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Abstract: The timeliness of the complex automated diagnostics of the metal condition for all charac-
teristics has been substantiated. An algorithm for the automation of metallographic quality control
of metals is proposed and described. It is based on the use of neural networks for recognizing
images of metal microstructures and a precedent method for determining the metal grade. An
approach to preliminarily process the images of metal microstructures is described. The structure of
a neural network has been developed to determine the quantitative characteristics of metals. The
results of the functioning of neural networks for determining the quantitative characteristics of
metals are presented. The high accuracy of determining the characteristics of metals using neural
networks is shown. Software has been developed for the automated recognition of images of metal
microstructures, and for the determination of the metal grade. Comparative results of carrying out
metallographic analysis with the developed tools are demonstrated. As a result, there is a significant
reduction in the time required for analyzing metallographic images, as well as an increase in the
accuracy of determining the quantitative characteristics of metals. The study of this problem is
important not only in the metallurgical industry, but also in production, the maritime industry, and
other engineering fields.

Keywords: intelligent system; metallographic analysis; software; neural networks; precedents method

1. Introduction

The level of industrial development of leading countries in modern times is character-
ized not only by the overall production and the range of products, but also by indicators
of their quality. In order to improve the quality of products, industrial enterprises are
constantly increasing the amount of control and diagnostics operations, as well as the
number of monitoring personnel. An important means of solving this problem is the use
of objective physical methods for diagnosing the state of objects, such as non-destructive
methods and metallographic analysis [1]. The constant increase in requirements for the
quality of ferrous metals of different groups and classes necessitates the development of
models and tools for automated diagnostics of the state of metals and product quality.
It should be noted that traditional methods of non-destructive testing are unsuitable for
determining defects at an early stage of their development. Scientists in [2] noted that
classical flaw detection methods are not enough to determine the residual life, since they
detect already developed defects, while metallography allows detecting defects at an early
stage—the stage of formation.

Moreover, to output high-quality products, the study of the properties of industrial
metal materials, and the use of the latest methods of their control and research are of
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particular importance. One of the methods of quality control of alloy and metal products is
the metallographic method [3], which is introduced into a number of existing standards.

2. Related Works

Among the most significant works in the field of automation of diagnostics of the
metals state and metallographic analysis, performed earlier by other authors, one can single
out papers [4–8], as well as a software development by companies such as SPECTR MET,
SIAMS, DeepLab, andVideoTest, considered to be “New expert systems”. Scientists in the
papers [9] have developed recommendations for the automation of metallographic quality
control, which speaks of the need to use software image analyzers when processing the
metal microstructure. The insufficient level of automation of the central factory laboratories
of industrial enterprises is high-lighted as well.

Since the metallographic analysis is based on the acquisition and interpretation of
images of metal microstructures, it is urgent to develop new methods for processing metal-
lographic images, which make it possible to increase the efficiency and the performance
of determining the quantitative characteristics of metals, as well as methods that allow
diagnosing the state of the metal for all characteristics. One of the most promising methods
for solving this problem is the use of neural networks.

Authors in [10] resort to CNN-based segmentation methods, and achieve significant
performance to recognize metallographic images. Fully Convolution Networks (FCNs)
have shown a lot of promise towards semantic segmentation [11]. In [12], a fully convolu-
tional neural network to segment the steels microstructure was proposed. In paper [13],
the DeepLab network was used for metallographic images segmentation. In paper [14], a
neuronal network-based method was proposed for automatic segmentation of nickel alloy
secondary phases from SEM images. These methods achieved satisfactory results, but they
fail to work well on the devices due to limited computation resources and being too heavy
to apply in real-time application.

However, the developed tools do not solve the problems of complex automated
diagnostics of the state of metals for all characteristics (chemical composition, structure,
properties), and the methods considered in them allow only quantitative metallographic
analysis. Thus, there is a need to improve automatic tools and information support for
metallographic analysis to automate of diagnostics of the metals state for all characteristics.

3. Algorithm for Automating Metallographic Quality Control of Metals

Classical metallographic analysis is the definition of a list of parameters I characteriz-
ing the image of the metal microstructure, which can be considered as an informational
description, presented in the form:

Ii = { fi(x, y), mri, Ei(), Ni(), Qi()}, i = 1, 2 . . . n, , (1)

where fi(x, y) is i-th image of the microstructure of the metal sample under examination;
mri is the metal grade (for example: steel 10ChSND(S420N));
Ei() is the expert resolution about the metal sample under examination;
Ni() is the set of quantitative characteristics of metal;
Qi() is a set of quality characteristics of the metal.
This paper proposes an algorithm for the automation of metallographic quality control

of metals in production, the implementation of which makes it possible to obtain the
required sets of quantitative (N) and qualitative characteristics (Q) of diagnosed metals.
The main stages of the algorithm are as follows:

Step 1. Formation of an image of the metal microstructure in digital form f(x,y).
Step 2. The image of the metal microstructure is analyzed. At the second stage, preliminary

processing and analysis of the image of the metal microstructure is carried out.
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Many quantitative characteristics of the metal under study are formed, as well as
many of its qualitative characteristics:

N =< g f , c f , ph f , tp f , v f >, (2)

Q =< m f , mv[. . .] > . (3)

Step 3. The definition of the metal grade is performed. At the third stage, based on the
chemical composition of the metal and the obtained quantitative characteristics,
the metal grade mr is determined.

Step 4. The determination of the properties of the metal is performed based on the sets of
its characteristics N, Q, and existing defects.

Step 5. A conclusion on the metal for compliance with the requirements is formed, and
the group of metal use is determined

E =< r f , group > (4)

Step 6. Sending the result of metallographic analysis to the workshop for further decision-
making.

IDEF0- the diagram showing the stages of the algorithm is presented in Figure 1.
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Figure 1. IDEF0- sequence diagram of an automated metal quality control process.

Let us consider these stages in more details.
At the first stage, a digital image of the metal microstructure is formed using a

metallographic microscope. After the image is formed, binarization of the image of the
metal microstructure is performed. For binarization, it is proposed that Otsu’s method [15]
is used (determination of the optimal threshold). The choice of Otsu’s method is due to
the fact that this method is the most effective of the methods of global binarization [15].
For further processing of the image of the microstructure of the metal, it is necessary
to determine the informative features of the image of the microstructure, which will
make it possible to characterize both individual areas and the image of the image of the
microstructure of the metal as a whole.

As is known in [15], from the point of view of recognition and analysis of objects
in the image, the most informative ones are the characteristics of their boundaries, i.e.,
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contours rather than the values of the brightness of objects. The selection of contours
consists in the construction of an image of precisely the boundaries of objects and outlines
of homogeneous regions using the Prewitt filter, as is shown in [16]. An example of
preprocessing (vectorization) of a metal microstructure image according to the described
algorithm is shown in Figure 2.

Energies 2021, 14, x FOR PEER REVIEW 4 of 13 
 

 

metal microstructure is performed. For binarization, it is proposed that Otsu’s method 
[15] is used (determination of the optimal threshold). The choice of Otsu’s method is due 
to the fact that this method is the most effective of the methods of global binarization [15]. 
For further processing of the image of the microstructure of the metal, it is necessary to 
determine the informative features of the image of the microstructure, which will make it 
possible to characterize both individual areas and the image of the image of the micro-
structure of the metal as a whole. 

As is known in [15], from the point of view of recognition and analysis of objects in 
the image, the most informative ones are the characteristics of their boundaries, i.e., 
contours rather than the values of the brightness of objects. The selection of contours 
consists in the construction of an image of precisely the boundaries of objects and out-
lines of homogeneous regions using the Prewitt filter, as is shown in [16]. An example of 
preprocessing (vectorization) of a metal microstructure image according to the described 
algorithm is shown in Figure 2. 

   
(a) (b) (c) 

Figure 2. The result of the preliminary processing of the image of the metal microstructure: (a) grayscale microstructure 
image; (b) binarization of the metal microstructure image; (c) image thinning operation and boundary detection with 
Prewitt’s filter. 

After fixing the base points on the image and its vectorization, the values charac-
terizing the image segments of the metal microstructure are determined. Segment ele-
ments are shaped by triangle hypotenuses, which are formed by perpendiculars dropped 
from two adjacent base points. The values of the sine and cosine of the segment elements 
(sin (A), cos (A)) are fed to the input of the neural network for learning. The input pa-
rameter is also the Prewitt gradient (Gp) [16], which determines the contrast value. 

Subsequently, neural network processing of the received input values is performed 
with segmentation of the image of the metal microstructure in the hidden layer of the 
neural network to determine and classify the characteristics of the metal. To process the 
received input values, one can use multilayer neural networks (perceptron and RBF 
networks), which have an input layer, a hidden layer, and an output layer of neurons. 
The number of neurons in the input layer is calculated by multiplying by three the 
number of base points in the sample of metal images (since 1 base point is characterized 
by three parameters: sin, cos, Gp—brightness). The size of the hidden layer of the neural 
network is calculated by dividing the number of neurons in the input layer by three, 
since, in the hidden layer, the image of the metal microstructure is segmented based on 
the base points of the image segments. The size of the output layer is determined by the 
number of metal grades to be recognized. 

The structure of the neural network for performing metallographic analysis to de-
termine the grain point in the metal structure is shown in Figure 3. 

Figure 2. The result of the preliminary processing of the image of the metal microstructure: (a) grayscale microstructure
image; (b) binarization of the metal microstructure image; (c) image thinning operation and boundary detection with
Prewitt’s filter.

After fixing the base points on the image and its vectorization, the values characteriz-
ing the image segments of the metal microstructure are determined. Segment elements are
shaped by triangle hypotenuses, which are formed by perpendiculars dropped from two
adjacent base points. The values of the sine and cosine of the segment elements (sin (A),
cos (A)) are fed to the input of the neural network for learning. The input parameter is also
the Prewitt gradient (Gp) [16], which determines the contrast value.

Subsequently, neural network processing of the received input values is performed
with segmentation of the image of the metal microstructure in the hidden layer of the neural
network to determine and classify the characteristics of the metal. To process the received
input values, one can use multilayer neural networks (perceptron and RBF networks),
which have an input layer, a hidden layer, and an output layer of neurons. The number of
neurons in the input layer is calculated by multiplying by three the number of base points
in the sample of metal images (since 1 base point is characterized by three parameters:
sin, cos, Gp—brightness). The size of the hidden layer of the neural network is calculated
by dividing the number of neurons in the input layer by three, since, in the hidden layer,
the image of the metal microstructure is segmented based on the base points of the image
segments. The size of the output layer is determined by the number of metal grades to
be recognized.

The structure of the neural network for performing metallographic analysis to deter-
mine the grain point in the metal structure is shown in Figure 3.

To train neural networks, the backpropagation algorithm [17] with a sigmoidal activa-
tion function was chosen:

yi =
1

1 + e−xi
(5)

To measure the quality of recognition, the mean-square error was calculated using
the formula:

E =
1
n

n

∑
i=1

(yi − y(ki))
2, (6)

where, Е is the recognition error; yi is the value of the i-th output of the network when
recognizing the image of the metal microstructure; and y(ki) is the value of the i-th reference
output of the network, which corresponds to the class of metallographic images.
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Figure 3. The structure of the neural network for determining the quantitative characteristics of the metal.

The neural network was learnt on the basis of reference images of metal microstruc-
tures described in the standards. The training sample consisted of 950 images of microstruc-
tures, of which 475 images belonged the “correct” class, and 475 images to the “incorrect”
class. Images belonging to the “correct” class were a set of reference metal microstructures,
and the “incorrect” class implies reference images distorted by noise, which led to incorrect
recognition (classification) of the image by the neural network. By dividing the training
sample into two classes, the neural network was trained in incorrect recognition, i.e., re-
sponding to incorrect images. As a control sample, 450 images of metal microstructures
were used.

In the research, multilayer neural networks with different structures were designed for
the respective standards. For example, a multilayer perceptron for determining the grain
point according to the GOST 5639-82 standard has the structure 510-170-1, i.e., 510 neurons
in the input layer, 170 in the hidden layer, and 10 in the output layer. Graphs of changes
in the value of learning and recognition errors for a multilayer perceptron are shown in
Figure 4. As shown in Figure 4b, the error is increased when steps are more than 800. This
fact is explained by the retraining process [18]. To prevent the retraining process [18], the
set of microstructure images is divided into two sub-sets, namely learning and control ones.
Based on the graphs of learning and classification errors, the optimal number of learning
epochs was calculated to be 800 epochs for this neural network structure. In this case, the
root-mean-square error was E = 0.02437. In total, 720 images of metal microstructures were
used as a test sample. Of these, 224 images were recognized (classified) correctly according
to GOST 5639-82.

The results of the functioning of the developed neural networks to determine the
quantitative characteristics of the metal are summarized in Table 1.

At the third step of the algorithm, the grade of the metal is determined based on
its chemical composition and quantitative characteristics (for example, the ratio of ferrite
and perlite). Since a different set of chemical elements with a different proportion of their
inclusion in the metal form different situations, the solution of which allows the metal to
be attributed to a certain grade, the method of precedents was applied to solve the problem
of classifying a metal grade.



Energies 2021, 14, 8040 6 of 12

Energies 2021, 14, x FOR PEER REVIEW 6 of 13 
 

 

learning and control ones. Based on the graphs of learning and classification errors, the 

optimal number of learning epochs was calculated to be 800 epochs for this neural net-

work structure. In this case, the root-mean-square error was E = 0.02437. In total, 720 

images of metal microstructures were used as a test sample. Of these, 224 images were 

recognized (classified) correctly according to GOST 5639-82. 

  
(a) (b) 

Figure 4. Graph of changes in the dependence of the learning error (a) and recognition error (b) on the number of learning 

epochs. 

The results of the functioning of the developed neural networks to determine the 

quantitative characteristics of the metal are summarized in Table 1. 

Table 1. The results of the functioning of neural networks for determining the characteristics of metal standard. 

Standard and Characteristics of 

the Alloy 

Structure of the 

Neural Net-

work 

Recognition 

Error 

Optimal Num-

ber of the 

Learning 

Epochs 

Total Amount of 

the Alloy Analyzed 

Images 

A Number of 

Correctly Rec-

ognized Images 

GOST  

5639-82 
Grain amount 510-170-10 0.0243 800 231 224 

GOST  

8233-56 

Ratio 

Ferrite/Perlite 
375-125-10 0.0384 950 121 119 

Ratio 

Marten-

site/Troostite 

375-125-10 0.0351 1300 121 118 

Size of carbide 

network 
210-70-6 0.0259 850 121 118 

GOST  

1778-70 

Grade of line 

nitrides 
210-70-5 0.0163 700 142 134 

Grade of sul-

phides 
210-70-5 0.0095 850 142 133 

ASTME1382 
Size of ferrite 

grain 
600-200-19 0.0573 1300 231 217 

At the third step of the algorithm, the grade of the metal is determined based on its 

chemical composition and quantitative characteristics (for example, the ratio of ferrite 

and perlite). Since a different set of chemical elements with a different proportion of their 

inclusion in the metal form different situations, the solution of which allows the metal to 

Figure 4. Graph of changes in the dependence of the learning error (a) and recognition error (b) on the number of
learning epochs.

Table 1. The results of the functioning of neural networks for determining the characteristics of metal standard.

Standard and Characteristics of
the Alloy

Structure of
the Neural
Network

Recognition
Error

Optimal
Number of the

Learning
Epochs

Total Amount
of the Alloy
Analyzed

Images

A Number of
Correctly

Recognized
Images

GOST
5639-82 Grain amount 510-170-10 0.0243 800 231 224

GOST
8233-56

Ratio
Ferrite/Perlite 375-125-10 0.0384 950 121 119

Ratio
Martensite/Troostite 375-125-10 0.0351 1300 121 118

Size of carbide
network 210-70-6 0.0259 850 121 118

GOST
1778-70

Grade of line
nitrides 210-70-5 0.0163 700 142 134

Grade of sulphides 210-70-5 0.0095 850 142 133
ASTME1382 Size of ferrite grain 600-200-19 0.0573 1300 231 217

Initially, a base of use cases is formed regarding metals and their chemical composition.
The algorithm for forming the base of use cases includes the following phases [19]:

Phase 1. Setting feature weights to determine the significance level of a use case. The
evaluation function of features is determined, which allows further selection of relevant
use cases using a similarity relation built on the set of the most important features.

Therefore, it is necessary to determine the values of the weighting coefficients of
the features w in such a way that the value of the evaluation function is minimal. For a
given set of feature weights wj(wj ∈ [0, 1], j = 1 . . . n), and a couple of use cases ep and eq,
expression (7) determines the weighted measure of proximity dpq

(w) (it is suggested using
Euclidean distance), and expression (8)—a measure of use case similarity SMpq

(w).

d(w)
pq =

√√√√( n

∑
j=1

w2
i (xpj − xqi)

2

)
(7)

SM(w)
pq =

1

1 + d(w)
pq

(8)

where x are the values of features.
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The feature evaluation function is defined as follows:

E(w) = 2 ·
(

∑
p

∑
q(q<p)

(SM(w)
pq (1− SMpq)−

− (1− SM(w)
pq )SMpq)

)
/(N(N − 1))

(9)

where N is the number of use cases in the use case base.
Phase 2. The next step is to cluster the use case base, as shown in [20].
Phase 3. After the initial base is divided into separate clusters, the procedure for

searching for similar use cases (based on the similarity relation) is implemented. The
deviation of the characteristics of the metal under study, i.e., ∆Xi, is determined as:

∆Xi = Xe − Xi (10)

By defining the utility function, the characteristics of the metal Xi are reduced to an
isomorphic form. In this case, the value of the characteristics of the metal is determined
using the criterion normalization formula:

Xi =
Xi − Xmin

Xmax − Xmin
(11)

where: Xi is the value of the i-th feature of the metal; Xmin is the minimum value of a metal
characteristic; and Xmax is the maximum value of a metal characteristic.

After normalization, the values of all characteristics of the metal will be brought to
a general form, and their value will vary in the range [0 . . . 1]. A multifactorial general
estimate of the distance of the characteristics of the metal from the standard will be
as follows:

L =
n

∑
i=1

ai · ∆Xi (12)

where ai is weighting factors of the relevancy of individual characteristics of the metal.
Then, the principle of optimality, on the basis of which the choice of the required use

case is made, will have the form:

Xn
o = argx=Xmin

n

∑
i=1

ai · ∆Xi (13)

Thus, on the basis of the similarity relation and the choice of a use case from the
knowledge base about the metal, it is possible to determine its grade.

The development of use cases for determining the grade of metal is carried out by
experts who work directly with the assessment of metals. The results of the functioning of
the software developed by the authors, which implements the above-described algorithm
for determining the metal grade, are shown in Table 2.

Table 2. Determination of the metal grade based on the precedent method.

Types of Steel
Values of the Metal
Characteristics—Xi

(the Situation to Be Solved—si),

The Number of the Use Case
in the Use Case Base

Steel Grade
—the Situation to Be

Solved is ri

Carbon Tool Steel 0.7C; 0.18Cr; 0.2Mn; 0.024S; 0.018P 25 У7(C 70W2)
Carbon Tool Steel 0.87C; 0.22Cr; 0.27Mn; 0.02S; 0.023P 33 У9A(C 70W1)

Structural Steel 0.1C; 0.09Cr; 0.35Mn; 0.01S; 0.03P 12 08кп(A 622)
Structural Steel 0.2C; 0.24Cr; 0.6Mn; 0.02S; 0.02P 19 20пc(A 29 1020)
Structural Steel 0.09C; 0.2 Si; 0.43 Mn; 0.03S; 0.03P 3 Cт1cп(A192 Gr A)
Structural Steel 0.18C; 0.2Cr; 0.3Mn; 0.03Si; 0.04S 6 Cт3кп(A 107)
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Thus, based on the precedent method, it becomes possible to automatically determine
the grade of the metal in accordance with the known chemical composition and quantitative
characteristics that define the situation to be solved.

4. Experimental Studies of the Developed Tools

To implement Stages 4, 5, and 6 of the previously proposed algorithm, the client-server
software MetalNeuro was developed (Figure 5), which operates in two modes: analysis
mode, and learning mode.
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The functions of the MetalNeuro software in analysis mode are as follows:

(1) setting by the user of the type of analysis of microstructures of alloys;
(2) input of the image of the metal microstructure;
(3) preliminary processing of the image;
(4) quantitative assessment of the metal;
(5) determination of the grade and properties of the metal;
(6) formation of a conclusion and producing recommendations regarding the analyzed

metal sample;
(7) Sending the analysis results to the workshop.

In the learning mode, MetalNeuro software supports:

(1) user input of the base of reference images of metal microstructures;
(2) the choice of the architecture of the neural network for the recognition of images of

metal microstructures;
(3) learning a neural network based on the introduced standards of metal microstructures;
(4) saving the parameters of the learnt neural network for further recovery on demand

and analysis based on this network.

To develop the MetalNeuro software, Java coding language and Eclipse IDE for
Enterprise Java Developers were used. A part of the “MetalImage.class” code is shown
in Listing 1. The code is for microstructure image processing, including preliminary
processing (evaluating sin and cos for a neural network). To evaluate sin and cos, the class
MetalImage has methods calcSinus() and calcCosinus(). To determine the base points on
the microstructure image the class MetalImage has method getTokens().
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Listing 1. A part of the “MetalImage.class” code.

public class metalImage
{
private Image image = null;
private ArrayList tokens = null;
private File filename = null;
private metalSpecies species = null;
public metalImage(File fileopen)
{
if(fileopen.isFile())
{
filename = fileopen;
image = new ImageIcon(fileopen.getPath()).getImage();
}
tokens = new ArrayList();
}
public double[] getTokens(int inputs)
{
double[] tokenVector = new double[inputs];
for(int i = 0; i < inputs; i++)
{
if(i < tokens.size())
{

metalToken token = (metalToken)tokens.get(i);
if(i%2 == 0) tokenVector[i] = token.getCOS();
else tokenVector[i] = token.getSIN();

}
else tokenVector[i] = −1.0;
}
return tokenVector;
}
public void addToken(metalToken token)
{
tokens.add(token);
}
public void setTokens(ArrayList tokens)
{
this.tokens = tokens;
}
private void calcCosinus()
{
int ax, ay;

double hyp;
ax = x2-x1;

ay = y2-y1;//calculate the hypotenuse c = sqrt(a2+b2)
hyp = Math.sqrt(ax*ax + ay*ay);
if(hyp == 0.0) cos = 0.0;
else cos = ay/hyp;

}
private void calcSinus()
{

int ax, ay;
double hyp;
ax = x2-x1;
ay = y2-y1;//calculate the hypotenuse c = sqrt(a2+b2)
hyp = Math.sqrt(ax*ax + ay*ay);
if(hyp == 0.0) hyp = Math.abs(ax);
sin = ax/hyp;

}
}



Energies 2021, 14, 8040 10 of 12

Using the developed software, an experiment was carried out to recognize images of
microstructures of steels of different grades. The results of the analysis to determine the
percentage of carbon in steel grade 10ChSND(S420N) are summarized in Table 3.

Table 3. Results of image analysis for carbon content and determination of the structural component using the pro-
posed tools.

Microstructure Processing
Time, Min

Structural
Component Carbon, % (C) The Form of

Inclusion
Non-Metal
Inclusions

Resistance to
Rupture, MPa
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The developed software has passed the testing stage at the Alchevsk Iron and Steel
Works in the Central Laboratory. The results of evaluating the developed tools are presented
in Table 4 (Assessment of the functioning of the developed tools at the Alchevsk Iron and
Steel Works). The system was developed as the following hardware configuration: the
technician’s computer (CPU-Intel Core i5 2.0 GHz; RAM—8 GB DDR3), the workshop
server (CPU—Intel Xeon Gold 3.1 GHz; RAM—32 GB DDR4). The set of metallographic
images for evaluating the functioning of the developed tools was 248 images. In the course
of the experiment, the analysis of the images of this set was carried out first by an outdated
metallographic analysis system, and then by an upgraded system with the developed
software [21,22].

Table 4. Structural indicators of the experiment using the Metallographic System.

Evaluated Metallographic System
Average Time of Metallographic

Image Analysis (Including Image
Recognition Time), Min

Deviation of Grain Parameters in
the Analyzed Metallographic

Image, %

Metallographic analysis system prior to the
implementation of the proposed tools (based on
classical approaches for recognizing images of

metal microstructures)

18 5–10

Upgraded metallographic system after the
implementation of the proposed tools (based on

neural networks and precedent theory)
5 3–4

Existing metallographic systems
(SPECTR MET, SIAMS, etc.) 7 5–8

5. Discussion

As it can be seen from the analysis of the data in Table 4, after the implementation
of the proposed tools, the efficiency of metallographic analysis increased more than three
times, and the accuracy of determining the quantitative characteristics was more than 95%
(as evidenced by the low deviation of the grain parameters).
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The analysis of the hardware configuration (the technician’s computer and the work-
shop server) indicates the applicability of the developed system in production conditions.
Therefore, the proposed solution worked well on the devices with limited computation re-
sources.

In the future, the proposed tools can be effectively used to assess a wide class of
objects in the metallurgical industry, for example, to assess the state of the pipes, long steel
products etc.

The ability of the ship’s hull to withstand the load, called the strength of the vessel, is
an important and urgent task where this study is necessary. This value determines at what
indicators the ship does not collapse, and what effect of temporary and permanent forces
can affect it. When calculating the strength of a vessel, it is imperative to calculate the
local and total strength, since these values play an important role under various operating
conditions [23].

6. Conclusions

Thus, the following results were obtained in the research:

1. An algorithm for the automation of diagnostics of the state of metals has been pro-
posed and described. The proposed algorithm implies the use of neural networks and
precedent theory, which allows, due to the learning property, to adapt the proposed
metallographic analysis tools for any enterprise.

2. Developed software for metallographic images recognition. The developed software
makes it possible to automatically determine the grade and quantitative characteristics
of metals.

3. The use of the developed tools made it possible to reduce the analysis time of metallo-
graphic images by three times, as well as to increase the accuracy of determining the
quantitative characteristics of metals.

Author Contributions: Conceptualization, S.C. and V.E.; methodology, S.C.; software, V.E.; val-
idation, A.Z., V.E.; formal analysis, S.C.; investigation, V.E.; resources, V.E.; data curation, S.C.;
writing—original draft preparation, V.E.; writing—review and editing, A.Z.; visualization, V.E.;
supervision, V.E.; project administration, S.C.; funding acquisition, A.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation as part of World-class Research Center program: Advanced Digital Technologies
(contract No. 075-15-2020-903, dated November 16, 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smallman, R.E.; Ashbee, K.H.G. Modern Metallography: The Commonwealth and International Library: Metallurgy Division; Elsevier:

Amsterdam, The Netherlands, 2013; 224p.
2. Gordon, Y.; Kumar, S.; Freislich, M.; Yaroshenko, Y. The modern technology of iron and steel production and possible ways of

their development. Steel Transl. 2015, 45, 627–634. [CrossRef]
3. Colpaert, H. Metallography of Steels: Interpretation of Structure and the Effects of Processing; ASM International: Russell Township,

OH, USA, 2018; 699p.
4. Martyushev, N.; Skeeba, V. The method of quantitative automatic metallographic analysis. J. Phys. Conf. Ser. 2017, 803, 012094.

[CrossRef]
5. DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data.

Comput. Mater. Sci. 2015, 110, 126–133. [CrossRef]
6. Bezyazychnyi, V.F.; Palamar, I.N.; Azikov, N.S. Automation of Analysis of the Structure of a Material with Details Based on

Controlled Functional Systems. J. Mach. Manuf. Reliab. 2020, 49, 341–346. [CrossRef]
7. Wu, W.-H.; Lee, J.-C.; Wang, Y.-M. A Study of Defect Detection Techniques for Metallographic Images. Sensors 2020, 20, 5593.

[CrossRef] [PubMed]
8. Chen, D.; Liu, Y.; Liu, S.; Liu, F.; Chen, Y. Framework of Specific Description Generation for Aluminum Alloy Metallographic

Image Based on Visual and Language Information Fusion. Symmetry 2020, 12, 771. [CrossRef]

http://doi.org/10.3103/S0967091215090077
http://doi.org/10.1088/1742-6596/803/1/012094
http://doi.org/10.1016/j.commatsci.2015.08.011
http://doi.org/10.3103/S1052618820040020
http://doi.org/10.3390/s20195593
http://www.ncbi.nlm.nih.gov/pubmed/33003553
http://doi.org/10.3390/sym12050771


Energies 2021, 14, 8040 12 of 12

9. Niezgoda, S.R.; Kanjarla, A.K.; Kalidindi, S.R. Novel microstructure quantification framework for databasing, visualization, and
analysis of microstructure data. Integr. Mater. Manuf. Innov. 2013, 2, 54–80. [CrossRef]

10. Lin, J.; Ma, L.; Yao, Y. Segmentation of casting defect regions for the extraction of microstructural properties. Eng. Appl. Artif.
Intell. 2019, 85, 150–163. [CrossRef]

11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

12. Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructure classification by deep learning methods.
Sci. Rep. 2018, 8, 2128. [CrossRef] [PubMed]

13. Ma, B.; Ban, X.; Huang, H.; Chen, Y.; Liu, W.; Zhi, Y. Deep learning-based image segmentation for al-la alloy microscopic images.
Symmetry 2018, 10, 107. [CrossRef]

14. De Albuquerque, V.H.; Silva, C.C.; Menezes, T.I.; Farias, J.P.; Tavares, J.M. Automatic evaluation of nickel alloy secondary phases
from SEM images. Microsc. Res. Tech. 2011, 74, 36–46. [CrossRef] [PubMed]

15. Vijayalakshmi, D. Malaya Kumar Nath Taxonomy of Performance Measures for Contrast Enhancement. Pattern Recognit. Image
Anal. 2020, 30, 691–701. [CrossRef]

16. Dougherty, G. Pattern Recognition and Classification; Springer: Berlin/Heidelberg, Germany, 2013; 206p.
17. Kenji, S. Artificial Neural Networks: Architectures and Applications; IntechOpen Limited 5 Princes Gate Court; SW7 2QJ: London, UK,

2013; 264p.
18. Suresh Kumar, P.; Behera, H.S.; Anisha Kumari, K.; Nayak, J.; Naik, B. Advancement from neural networks to deep learning in

software effort estimation: Perspective of two decades. Comput. Sci. Rev. 2020, 38, 100288. [CrossRef]
19. Richter, M.M.; Weber, R. Case-Based Reasoning; Springer: Berlin/Heidelberg, Germany, 2013; 546p.
20. Alqurashi, T.; Wang, W. Clustering ensemble method. Int. J. Mach. Learn. Cybern. 2019, 10, 1227–1246. [CrossRef]
21. Emelianov, V.; Emelianova, N.; Zhilenkov, A.; Chernyi, S. Application of Information Technologies and Programming Methods of

Embedded Systems for Complex Intellectual Analysis. Entropy 2021, 23, 94. [CrossRef] [PubMed]
22. Yemelyanov, V.; Chernyi, S.; Yemelyanova, N.; Varadarajan, V. Application of neural networks to forecast changes in the technical

condition of critical production facilities. Comput. Electr. Eng. 2021, 93, 107225. [CrossRef]
23. Kramar, V.; Rodkina, A.; Ivanova, O.; Chernyi, S.; Zinchenko, A. Analysis Technology and Cathodic Protection for Hull Structures

of Ships and Floating Facilities. Inventions 2021, 6, 74. [CrossRef]

http://doi.org/10.1186/2193-9772-2-3
http://doi.org/10.1016/j.engappai.2019.06.007
http://doi.org/10.1038/s41598-018-20037-5
http://www.ncbi.nlm.nih.gov/pubmed/29391406
http://doi.org/10.3390/sym10040107
http://doi.org/10.1002/jemt.20870
http://www.ncbi.nlm.nih.gov/pubmed/21181708
http://doi.org/10.1134/S1054661820040240
http://doi.org/10.1016/j.cosrev.2020.100288
http://doi.org/10.1007/s13042-017-0756-7
http://doi.org/10.3390/e23010094
http://www.ncbi.nlm.nih.gov/pubmed/33440676
http://doi.org/10.1016/j.compeleceng.2021.107225
http://doi.org/10.3390/inventions6040074

	Introduction 
	Related Works 
	Algorithm for Automating Metallographic Quality Control of Metals 
	Experimental Studies of the Developed Tools 
	Discussion 
	Conclusions 
	References

