with the following formula:
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RL(θ) =
∫
[0,T]×Ω

‖L(t, x; θ)‖2 dt dx

RI (θ) =
∫

Ω
‖I(t; θ)‖2 dx

RB(θ) =
∫
[0,T]×∂Ω

‖B(t, x; θ)‖2 dt dx

(12)

The training process of neural network produces a set of optimal θ?, which is calculated
based on

θ? = argmin
θ

RL(θ) subject to: RI = 0 and RB = 0 (13)

With the initial and boundary conditions posed as constraints, the solution of the gen-
eral nonlinear PDE (Equation (11)) can be approximated as the outcome of the optimization
problem defined by Equation (13). To solve this optimization problem, the constraints in
Equation (13) are integrated into a sophisticated loss function that can be minimized by
neural networks. For better illustration, the abstract PDE in Equation (11) is reformulated
in a more expressive way, as is shown below:

∂tu(t, x) + Lu(t, x) = 0 (t, x) ∈ [0, T]×Ω (14)

subject to: u(0, x) = u0(x) x ∈ Ω (15)

u(t, x) = g(t, x) x ∈ ∂Ω (16)

where the dimensional variable x ∈ Ω ⊂ Rd. The unknown u(t, x) is approximated by
û(t, x; θ) from a well-crafted deep neural network with adjustable weights θ. The accuracy
of predictions is quantified by measuring the residual J(·; θ) of the equation satisfaction
under the constraint of boundary and initial conditions:

J(·; θ) =

∥∥∥∥∂tû(t, x; θ) + Lû(t, x; θ)

∥∥∥∥2

[0,T]×Ω,ξ1

+ ‖û(t, x; θ)− g(t, x)‖2
[0,T]×∂Ω,ξ2

+ ‖ f (0, x; θ)− u0(x)‖2
Ω,ξ3

(17)

where ‖u(x)‖2
Ξ,ξ1

=
∫

Ξ |u(x)|2ξ(x)dx and ξ(x) is a positive probability density defined on
the domain Ξ.

The true solution for Equation (14) can be identified under the condition of
J(u(t, x; θ)) = 0. However, in real situations, it is pretty hard to derive θ, especially
for the high dimensional problems where the integral over the domain Ω is computa-
tionally intractable, hence a reliable approximate solution is sought at a reasonable cost.
An approximate solution û(t, x; θ) should minimize the error indicator J(·; θ). A deep neu-
ral network uses the stochastic gradient descent (SGD), an iterative method, to implement
the minimization task. A key strength of SGD lies in its ease. SGD is simple to implement
and also fast for problems with substantial training data, which reduces the computational
burden, achieving faster iterations in trade for a slightly lower convergence rate [29]. In-
stead of calculating the actual gradient from the entire dataset, the approximated gradient
is generated by randomly selecting some data from the whole dataset [30].

The overview of the whole procedure is shown in Table 1. Key steps in solving the
partial differential equations are listed below:
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Table 1. Physics-informed deep learning approach.

Deep Learning Algorithm with Embedded Physics

1. Build the neural network architecture of DNN, i.e., setup the number of layers,
number of neurons bounded to each layer and activation function.

2. Initialize neural network using provided parameters θ.
3. Construct the objective function for optimization using Equation (17), which ac-

counts for the L2 norm of the residual of the physical equation initial and boundary
conditions represented by Equation (14), Equation (15) and Equation (16), respec-
tively.

4. Implement the stochastic gradient descent algorithm within the mini-batch, specify
optimizer hyper-parameters and batch size N.

5. Set iteration n = 0 and specify the maximum iteration number nmax.
6. Start the training in accordance with the following steps:

While n < nmax do
• Design sampling strategy to generate random N input points si =

{(ti, xi), (τi, zi), wi} from [0, T]×Ω with 1 ≤ i ≤ N
• Estimate the loss for each prediction loop n
• Update the weights from θn to θn+1 according to stochastic gradient descent algo-

rithm:
θn+1 = θn − ηn∇J(sn; θn)

• n = n + 1

end while

(1) Generate some random points (tn, xn) from [0, T]×Ω the probability density ξ1
to approximate the governing equation, Equation (14). Moreover, sample another set of
points (t̃n, x̃n) in [0, T]× ∂Ω with the probability densities ξ2 to capture boundary condition
Equation (16) and pockets of random data wn from Ω using possibility density ξ3 to meet
initial condition Equation (15). Lastly, distribute the random point x̃n according to the
probability density ξ3. This sampling strategy avoids the lengthy and time-consuming
mesh-generation process, and thus reduces computational cost.

(2) Calculate the objective function, i.e., the squared error J(sn; θn) using the randomly
sampled observation sn = {(tn, xn), (t̃n, x̃n), x̃n}:

J(sn; θn) = (∂tû(tn, xn; θn) + Lû(tn, xn; θn))
2 + (û(t̃n, x̃n; θn)− g(t̃n, x̃n))

2

+ (û(0, x̃n; θn)− u0(x̃n))
2

(18)

(3) Explicitly apply the gradient descent algorithm to update the weights of neural
network. Each iteration involves drawing an example sn at random and applying the
parameter update rule:

θn+1 = θn − ηn∇J(sn; θn) (19)

The “learning rate” ηn decreases with increasing iteration n. It is either a positive
scalar or a symmetric positive definite matrix. The step ∇G(sn; θn) is an unbiased estimate
of ∇Jθ(û(·; θn)):

E[∇θG(θn, sn)|θn] = ∇J(û(·; θn)) (20)

Therefore, the stochastic gradient descent algorithm will on average take steps in
a descent direction for the objective function J(·; θ). The descent direction diminishes
the objective function so that J(û(·; θn+1)) < J(û(·; θn)). As a result, the θn+1 enables the
neural network to produce a better estimation than θn.
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As the iteration approaches to infinite (i.e., n→ ∞), the algorithm θn would ultimately
converge to the critical point defined as:

lim
n→∞

‖∇θ J(û(·; θn))‖ = 0 (21)

Since the stochastic gradient descent may converge to a local minimum for the non-
convex optimization problems [11], a caution must be taken that θn is likely to converge to a
local minimum rather than a global minimum for neural networks with non-convex nature.

4. Results

To illustrate the effectiveness of our proposed approach, four problems ranging from
fluid dynamics to heat transfer are presented. These problems can be modeled by physical
laws in the form of differential equations. To train the employed neural network, we
use tanh as the activation function, and some other key hyperparameters are listed in
Table 2. Here, “Adam, L-BFGS” represents that the neural network was first optimized
under the Adam algorithm for 1000 iterations, and then we switch to Limited-memory
Broyden–Fletcher–Goldfarb–Shanno(L-BFGS) [31] for the remaining iterations.

Table 2. Designed neural network architectures for different working examples.

Examples Hidden
Layers

Neurons on
Each Layer Optimizer Learning Rate Iterations

Potential Flow over Cylinder 5 50 Adam, L-BFGS 0.001 30,000

Taylor–Green Vortex 5 30 Adam, L-BFGS 0.001 3000

Poisson Problem 5 40 Adam, L-BFGS 0.001 5000

Thermal Conduction 5 40 Adam, L-BFGS 0.001 10,000

4.1. Potential Flow Over Circular Cylinder

In this section, we present the application of the aforementioned algorithms to address
the potential flow past cylinder problem. For this data-free approach, we do not need CFD
calculated flow data used as inputs to calibrate the predicted results from neural networks.
Instead, by exploiting the governing equation modeling the physical phenomena, we can
ask the neural network to do self-learning by minimizing the customized errors instead of
feeding them prior data used for supervised learning. Hence, if we know the governing
equation, this method enables us to get rid of the lengthy and expensive CFD computations.
It spins out neuron-generated solutions for the governing equations in a cheap and efficient
way. Another big advantage of this promising technique that facilitates the study of various
physical phenomena lies in the removal of the necessity of generating structural or non-
structural meshes used for geometry discretion, which is a big challenge for modeling of
transport phenomena in complex geometries.

One of the most basic problems in elementary fluid dynamics is to find the velocity
potential and streamlines associated with uniform irrotational flow past a cylindrical obsta-
cle. This benchmark problem for stationary, inviscid, and incompressible flow has obvious
application to simplified problems in aerodynamics. The test configuration considers a
solid cylinder centered at (0, 0) with the radius R = 0.5 in a L = 3 by h = 2 rectangular
channel. The fluid is assumed to have a constant density equal to 1.29. As the flow is
assumed to be irrotational and steady; hence there exists a velocity potential ϕ = ϕ(x, y)
such that

~V = ∇ϕ

where ~V is the velocity vector. The velocity components in the x and y directions can be
obtained by

ux =
∂ϕ

∂x
and vy =

∂ϕ

∂y
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The relationship between potential and velocity can be expressed by Laplace’s equa-
tion as:

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 = 0 (22)

For a uniform flow with U∞ = 1.0, as shown in Figure 3, the analytical solutions in
Polar and Cartesian coordinates are

ϕ =

(
r +

R
r

)
U∞ cos θ (23)

ur =

(
1− R2

r2

)
U∞ cos θ (24)

vθ = −
(

1 +
R2

r2

)
U∞ sin θ (25)

ux = 2U∞ sin θ sin θ (26)

vy = −2U∞ sin θ cos θ (27)

The designed neural network for this cylinder flow problem is shown in Figure 4. Here
the network consists of five hidden layers with each layer being 50 neurons. The Sigmoid
function was chosen as the activation function. RPDE is the residues of Laplace’s equation,
which measures the difference between neural network predictions and the exact solution
for each sampling data point. Meanwhile, the boundary conditions are considered by
including the residual RBC, which quantifies the closeness of neural network predicted
flows at each boundary to the imposed boundary conditions. Small values of both RPDE
and RBC are desirable. During the training process, both these residuals were minimized
via the stochastic gradient descent algorithm. Ideally, RPDE and RBC are expected to
infinitely approach zero. In reality, it is generally accepted that an extremely small value,
say 10−3, indicates the converged and reliable prediction results.

Figure 3. Schematic for potential flow over circular cylinder.

To approximate the flow field inside the computational domain, 2000 spatial points
were randomly sampled inside the domain, as is shown in Figure 5. Here the predicted flow
field is used to evaluate how well it satisfies the Laplacian equation. The residue RPDE at
each point was summed up to quantify the deviation of the prediction from true solutions.
The satisfaction of the imposed boundary conditions was evaluated at the 400 data points
sampled at the boundaries, i.e., the left, right, bottom and top boundary of the rectangular
domain and the surface of the cylinder.

With 30,000 iterations, the training loss was reduced to the magnitude of 10−3. To test
the accuracy of the network’s prediction capacity, 800 randomly sampled spatial points
were used, as shown in Figure 5. The predicted flow potential is shown in Figure 6. The co-
incidence between blue and orange points indicates the predicted results approximate the
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analytical results with high accuracy. The deviation between these two datasets is the
source of the prediction error. As to our concern, the neural network gives a pretty good
prediction, as indicated by the small deviations between these test points.

Figure 4. Schematic of constructed physics-based neural network architecture. The input layer has two neurons as
placeholders for data coordinate (x, y), and the output layer has a single for the predicted velocity potential. N refers to the
number of hidden layers, and each hidden layer is composed of Nn neurons. Each neuron (blue dot) is connected to the
nodes of the previous layer with adjustable weights and bias. BC denotes the boundary conditions specified in Figure 3.

Figure 5. Randomly sampled data points across the computational domain for training (a) and test purpose (b).



Energies 2021, 14, 7760 13 of 24

Figure 6. Velocity potential comparison between predicted and analytical results. The blue and orange dots denote the
neural network predicted results and the analytical results. The horizontal axis shows the number ID of sampled points and
vertical axis is the value of velocity potential.

Further evidence including streamline and vector field is also provided to double
check the outcomes of the neural network predictions. Figures 7 and 8 show the streamline
and velocity field predicted by the employed neural network. The velocity magnitude
exhibits two lines of symmetry. A line drawn horizontally through the cylinder divides the
velocity magnitude into upper and lower sides that are geometric mirror images. Note that
the velocity itself is not symmetric about this line. These results lead to the conclusion that
the employed neural network has excellent capacity to predict this flow phenomenon with
high accuracy.

Figure 7. Neural network predicted streamline.
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Figure 8. Neural network predicted velocity.

Using Bernoulli’s equation, we can obtain the pressure coefficient

Cp =
p− p∞
1
2 ρU2

∞

Even if this inviscid flow case is simple, the predicted results can enable people to
have good estimates of the pressure and velocity distribution as the pressure and velocity
distribution are related via Bernoulli’s equation. It should be noted that for real fluid flows
past a cylinder, we have to consider viscous effects, which cause the flow to separate away
from the cylinder, and the streamlines are no longer attached to the cylinder body.

Figure 8 shows predicted flow velocity. From this figure, we know that along the
surface of the cylinder, flow velocity is in a tangential direction, i.e., parallel to the surface of
the cylinder. As the mainstream flow gets close to the cylinder, fluid elements begin to de-
celerate. There is a stagnation point as the fluid element on the surface of the upstream side
of the cylinder is stopped. Due to the zero velocity at stagnation point, pressure increases
to its maximum value, while the pressure coefficient reaches its maximum. Figure 9 shows
the pressure coefficient distribution along the cylinder surface. The estimated pressure
coefficients from neural networks match well with the analytical results. For fluid elements
passing either above or below the cylinder, their velocity magnitudes increase due to the
narrowing flow path. For this inviscid flow, flow velocity decreases as flow continues
around the downstream side of the cylinder, producing a second stagnation point at the
downstream equator. Further downstream, flow velocity begins to increase and gradually
returns to the free stream value.
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Figure 9. Predicted pressure coefficient.

4.2. Taylor–Green Vortex

The Taylor–Green Vortex (TGV) is an unsteady flow of a decaying vortex and was
firstly solved by Taylor and Green by a perturbation series in time to explain the creation
of small scales by vortex-stretching, diffusion, and dissipation in a three-dimensional (3D)
flow field [32]. It has an analytical solution based on the incompressible Navier–Stokes
equations in Cartesian coordinates and thus is widely used as a benchmark problem in
validating solvers and formulations in numerical computations. Here the two-dimensional
decaying vortex defined in the square domain, 0 ≤ x, y ≤ 2π serves as a benchmark
problem for testing and validation of incompressible Navier–Stokes codes.

Without the presence of body force, the incompressible Navier–Stokes equation in the
Cartesian coordinate system is given by:

∂u
∂x

+
∂v
∂y

= 0

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2v
∂y2

)
(28)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+ ν

(
∂2u
∂x2 +

∂2v
∂y2

)
In the domain 0 ≤ x, y ≤ 2π, the solution is given by [33]:

u = e−2νt cos x sin y

v = −e−2νt sin x cos y
(29)

where ν is the kinematic viscosity of the fluid. The pressure field p can be obtained by
substituting the velocity solution in the momentum equations and is given by

p = −ρ

4
(cos 2x + cos 2y)e−4νt (30)

The stream function satisfying v = ∇× ψ and the vorticity governed by ω = ∇× v
can be expressed by the following equations:

ψ = e−2νt cos x cos y

ω = −2e−2νt cos x cos y
(31)

The neural network predictions were trained using 2000 residual points that are
randomly sampled in the spatio-temporal domain, and 300 and 600 points for the initial



Energies 2021, 14, 7760 16 of 24

and boundary conditions, respectively. Figure 10 shows the result obtained by neural
network predictions and analytical solutions of the viscous Navier–Stokes equation for the
Taylor–Green vortex flow. The time evolutions (t = 1.0, 3.0 and 5.0) of the stream function
and vorticity are presented in Figure 11a,b, respectively. There is a negligible difference
between the neural network predicted results and the analytical solutions. This great
consistency showcases the excellent capacity of neural networks for flow predictions.

(a) PINNs predicted streamfunction at t = 1.0 (b) Analytical solution of streamfunction at t = 1.0

(c) PINNs predicted streamfunction at t = 3.0 (d) Analytical solution of streamfunction at t = 3.0

Figure 10. Cont.
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(e) PINNs predicted streamfunction at t = 5.0 (f) Analytical solution of streamfunction at t = 5.0

Figure 10. Predicted stream functions from PINNs (left) and analytical results (right).

The above figures also show multiple well-defined laminar vortices and their interac-
tions and evolutions in time. The TGV flow is initially characterized by the set of laminar,
well-defined, and symmetric vortices, which evolve and interact in time, leading to vortex
stretching mechanisms generating vortex sheets which gradually get closer. In summary,
this study reinforces the potential of the proposed machine learning method to calculate
transitional flows of practical interest efficiently [34]. Our approach provides an efficient
computational alternative to allow scientists and engineers to use this TGV flow as a
test-case to study more complicated transition to turbulence driven by vortex-stretching
and reconnection mechanisms.

(a) PINNs predicted vorticity at t = 1.0 (b) Analytical solution of voriticity at t = 1.0

Figure 11. Cont.



Energies 2021, 14, 7760 18 of 24

(c) PINNs predicted vorticity at t = 3.0 (d) Analytical solution of voriticity at t = 3.0

(e) PINNs predicted vorticity at t = 3.0 (f) Analytical solution of vorticity at t = 5.0

Figure 11. Predicted vorticity from PINNs (left) and analytical results (right).

4.3. Linear Poisson Problem

The accuracy and efficiency of the proposed technique were tested in the following
two-dimensional inhomogeneous partial differential equation:

∇2φ = sin(πx)sin(πy)

subject to : 0 ≤ x ≤ 1

0 ≤ y ≤ 1

(32)

φ = 0 along the whole squared boundary. In this case, we use a network of five lay-
ers with 30 neurons on each layer to predict flow potential φ. The physical law and
boundary conditions (Equation (32)) were incorporated into the designed neural networks.
After training, the loss history and prediction error distribution are shown in Figure 12.
This error plot is calculated based on the relative difference between the PINN predictions
and the analytical solutions presented in Equation (33). The error contours show that the
achieved mean errors are around 10−3 and the minimal error can be as small as 10−6.
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The analytic solution is found to be

φ = − 1
2π2 sin(πx)sin(πy) (33)

The accuracy of network predictions can be clearly illustrated as in Figure 13 by com-
paring the contour plot of PINN predicted unknown u and analytical solutions. Differences
can be hardly spotted as the prediction accuracy is high enough. Meanwhile, the isovalue
lines of u value, as represented by the dashed dark lines, are superposed onto the contour
plot to quantify the parameter distribution as well as for better visualization.

In this problem, φ is a scalar potential which is to be determined, and the right-hand
side of Equation (32) is a specific source function. Poisson’s equation shows linear property
in both the potential and the source term; hence its solutions are completely superposable.
Moreover, Figure 13 shows that equipotential sets of the solution graph become smoother
as the potential increases.

(a) Decreasing loss over iteration (b) Error distribution

Figure 12. The loss history (a) and error contour (b) of neural network predictions for Poisson equation.

(a) PINNs prediction (b) Analytical solution

Figure 13. Comparisons between the PINN prediction (a) and the analytical solution (b).

4.4. Thermal Conduction with Non-Linear Heat Generation

The capability of the developed neural network scheme for non-linear problems is
also illustrated by a non-linear heat generation problem, where an unsteady temperature
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distribution in a homogeneous solid is predicted. Temperature field is governed by the
following equation:

ρcp
∂T
∂t

=
∂

∂x

(
κ(T)

∂T
∂x

)
subject to: u(a, t) = φ(t), u(b, t) = ψ(t), ∀t > 0

u(x, 0) = u0(x), x ∈ [a, b]

(34)

where the T(x, t) is the temperature at point x and time t, ρ is the density, cp is the heat
capacity under constant pressure, and κ is the thermal conductivity of the selected media.
Here cp and ρ are assumed to be constants while κ varies with medium temperature.
After some differential operation, Equation (34) is transformed into the following form:

ρcp
∂T
∂t

= ∂Tκ(T)
(

∂T
∂x

)2

+ κ(T)
∂2T
∂x2 (35)

If κ takes a constant value, i.e., ∂Tκ(T) = 0, then Equation (35) becomes a linear
(parabolic) partial differential equation. In contrast, when ∂Tκ(T) 6= 0, the Equation (35)
is nonlinear, which can be solved numerically. For this initial-value (Cauchy) problem,
the finite difference method is used for solution derivation with the implicit Euler scheme
employed for temporal discretization [35].

For illustration, the thermal conductivity is assumed to have the form of κ = κ0exp(χT).
The constant parameters have the value of κ0 = 0.1, ρ = cp = 1. The spatial domain
x ∈ [1, 3] includes a boundary condition

T(1, t) = 2, T(3, t) = 1 ∀t > 0 (36)

The initial condition of temperature is

T(x, 0) = 2− x− 1
2

+ (x− 3)(x− 1) (37)

With the aforementioned boundary and initial conditions, the time evolution of
Equation (35) can be solved. Figure 14 shows both the results from neural network predic-
tions and the numerical computations using finite difference (FD) method [35].

(a) PINNs prediction for χ = −1.0 (b) FD calculation for χ = −1.0

Figure 14. Cont.
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(c) PINNs prediction for χ = −0.5 (d) FD calculation for χ = −0.5

(e) PINNs prediction for χ = 0 (f) FD calculation for χ = 0

(g) PINNs prediction for χ = 0.5 (h) FD calculation for χ = 0.5

Figure 14. Comparisons between PINN prediction and numerical calculations.

5. Conclusions

This paper presents a new solution framework based on physics-constrained machine
learning that can be used to solve partial differential equations in fluid dynamics and
thermodynamics. By leveraging prior physical laws, our feed-forward fully-connected
neural networks are capable of solving physical equations commonly seen in fluid dynam-
ics efficiently. Instead of using collocation points to discretize the spatial and temporal
domains to find solutions, randomly sampled points were employed to evaluate their
satisfactions of the desired physical equations. Automatic differentiation was adopted to
handle differential operators, enabling this approach to be mesh free and time efficient.
Since random points are generated on spatial domains, this randomness helps to capture
complex physics in irregular computational domains. Thus, this mesh-free method is
particularly attractive for problems with complex computations domains. The approximate
solutions satisfying the differential operator can be obtained via tuning the deep neural
network parameters, which are trained by minimizing the squared residuals over the entire
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computational domain. In particular, the initial and boundary conditions are satisfied in
a weak sense by imposing related penalty terms to the loss function. This modified loss
function is used as the objective for minimization. The effectiveness and robustness of
this proposed method have been illustrated via solving the flow past cylinder problem,
linear Poisson problem, heat conduction and Taylor–Green vortex problems. The proposed
method is relatively simple to implement, and provides a good tool for engineers and
scientists to develop, test, and analyze their ideas.

While the proposed PINNs have great potential as an alternative solver for some
physical problems, there is a long way to go to replace the traditional numerical method.
For real problems with a large and complex computational domain, PINNs are still slower
than the finite element method. Another challenge lies in their incapacity to address some
multi-physics and multi-scale problems, which typically require heavy computations. Last
but not the least, the design and construction of effective neural network architectures
remain to be a headache as different users may build different neural network structures,
which unquestionably imposes substantial impacts on the performance of PINNs as well as
the accuracy of the predicted results. As further extensions to this work, we aim to tackle
these challenges to facilitate this physics-based machine learning approach to tackle more
complex problems in thermodynamic fluid dynamics. We will use emerging meta-learning
techniques to automate the design of more efficient neural network structures and propose
some customized loss functions for different tasks.
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NN Neural network
PINN Physics-informed neural network
BC Boundary condition
PDE Partial differential equation
DGM Deep Galerkin method
MLP Multilayer perceptions
KS Kuramoto-Sivashinsky
DNN Deep neural network
MSE Mean squared error
ReLU Rectified linear unit
AD Automatic differentiation
SGD Stochastic gradient descent
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
FD Finite difference
TGV Taylor–Green vortex
CFD Computational fluid dynamics
3D Three-dimensional
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