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Abstract: Magnesium is an attractive hydrogen storage candidate due to its high gravimetric and
volumetric storage capacities (7.6 wt.% and 110 gH2/l, respectively). Unfortunately, its use as a
storage material for hydrogen is hampered by the high stability of its hydride, its high dissociation
temperature of 573–673 K and its slow reaction kinetics. In order to overcome those drawbacks,
an important advancement toward controlling the enthalpy and desorption temperatures of nano-
structured MgH2 thin films via stress/strain and size effects is presented in this paper, as the effect
of the nano-structuring of the bulk added to a biaxial strain on the hydrogen storage properties
has not been previously investigated. Our results show that the formation heat and decomposition
temperature correlate with the thin film’s thickness and strain/stress effects. The instability created
by decreasing the thickness of MgH2 thin films combined with the stress/strain effects induce a
significant enhancement in the hydrogen storage properties of MgH2.

Keywords: DFT calculations; hydrogen storage; MgH2 thin films; strain; stress; size

1. Introduction

The development of power storage methods and technologies is considered one of the
most important efforts of this decade, in which hydrogen has become an important element
among the clean and renewable sources of energy. Its combustion produces around three
times more energy compared to fossil fuels and without any greenhouse gas emissions [1].
This has led many researchers and industrialists to consider hydrogen the key to the global
energy revolution. Nevertheless, the safe, efficient and secure storage and transportation
of this element remain the major obstacles facing its wide use and commercialization.
Additionally, there are three technologies available for hydrogen storage, which are storing
the gas under high pressure, storing it in liquid form at low temperature or storing it in
solid materials. The first two methods have disadvantages relating to the difficulties in
forming the two “high pressure and low temperature” conditions. On the other hand,
solid materials have recently been used for hydrogen storage by way of hydrogen atoms
being absorbed and stored in metallic matrixes, such as intermetallic materials, organic
compounds, metal hydrides, porous materials and complex hydrides [2–9].
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Due to the increase in interest in the development of hydrogen storage properties, our
study focuses on the thermodynamic properties of magnesium hydride (MgH2) in both
its bulk and thin film forms, with or without the application of strain. MgH2 is one of the
most promising materials for hydrogen storage due to its high gravimetric and volumetric
capacities (7.65 wt.%, 110 g.H2/l) and low cost. However, its utilization has been prevented
due to its high dissociation temperature, which is much higher than the requirement
of the US Department of Energy, and the slow reaction kinetics of this hydride [10–12].
Therefore, different attempts were made in order to improve its abs/desorption proper-
ties [13–27]. Theoretically, using first principles calculations, it was found that there is
a reduction in stability and temperature of decomposition when Mg is combined with
several additives [13–16]. By using Kinetic Monte Carlo simulations, it has been shown
that MgH2 exhibits slow hydrogenation and dehydrogenation kinetics [14]. The addition
of small quantities of aluminum and transition metals like Ni, Fe and V can accelerate such
kinetics without considerably reducing the associated capacities [14]. Moreover, the single
and double substitution of MgH2 with lightweight elements, namely boron and lithium,
show an improvement in the hydrogen storage properties of the substituted MgH2 with a
remarkable increase in its gravimetric and volumetric capacities, which exceed those of
the pure one [16]. Recently, the effect of magnesium vacancies in the magnesium hydride
(MgH2) has been investigated. The results reveal that the magnesium vacancies and hydro-
gen doping have a beneficial effect on the hydrogen storage properties of the hydride by
decreasing its desorption temperature and stability and increasing its capacities [28,29].

Today, it is well known that nano-structuring materials, with or without straining, lead
to new physical phenomena and/or significant improvement of their physical properties
for new and existing applications, ranging from the energy field to the bioelectronic
and electronic communication fields [30–45]. The straining of nano-sized silicon (Si), for
example, increased the plasma wave nonlinearities inside the channel of a traditional Si-
based modulation-doped field-effect transistor, which enhanced the coupling and affinity
between the Si channel and the electromagnetic radiation in the Terahertz domain [45]. The
same has also been shown for compound semiconductors, such as InGaAs, InP and InAs
semiconductors. Another example is the nano-structuring of graphene, MoS2 and other
2D materials in nanotubes, nanoribbons or quantum dots, which changes the bandgap
form and the electronic and optical properties, enabling the use of such materials in many
fields, such as biosensing applications (by offering better binding conditions between the
nano-structure and the investigated molecules) or Terahertz applications (by providing a
tuning dependency between the sizes of the structure and the frequency of operation) [40].

Experimentally, MgH2-based thin films reportedly showed improved hydrogen des-
orption performance compared to those of bulk MgH2 [17–27]. Lu H-B et al. [17] reported
that the ∆H of hydrogen absorption and desorption for the bulk Mg/MgH2 film were signif-
icantly high compared to those of the previously prepared 2D nano-structured Mg/MgH2
film, with values reaching 73.9 ± 0.7 and 77.7 ± 0.8 kJ/mol, respectively. Barawi et al. [18]
and Baldi et al. [19] found that the interface effects between the substrate and the Mg film
cause the thickness to be an important factor in the hydrogen absorption kinetics of Mg
films. Mooij [20] deduced that the energy of the interface can cause destabilization of the
phase of MgH2 at the nanoscale when there is a positive difference in interface energy
between MgH2 and Mg, and causes stabilization in the case of a negative difference. Tao
et al. [21] confirmed these findings using the DFT calculations on the dehydrogenation
properties of MgH2/TiH2 multilayers. Moreover, studies conducted over approximately a
decade [22,23] showed that 50–100 nm thick MgH2-based thin films have reduced stabil-
ity. Therefore, the enhancement of the dehydrogenation properties of Mg/MgH2-based
nanocomposites undoubtedly depends on the interface misfit and strain energy [24–27].
However, the origins of the kinetic properties and tuned thermodynamics of MgH2 of
different sizes and under strain had not been thoroughly investigated before. In this paper,
the properties of the nano-structured MgH2 thin film and the effect of biaxial strain are
investigated using first principles calculations.
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2. Computational Methods

In the present work, DFT-based calculations were performed using the QUANTUM
ESPRESSO (QE) code [46]. The generalized-gradient approximation—Perdew–Burke–
Ernzerhof (GGA-PBE) functional [47] was used, with a plane wave pseudopotential method
available in the QE code. The energy cutoff of 40Ry and the k-point meshes for the Brillouin
zone integration were cited as being 12 × 12 × 12 and 12 × 12 × 1 for the bulk and thin
film of the MgH2 structure, respectively. Furthermore, the use of the self-consistent criteria
of the density and the energy was conducted with 10−6 Ry and 10−8 Ry of precision,
respectively.

In the first step, the structural parameters of the α-MgH2 structure were taken from
the experimental results, where α-MgH2 crystallized in a rutile structure (space group
P42/mnm, No.136) with lattice constants a = b = 4.501 Å and c = 3.010 Å, where 2a (0.0,
0.0, 0.0) and 4f (0.304, 0.304, 0.0) sites were occupied by Mg and H atoms, respectively [48].
Then, the structure was fully relaxed with a force convergence of 10−4 Ry/Bohr and an
energy convergence of 10−7 Ry. Once the unstrained unit cell of the bulk α-MgH2 was
entirely relaxed, the magnesium hydride thin films were modeled by creating 1 × 1 × z
supercells of different sizes along the Z direction, ranging from four to seventy-six unit cells.
For example, a thin film of a thickness of 22 nm was presented with a 1 × 1 × 76 supercell
composed of 308 atoms of magnesium and 154 atoms of hydrogen, while a supercell of
1 × 1 × 4 represented a thin film of 1.2 nm. Periodic boundary conditions were applied
along the X and Y directions in order to make these systems infinite in the (X, Y) plane. In
addition, a vacuum of 35 Å was used along the Z-direction to isolate the system of layers,
as shown in Figure 1.
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Figure 1. Structures of bulk and different sizes of MgH2 thin films. (The red spheres are magnesium
and the blue ones are hydrogen).

The mechanical stress effect on the storage properties of thin film Mg was evaluated
by imposing a mechanical biaxial strain along the [100] and [010] directions on the relaxed
MgH2 (22 nm) thin film according to the following Equation (1) [49–51]:

εxx(%) = εyy(%) =
a(b)− a0(b0)

a0(b0)
(1)

where the lattice constants a(b) of the MgH2 (22 nm) supercell are restricted to different
values ranging from −2.7% to 1.8% with a step of 0.1%, and a0(b0) are the equilibrium
lattice constants. The “c” parameter is obtained by relaxing atomic positions under each
strain. The negative and positive values of εxx (εyy) indicate the compression and tensile
strain in the x and y axes, respectively.
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3. Results and Discussion
3.1. Size-Dependent Thermodynamic Properties

Before studying the properties of thin film MgH2, the results of the formation enthalpy
and desorption temperature of the free strain MgH2 unit cell are presented. From the
relaxation calculations, the lattice parameters for the bulk structure are a = b = 4.520 Å and
c = 3.010 Å, which are close to the reported theoretical values [13–16,49] and the experi-
mental ones [48]. The heat of formation for this material was calculated from Equation (2):

∆H = Etot(MgH2)− Etot(Mg)− Etot(H2) (2)

where Etot (MgH2), Etot (Mg) and Etot (H2) are the total energies of magnesium hydride,
magnesium and molecular hydrogen, respectively. The total energies of the various compo-
nents were first calculated by using the Plane-Wave Self-Consistent Field (PWSCF) method,
and then the heat of formation was deduced using Equation (2).

The desorption temperature can be estimated from Equation (3):

Tdes = −∆H
∆S

(3)

where the entropy is considered to be equivalent to ∆S ≈ ∆S(H2) = 130.7 J/mol.K, which
corresponds to the entropy change due to a mole of gas changing to the solid form [52,53].
The different results and energy values are listed in Table 1.

Table 1. Energies, formation heat and desorption temperature.

Energies (eV) ∆H (eV/H2) Tdes (K)

Mg (hcp) −3.07 _ _
H2 −6.60 _ _

Mg (22 nm) −235.84 _ _
MgH2 (bulk) −17.74 −0.74 542.87

MgH2 (22 nm) −1362.37 −0.56 414.75

The calculated enthalpy of formation and desorption temperature of the bulk MgH2
are −0.74 eV/H2 and 542 K, respectively, which is in good agreement with previous DFT
calculations and experimental results [17,54–56]. The magnesium hydride provides a
better stability and a high desorption temperature that are much higher than US-DOE
requirements [17]. To improve the hydrogen storage properties of this compound, the
nano-structuring effect on the thermodynamic properties and hydrogen storage capacities
of the MgH2 structure was investigated by studying the size dependent hydrogen des-
orption in Mg hydride thin films with different thicknesses: 1 nm, 4 nm, 5 nm and 22 nm
(Figure 1). To do so, the total energies of Mg thin films, hydrogen molecules and MgH2 thin
films are calculated first (see Table 1). Subsequently, the heat formation can be deduced
using Equation (4) for the thin film model and the corresponding desorption temperature
by using Equation (3):

∆H = Etot(MgH2)nano − Etot(Mg)nano − n
2

Etot(H2) (4)

where n is the number of H atoms contained in the MgH2 thin film. The effect of the size of
MgH2 on the desorption temperatures and enthalpy of formation are shown in Figure 2.

By reducing the size, a significant enhancement in the heat of formation is observed
from −0.74 eV/H2 for the bulk to −0.515 eV/H2 for the thin film of 1-nm thickness. This
improvement is accompanied by a significant reduction of desorption temperature from
542 K to 380 K. The last value is in the optimum range 289–393 K for the practical use of
fuel cell vehicles [15].
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These results are in line with the reported findings [18,21,55,57], which confirm that
the size change on MgH2 films improves the thermodynamic properties of this compound,
owing to the surface properties and the thickness of the 2D nano-structured film. On
the other hand, the stability of the MgH2 thin film was improved compared to other
reported works [57–59] by reducing the thickness of the thin film to 1 nm. Additionally,
to describe the effect of size on the hydrogen storage capacities of MgH2, the gravimetric
and volumetric capacities for bulk and different sizes of MgH2 thin film are calculated and
presented in Figure 3. Firstly, the storage capacities of MgH2 bulk is in good agreement with
the values of another study [55]. The obtained results show that MgH2 has high gravimetric
7.66 wt.% and volumetric 110.14 g.H2/l capacities. Secondly, the results show that the
volumetric capacity increases from bulk to thin film thickness, whereas the gravimetric
capacity remains the same, which indicates that the nano-structuration has a positive effect
on the storage capacities.

Assuming that the desorption behavior of the thin films is along the Z axis, it is
necessary to aim for nanometer sizes for thin layers in order to have an efficient hydrogen
storage medium. The remaining axes (X, Y) were reserved for the application of stress
on MgH2 thin films of 22 nm thickness in order to investigate the effect of such stress on
de/hydrogenation properties, as described in the next section.

3.2. Strained MgH2 Thin Film Properties

By reducing the size, we observed a significant enhancement in both the heat of
formation and the desorption temperature from −0.74 eV/H2 and 542 K, respectively,
for the bulk to −0.515 eV/H2 and 380 K, respectively, for the thin film of 1 nm thickness.
These results are in good agreement with the reported findings of previously published
works [18,55,57], which confirm that the nano-structuring applied in this work by changing
the size of MgH2 films improves the thermodynamic properties of this compound.

In order to simulate the extrinsic effect of the stresses, which can be observed experi-
mentally by the mismatch, a biaxial tensile/compressive strain is applied to the 22 nm thin
film along the [100] and [010] directions according to Equation (1). In this case, the lattice
constants “a” and “b” of the 22 nm thin supercell are constrained to strain values ranging
from 4.4 Å to 4.6 Å, which correspond to a strain varying from −2.7% to 1.8%, as shown in
Figures 4–6.
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Figure 6. Formation enthalpies and desorption temperatures as a function of strain ε.

Figure 4 shows the stability of a MgH2 (22 nm) thin film system under strain. The
maximum stability is found for the relaxed parameters, and this stability is reduced
considerably when we apply the strain. Moreover, the lattice constant “c” increases under
biaxial compressive strain, while it decreases under the tensile one. In other words, under
biaxial compressive strain, the lattice constant of the MgH2 thin film along the z-axis
direction is elongated, which results in an increasing ratio of c/a relative to that (0.667)
of the strain-free state, as shown in Figure 5. The maximal ratio of c/a reaches 0.684 at
the compressive strain of −2.7%. Comparatively, the lattice along the z-axis direction
of the nano-structured MgH2 shrinks under biaxial tensile strain, yielding a decreasing
ratio of c/a relative to that of the strain-free state. A minimum of 0.654 is obtained at the
tensile strain of +1.8%. Meanwhile, MgH2 expands or contracts under biaxial tensile or
compressive strain and its cell volume increases or decreases nearly linearly compared to
the magnitude of strain as shown in Figure 5. Therefore, it can be derived that either biaxial
tensile or compressive strain is likely to cause structural deformation of the MgH2 crystal,
or its lattice distortion becomes severe with the increasing magnitude of biaxial strain.

The effect of strain on the thermodynamic properties of MgH2 thin films (with a
thickness of 22 nm) is summarized in Figure 6. This figure shows that the application of
strain on MgH2 thin film systems reduces their stability compared to that of strain-free
ones, which improves their desorption temperatures.

This can be understood as follows: in the case of compressive strain, the distance
between atoms is too small; this can lead to a strong interaction and therefore reduces the
stability of the system. On the other hand, the H atoms can diffuse easily when we apply a
tensile strain, and this consequently reduces the stability of the MgH2 thin film with 22 nm
of thickness.

The obtained results are partially comparable to the ones found by J. Zhang [49], who
states that the strain lowers the decomposition temperature and the stability of the bulk
MgH2. Furthermore, the reported variation of formation enthalpy and decomposition
temperature observed in the case of compressive strain are totally different than those of
the tensile one, whereas in our work, both strains (compressive and tensile) symmetrically
increase the enthalpy formation and decrease the desorption temperature for strained
MgH2 (22 nm) thin film relative to the free strain. The finding’s behaviors are similar to the
results of H. Benzidi et al. [60], who showed that LiBH4 free of strain leads to a high stability,
while compressive or biaxial tensile strain lowers the stability of the LiBH4 structure.
Finally, due to the contribution of strain, the stability and the decomposition temperature
for strained MgH2 (22 nm) thin film are reduced compared to those of the strain-free system,
which is a great enhancement of MgH2 storage properties. The calculation results of this
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study show that Tdes decreases significantly when increasing the magnitude of strain to a
value equal to 398 K, which is close to the optimum range 289–393 K for the practical use
of proton-exchange membrane fuel cells (PEMFC) [57].

In conclusion, the nano-structuring of the bulk and the addition of biaxial strain
resulted in a beneficial improvement to the storage properties of MgH2.

4. Conclusions

In the present paper, the hydrogen storage performances of MgH2 thin films were
studied through the investigation of the effect of size and strain on the thermodynamic
properties using first principles DFT calculations implemented in the Quantum-espresso
package. Firstly, the studied thermodynamic properties of the bulk MgH2 present a high
stability of −0.74 eV/H2 and a high decomposition temperature of 542.87 K, which is
in good agreement with other theoretical and experimental results. Secondly, the nano-
structured MgH2 thin film improves the thermodynamic properties of the bulk MgH2
considerably when the decomposition temperature and the stability of the MgH2 thin film
can be reduced to 380 K and −0.515 eV/H2, respectively, by reducing its thickness to 1 nm.
Finally, in addition to the effect of size, the hydrogen storage properties of MgH2 (22 nm)
thin film were improved by applying a biaxial strain on this system, which caused the
stability and the decomposition temperature of the MgH2 (22 nm) thin film to be reduced
from −0.56 eV/H2 and 414.75 K to −0.539 eV/H2 and 398 K, respectively, before and
after strain. This is a great enhancement of MgH2 storage properties, even though the
strain effect on the thermodynamic properties of the MgH2 thin film has not been studied
previously.
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