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Abstract: Unit commitment problem (UCP) is classified as a mixed-integer, large combinatorial,
high-dimensional and nonlinear optimization problem. This paper suggests solving the UCP under
deterministic and stochastic load demand using a hybrid technique that includes the modified
particle swarm optimization (MPSO) along with equilibrium optimizer (EO), termed as MPSO-EO.
The proposed approach is tested firstly on 15 benchmark test functions, and then it is implemented
to solve the UCP under two test systems. The results are basically compared to that of standard
EO and previously applied optimization techniques in solving the UCP. In test system 1, the load
demand is deterministic. The proposed technique is in the best three solutions for the 10-unit system
with cost savings of 309.95 USD over standard EO and for the 20-unit system it shows the best
results over all algorithms in comparison with cost savings of 1951.5 USD over standard EO. In test
system 2, the load demand is considered stochastic, and only the 10-unit system is studied. The
proposed technique outperforms the standard EO with cost savings of 40.93 USD. The simulation
results demonstrate that MPSO-EO has fairly good performance for solving the UCP with significant
total operating cost savings compared to standard EO compared with other reported techniques.

Keywords: unit commitment; optimization; equilibrium optimizer; particle swarm optimization;
uncertainty

1. Introduction
1.1. Unit Commitment

UCP is a very complicated optimization problem in electrical power system oper-
ation that involves both binary and continuous variables and considers a large set of
constraints, including unit and system constraints, which complicates the problem further.
It is classified as a short-term problem as it is usually considered for 24 consecutive hours,
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comprising one day. The UCP aims to figure out the best on/off status for generating units
at each power station and determine individual power outputs of the scheduled generation
units to minimize total operating costs while meeting system load demand at each time
interval [1]. Stochastic unit commitment (SUC) refers to the uncertainty in the UCP, which
can appear on both the load side and/or generation side. Here, the uncertainty in the
load side only is considered, so instead of assuming that the load demand is constant,
it is considered vary over the day during each hour, known as load uncertainty, which
obliges the units’ power to track the load to keep balance operation in the power system [2].
The planning of generating units in the power system should be done so that there is an
adequate generation reserve to avert failures and incidental conditions. There are several
constraints in the UCP, including system and physical constraints, and the problem should
be solved to satisfy all constraints over the study period [3]. A literature review states the
various efforts introduced in solving UCP.

1.2. Literature Review

Both deterministic and meta-heuristic techniques inspired by nature are employed to
solve the UCP [4]. Deterministic techniques including Lagrangian relaxation (LR) [5–7],
priority list [8,9], mixed-integer programming (MIP) [10] and dynamic programming
(DP) [11,12] belong to numerical optimization techniques, which are considered the classical
methods and have the advantages of simplicity and fast convergence, but mostly suffer
from poor solution quality and premature convergence. Recently, meta-heuristic techniques
have been widely applied to several optimization problems, and this subsection of the
research highlights some outstanding scientific efforts in solving the UCP using various
meta-heuristic algorithms. In [13,14], the solution was obtained by genetic algorithms
(GAs). The authors of [12] used the varying quality function approach and added specific
operators to avoid using standard operators (crossover and mutation) to solve the UCP.
In [13], a modified GA algorithm was used, where a matrix representation is used to
encode the problem and a specific operator is applied to improve computational time and
solution quality. In [15,16], the solution methodology was based on the particle swarm
optimizer (PSO). The authors of [14] tended to use more information about particles to
control the mutation process and apply new strategies for choosing parameters to enhance
the solution of the UCP. In [15], the authors deal with binary variables of the UCP as
integers, with each integer expressing the unit’s continuous on/off status to reduce the
number of decision variables and thus get over the defects of stochastic algorithms. In [17],
the gravitational search algorithm (GSA) was used for the UCP. Reference [18] presented a
binary version of fish migration optimization (BFMO) and an advanced version of binary
fish migration optimization (ABFMO) to solve the UCP. In [19], a binary real-coded firefly
algorithm (BRCFFA) was applied to the UCP in such a manner that the binary coded
FF produced the generators’ operating states through the tanh function, and the real-
coded FF produced the output powers of committed generators. The authors applied
simulated annealing (SA) in solving the UCP [20] by dividing the main problem into two
subproblems. A combinatorial problem and a nonlinear programming problem are the
two subproblems. The SA algorithm was used to solve the combinatorial problem, and
a quadratic programming technique was used to address the nonlinear programming
problem. The authors of [21] developed a novel adaptive binary salp swarm algorithm
to solve the UCP as a mixed integer optimization problem considering the ramp rate
limits. Later, hybrid approaches evolved for solving the UCP more efficiently. The authors
of [22] employed evolutionary programming (EP) coupled with the tabu search method
to meet the requirements of the UCP. In [23], the authors suggested an effective hybrid
approach that combines PSO and grey wolf (GWO) to combine the strengths of both
algorithms. The hybridization is made so that the updating process was made firstly by
PSO then by GWO. In [24], a hybridization between Lagrangian relaxation, evolutionary
programming and quadratic programming was introduced to solve the UCP through two
coordination procedures. A combination between PSO and BPSO was proposed in [25],



Energies 2021, 14, 8014 3 of 21

where BPSO deals with binary variables and PSO deals with real variables to solve a mixed
heat and power unit commitment. Additionally, a hybrid genetic algorithm and differential
evolution were implemented [26,27]. Despite the fact that there is no optimizer that can
be effective enough for all optimization problems, each optimizer has its own strengths
and weaknesses, so the hybridization process between two optimizers seeks to avoid weak
points of the optimizers and get the most out of them.

1.3. Contributions

This paper’s main contribution can be summarized in three points:

1. Solving the UCP under deterministic and probabilistic states. In a stochastic case, the
uncertainty in the load side is considered.

2. An efficient hybrid approach between modified particle swarm optimization and
equilibrium optimizer (MPSO-EO) is proposed for solving the UCP.

3. Validation the performance of the MPSO-EO through standard benchmark functions.
4. A comparison between the proposed algorithm and well-known techniques such as

EO, PSO, GWO and SCA for the solution of the UCP.

The remainder of the paper is laid out as follows: Section 2 involves mathematical
problem formulation with constraints and load uncertainty modelling. Section 3 provides
an overview of applied algorithms and presents the proposed hybrid methodology for
solving the UCP. Section 4 illustrates the effectiveness of proposed technique through ap-
plying benchmark test functions and different test systems of the UCP. Finally, in Section 5,
a conclusion is provided.

2. Problem Formulation

This section involves the UCP’s objective function, problem constraints and modelling
for load uncertainty.

2.1. Objective Function

The UCP’s objective function is to reduce the system total operating cost by estimating
optimal schedule and power output for the available generation units while satisfying
several constraints. Fuel cost (power production costs), start-up and shutdown costs make
up the power generation’s total operating cost function. Mathematical representation for
the objective function of the UCP is represented by Equation (1) as follows:

Min FT = ∑T
t=1 ∑N

i=1 Ut
i × FCt

i + SCt
i + SDt

i (1)

2.1.1. Fuel Cost

A quadratic equation can be used to express the cost of fuel and is represented by
Equation (2):

FCt
i= ai + bi × Pi(t) + ci × P2

i(t) (2)

where ai, bi and ci represent the fuel cost coefficients for ith generating unit.

2.1.2. Start-Up Cost

It is the incurred cost at the starting of a generating unit. Thermal units must be
“warmed up” before they can be brought online. The warming up process costs money
and thus affects the total operating cost. The cost of re-starting a unit is determined by how
long it has been off. Different units have different start-up costs and the cost of starting up
unit i can be calculated as in Equation (3):

SCt
i =

{
SCihot → MDTi ≤ Tt

OFFi ≤ MDTi + Tcoldi
SCicold → Tt

OFFi > MDTi + Tcoldi

(3)
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2.1.3. Shutdown Cost

The cost of shutting down all units is the same, but it is not considered in this study.

2.2. Constraints
2.2.1. Thermal Units Constraints

(a) Generation power limits

Output power limits from the thermal units is given in Equation (4):

Pimin ≤ Pi(t) ≤ Pimax (4)

(b) Minimum up/down time constraints

• Minimum up time constraint

Once a unit is running, it may not be turned off instantly and this constraint is
expressed in Equation (5):

TONi ≥ MUTi (5)

• Minimum down time constraint

A unit cannot be restarted instantly after it has been turned off, and this constraint is
expressed in Equation (6):

TOFFi ≥ MDTi (6)

(c) Spinning reserve

The system should have additional capacity to face sudden accidents, such as sud-
den load increase or generator outage known as spinning reserve, and is represented by
Equation (7):

N

∑
i=1

Ui(t)× Pimax ≥ SRt + Pt
L (7)

2.2.2. System Constraints

(a) Power balance constraint

N

∑
i=1

Ui(t)× Pi(t) = Pt
L (8)

2.3. Load Uncertainty Model

The modelling of load demand uncertainty in a power system is made using probabil-
ity density functions [28], which can be represented using Equation (9).

PDFLD
(
St

LD
)
=

1√
2πσtLD

exp

[
− (St

LD − µt
LD)

2

σtLD2

]
(9)

where PDFLD represents the load demand probability density function and St
LD is the

load demand apparent power at time t.
The proposed work depends on Monte Carlo simulation (MCS) and scenario-based

reduction techniques to deal with load demand uncertainty.

3. Optimization Algorithm
3.1. Particle Swarm Optimization (PSO)

In 1995, Eberhart and Kennedy introduced (developed) a population-based opti-
mization algorithm as a substitute for GAs, known as ‘particle swarm [29] optimization’
(PSO) [30]. PSO was motivated by creatures’ social behavior like flocks of birds, schools
of fishes, etc. PSO depends on the fact of seeking for finding the optimal solution in a
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multidimensional search area. The strength of PSO comes from the social interactions
between individuals as they search the space collaboratively to obtain the best solution
globally. In PSO, the swarm is referred to as a population and each individual is referred
to as a particle. Each particle stands for a candidate solution for the solved optimization
problem and has two associated vectors defined as position and velocity vectors. At each
iteration, each particle tracks two values: (1) the particle’s best previous position known as
the personal best (P_best) and (2) the best position ever found between all particles in the
population known as the global best (G_best).

Let X and V be the ith particle’s position and velocity vectors in a search space, respec-
tively. Then, in each iteration, the velocity and position of each particle are updated based
on the two tracked values. They are represented mathematically by Equations (10) and (11):

Vit+1
i = ω ∗Vit

i + c1 ∗ Rand1 ∗
(

Pbest − Xit
i

)
+ c2 ∗ Rand2 ∗

(
Gbest − Xit

i

)
(10)

Xit+1
i = Xit

i + Vit+1
i (11)

where ω is called inertia weight; Rand1 and Rand2 are random vectors in range of [0, 1]; c1
and c2 are called acceleration coefficients and have values between 0 and 2.5; Xit

i and Vit
i

are the ith particle’s position and velocity vectors at iteration it, respectively; and Xit+1
i

and Vit+1
i are the ith particle’s position and velocity vectors at iteration it + 1, respectively.

The appropriate selection of inertia weight ω is important as it affects the exploration
properties of PSO. It is given in Equation (12):

ω = ωmini +
ωmaxi −ωmini

itmax
∗ (itmax − it) (12)

where ωmini and ωmaxi are the inertia weight’s minimum and maximum values and are
generally taken as 0.4 and 0.9, respectively. it denotes the current iteration while itmax
denotes the maximum number of iterations.

PSO has gained wide popularity due to its simplification of application and the ease
in adjusting its few parameters. Its flexibility in adjustment makes it a preferred choice in
the hybridization process with most modern algorithms to enhance the solution of several
optimization problems such as those in [31], where the authors employed PSO with the
firefly algorithm to solve the issues of the multi-objective optimal power flow. Additionally,
in [32], a hybrid algorithm of PSO and grey wolf optimizer (GWO) was developed to solve
the problem of optimal power flow under uncertainty of solar and wind power. A modified
version of PSO is employed with EO to solve the UCP under deterministic and stochastic
load demand.

3.2. Equilibrium Optimizer (EO)

Equilibrium optimizer (EO) was introduced by Faramarzi depending on the physical
basis to process the continuous optimization problems [33]. The performance of the grey
wolf optimizer (GWO) and the solution of the mass balance equation on a control volume
were the inspirations for EO. EO tries to find the state of equilibrium that implements the
mass balance between the entered, generated and output mass of a control volume. The
inspiring mass balance equation is given in Equation (13):

V
dc
dt

= QCeq −QC + G (13)

where V represents the control volume, Ceq gives the concentration of the equilibrium state,
Q denotes the flow rate, C denotes the concentration and G represents the mass generation
rate. After that, by solving Equation (13) for the concentration (C) as a function of time (t), it
is possible to either find the concentration that exists in the control volume as the turnover
rate is known or to determine the average turnover rate when the generation rate and other
conditions are known. In the EO algorithm, each particle refers to a candidate solution
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and its concentration refers to the position of this particle and both are acting as a search
agent. Each search agent randomly updates its position based on best solutions found so
far, called equilibrium candidates, to reach the state of equilibrium (optimal solution). The
approach for updating the particles’ (search agents’) positions in EO algorithms can be
summarized as follows.

3.2.1. Initialization

EO, like other meta-heuristic optimizers, uses the initial population to establish the
particles’ initial positions randomly in the search space, according to the equation given
in (14):

Cinitial
i = lb + Randi(ub− lb) (14)

where i = 1, 2, . . . . . . N and N represents the population size; lb and ub are the control
variables’ lower and upper limits, respectively; and Randi is random vector in range of
[0, 1]. Then the fitness function for the initial particles is calculated.

3.2.2. Equilibrium Candidates and Equilibrium Pool

The particles are sorted depending on their corresponding positions and the four parti-
cles with the best positions are estimated and their average is calculated, as shown in Equa-
tion (15), to create a fifth particle whose position is equal to the calculated average value.

→
Ceq(ave) =

→
Ceq1 +

→
Ceq2 +

→
Ceq3 +

→
Ceq4

4
(15)

These five particles are called equilibrium candidates. They form a vector called
equilibrium pool, which represented by Equation (16):

→
Ceq(pool) =

{→
Ceq1,

→
Ceq2 ,

→
Ceq3,

→
Ceq4 ,

→
Ceq(ave)

}
(16)

where
→
Ceq(pool) represents the equilibrium pool;

→
Ceq1,

→
Ceq2 ,

→
Ceq3 and

→
Ceq4 are the four

individual particles with the best positions found so far;
→
Ceq(ave) denotes the average of the

best four particles. The equilibrium pool particles are updated at each iteration.

3.2.3. Exponential Term and Concentrations Update

During the update of the particle positions (concentrations) throughout the itera-
tions, the exponential term (F) is essential in the EO algorithm to balance exploration and
exploitation. Mathematically, it is represented by (17):

→
F = a1sign

(→
r − 0.5

)[
e−
→
λ t − 1

]
(17)

where

t =
(

1− it
itmax

)(a2
it

itmax )

(18)

where λ is called control volume and is random vector in range of [0, 1]; r is uniform
random vector in range of [0, 1]; and a1, a2 are constants and their values are 2 and 1,
respectively. They are used to adjust the exponential value; it represents the current
iteration and itmax represents the maximum number of iterations. It is worth mentioning
that a1 affects the exploration ability of the algorithm while a2 affects the exploitation (sign
(r − 0.5) controls the exploitation and the exploration direction.

3.2.4. Generation Rate and Concentrations Update

The second important term in EO approach for updating the particles’ positions (con-
centrations) during optimization process is called the generation rate (G). The generation
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rate controls the exploitation process and is given mathematically as a function of time in
Equation (19):

→
G =

→
G0 e−

→
k (t−t0) (19)

where G0 indicates the initial value and k represents a decay constant. For having a more
controllable search pattern and to control the number of random variables, EO assumes

that
→
k =

→
λ . Then, the final generation rate expression is represented by Equation (20) as

follows:
→
G =

→
G0 e−

→
λ (t−t0) =

→
G0 ∗ F (20)

where
→
G0 =

−−→
GCP

( →
Ceq −

→
λ
→
C
)

(21)

and
−−→
GCP =

{
0.5 r1 r2 ≥ GP
0 r2 < GP

(22)

where r1 and r2 are random vectors in range of [0, 1] and
−−→
GCP is the control parameter of

the generation rate (G).
The final updating equation for EO depending on the previous approach is given in

Equation (23):
→
C =

−→
Ceq +

(→
C −
−→
Ceq

)
·
→
F +

→
G
→
λV

(
1−

→
F
)

(23)

3.2.5. Memory Saving for Particles

The mechanism of memory saving in EO resembles the concept of Pbest in PSO. The
addition of a memory-saving mechanism helps each particle to keep in track with its best
positions so far in the search space. The fitness value of each individual particle in the
current iteration is compared to its fitness value from the previous iteration in this step of
the algorithm, and the fittest value is preserved. Although this technique aids exploitation
capability, it may also increase the chance of falling into local minima.

3.3. The Proposed Hybrid Methodology

This paper uses a hybrid strategy to tackle the unit commitment optimization problem,
which combines modified particle swarm optimization (PSO) with the equilibrium opti-
mizer (EO). Although EO solves various optimization problems effectively, it depends on
the five particles in the equilibrium pool known as equilibrium candidates in the updating
process. These particles suffer from the shortcomings of reduced population variety and
trapping into the local optimum. PSO also has several drawbacks, such as stagnation and
the particles’ proclivity to become idle after a certain number of iterations, resulting in the
lack of local and global search capabilities. To overcome the defects of standard versions of
EO and PSO, this paper proposes a hybridization combined between the two optimizers
so that EO’s population diversity increases and the ability of PSO to escape from the local
minima increases, but the convergence rate of the hybrid algorithm slows down. As a
result, the performance of the optimizers is enhanced, and it is ensured to get the best
possible optimal solution for the UCP that avoids local stagnation; thus, over the schedule
period, the total operating cost is reduced.

The modified PSO refers to depend on time-varying acceleration coefficient (c1 and c2).
Proper choice of the coefficients c1 and c2 can affect the speed and efficiency of the algo-
rithm, resulting in faster convergence of the algorithm and avoidance for the local optima.

It has been noticed that the best performance of PSO is when c1 is changing in a
descending manner while c2 is changing in ascending manner, and generally this change
is between 0 and 2.5 over the full course of iterations. There are various time-varying
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updating strategies to determine c1 and c2 [34]. The formula used in this paper is given in
Equations (24) and (25) as follows:

c1 = −2 ∗ it3

itmax3 + 2 (24)

c2 = 2 ∗ it3

itmax3 (25)

In which c1 and c2 change between 0 and 2.
The positions of particles are initially updated using the modified PSO (MPSO) algo-

rithm and then further updated using the EO method in the proposed hybrid modified
PSO–EO algorithm. Figure 1 depicts the process for the suggested hybrid approach.

Figure 1. Flow chart of proposed MPSO-EO.
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4. Results and Discussion
4.1. First: Application on Benchmark Test Functions

To characterize the performance of the proposed hybrid MZSPSO–EO algorithm, a
group of 15 familiar benchmark test functions are used. Then, the results are compared
along with four of the famous meta-heuristic algorithms such as the equilibrium opti-
mizer (EO), grey wolf optimizer (GWO), particle swarm optimizer (PSO) and sine cosine
algorithm (SCA).

4.1.1. Benchmark Test Functions

Generally, the benchmark test functions are 29 functions and are categorized into
four sections which are unimodal, multimodal with no local minima, multimodal with
many local minima and composite functions. The first section includes seven test functions
(F1-F7). The second section includes six test functions (F8-F13) The third section involves
10 test functions (F14-F23). The last section consists of six composite test functions (F24-F29).
All of these functions represent minimization problems.

4.1.2. Benchmark Test Functions Comparison

The hybrid approach’s performance is tested by comparing with the mentioned
algorithms in Section 4.1 based on the unimodal and multimodal functions (15 test functions
are selected). The unimodal functions have a single optimum solution and are used to
evaluate the ability of meta-heuristic algorithms to be exploited. The multimodal functions
have many optimal solutions and are used to test the exploration ability of the examined
meta-heuristic algorithms. The maximum number of iterations and population size are
set to 800 and 50 for functions (F1-F7), 300 and 30 for functions (F8-F13) and 100 and 20
for functions (F14-F15), respectively. To deal with stochastic nature of these algorithms,
25 trial runs were performed for each benchmark function. The best-of-run solution, the
worst-of-run solution, the standard deviation and the average solution of all runs are
all reported in Table 1. The convergence characteristics’ curves comparison between the
proposed technique and previously mentioned techniques is given in Figure 2 As shown
from the results in Table 1, MPSO-EO achieved the best performance for unimodal functions
(F1-F7), except for function (F6), in which it achieved the second-best performance after the
original EO. These results show the superiority of the proposed technique and indicate
that the applied hybridization improved the exploitation ability of the original EO. For
multimodal functions, MPSO-EO succeeded in achieving the best performance for function
F8, which is considered the most complicated function among all other functions in this
section. For F9 and F11, both MPSO-EO and standard EO reached the global optimal, but
MPSO-EO outperformed in the mean value and standard deviation. For F14, all algorithms
except for SCA reached the global optimal, but MPSO-EO outperformed in the mean value
and occupied the second position after standard EO for the standard deviation value.
For functions F10, F12, F13 and F15, MPSO-EO performed the best among all proposed
algorithms. The discussed ranking is based on the best-of-run value.

Table 1. Comparison for benchmark test functions results.

Function No. MPSO-EO EO PSO GWO SCA

F1

Best 9.0495 × 10−106 1.1579 × 10−83 0.1215795 1.6997 × 10−58 9.3414 × 10−6

Worst 3.1214 × 10−100 4.2725 × 10−79 1.531071 6.1888 × 10−55 3.765
Mean 1.573 × 10−101 4.3309 × 10−80 0.4307582 7.1958 × 10−56 0.1748

Std 5.7719 × 10−101 9.83229 × 10−80 0.2737527 1.3523 × 10−55 0.6923

F2

Best 3.6375 × 10−56 6.6036 × 10−46 0.7375 1.3512 × 10−32 2.9791 × 10−6

Worst 3.4786 × 10−54 1.1718 × 10−43 41.2712 1.009 × 10−30 0.00096
Mean 4.2934 × 10−55 2.4282 × 10−44 4.8417 2.2264 × 10−31 0.00019

Std 7.2358 × 10−55 2.9957 × 10−44 7.4781 2.389 × 10−31 0.0002
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Table 1. Cont.

Function No. MPSO-EO EO PSO GWO SCA

F3

Best 3.558 × 10−38 1.1168 × 10−27 33.78574 1.7032 × 10−20 17.18137
Worst 1.7073 × 10−26 5.8834 × 10−20 112.7994 8.5859 × 10−14 7716.624
Mean 5.7827 × 10−28 2.9493 × 10−21 65.95589 4.1645 × 10−15 2545.905

Std 3.1155 × 10−27 1.0939 × 10−20 21.51473 1.5601 × 10−14 1954.96

F4

Best 8.9129 × 10−23 1.0421 × 10−22 1.0515 1.8572 × 10−15 4.7894
Worst 3.0663 × 10−16 1.1162 × 10−19 1.8308 6.9359 × 10−13 46.8004
Mean 2.9137 × 10−17 1.3109 × 10−20 1.4866 8.9864 × 10−14 18.5352

Std 6.3935 × 10−17 2.8049 × 10−20 0.2206 1.333 × 10−13 10.9167

F5

Best 23.1873 23.8427 139.5195 24.9101 28.3771
Worst 24.2688 24.5458 1110.277 27.9375 10,848.22
Mean 23.6952 24.1897 342.3329 26.40021 689.1504

Std 0.29534 0.1921 211.188 0.7468 1999.06

F6

Best 1.3896 × 10−11 2.0002 × 10−13 0.0669 1.2974 × 10−5 3.7721
Worst 7.1921 × 10−9 6.1705 × 10−10 0.8661 1.0023 5.5307
Mean 8.3805 × 10−10 3.686 × 10−11 0.3458 0.4026 4.4089

Std 1.3708 × 10−9 1.1153 × 10−10 0.2197 0.2869 0.4089

F7

Best 7.6647 × 10−5 0.0001 0.2622 0.0002 0.0029
Worst 0.0005 0.00097 21.6872 0.0019 0.1073
Mean 0.0003 0.00046 5.2364 0.0008 0.0285

Std 0.0001 0.00019 5.8439 0.0004 0.0254

F8

Best −9865.201 −9719.074 −7770.439 −7315.422 −4246.805
Worst −7414.904 −6908.452 −2747.769 −3016.587 −3119.04
Mean −8589.561 −8503.638 −5479.792 −5846.141 −3616.961

Std 712.506 719.2974 1361.11 1328.698 283.2907

F9

Best 0 0 163.1299 5.5707 × 10−12 21.3267
Worst 5.6843 × 10−14 2.2737 × 10−13 307.7645 20.5118 180.1624
Mean 4.5474 × 10−15 2.9559 × 10−14 243.6789 6.4631 70.2827

Std 1.5739 × 10−14 5.2201 × 10−14 38.1449 4.8576 33.9405

F10

Best 2.2204 × 10−14 2.4603 × 10−13 2.4881 3.2538 × 10−9 1.3701
Worst 5.7732 × 10−14 3.2623 × 10−12 4.237 2.7796 × 10−8 20.4224
Mean 3.4852 × 10−14 1.0424 × 10−12 3.4253 1.1751 × 10−8 15.9039

Std 7.7484 × 10−15 7.9499 × 10−13 0.4637 6.4636 × 10−9 7.5859

F11

Best 0 0 0.1689 6.3283 × 10−15 0.9503
Worst 0.0197 0.0246 0.6164 0.0296 9.5659
Mean 0.0008 0.0042 0.3849 0.0087 2.1191

Std 0.0039 0.0082 0.0847 0.0115 1.8833

F12

Best 2.7601 × 10−6 5.3834 × 10−6 0.0383 0.0201 3.3341
Worst 0.1039 0.1037 1.6209 0.1148 668,487
Mean 0.0044 0.0042 .3266 0.0547 344,523.6

Std 0.02076 0.02073 0.3562 0.0273 134,615

F13

Best 2.1984 × 10−5 0.0002 0.7789 0.4995 3.8972
Worst 0.4761 0.4005 2.9736 1.2256 1.83 × 107

Mean 0.1437 0.081 1.5124 0.7896 134,352
Std 0.15062 0.102 0.5359 0.1984 369,891

F14

Best 0.998 0.998 0.998 0.998 0.998
Worst 4.9505 2.9821 11.7187 15.5038 10.7631
Mean 1.3945 1.5539 5.0092 5.8148 3.6726

Std 0.9033 0.8142 3.1811 4.648 3.3029

F15

Best 0.00031 0.00037 0.0008 0.0005 0.0006
Worst 0.0204 0.02036 0.0203 0.0203 0.0025
Mean 0.0013 0.0015 0.0068 0.0069 0.0015

Std 0.0039 0.0039 0.0087 0.0094 0.0006
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Figure 2. Comparison of convergence curves of the five algorithms for benchmark functions (F1-F15).
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4.2. Second: Application on the UCP

The proposed hybrid technique MPSO-EO was further implemented to solve the
UCP under different test systems with a variety of dimensions. The simulation studies
were implemented in the MATLAB 2020a environment on a PC with an Intel Core i7
processor, 8 GB RAM and Microsoft Windows operating system. The suggested technique’s
simulation results under two test systems are presented and discussed. After that, a
comparison of developed approaches with previously applied methods in solving the UCP
is shown to verify MPSO-EO efficiency in solving the UCP.

Population size estimation: simulation studies and results observations of solution
quality and execution time were used to estimate the ideal population size for carrying out
numerical experiments of researched test systems.

Thirty trial runs were made for the under-study test systems to ensure the robustness
of the proposed algorithm.

4.2.1. Performance of MPSO-EO for Test System 1

This test system considers deterministic load and ignores the variability of the load.
The forecast load data over a 24-h horizon are given in Table 2 [23]. The reserve values
are taken as 10% of the load and are given in Table 2 [23]. The solution quality is tested
on 10-unit system and 20-unit system. The input data for the 10-unit system are given in
Table 3 [35] and it is taken as a standard system. In Table 3, the term “initial state” refers
to the unit’s initial state at the start of the scheduling period. The (+) symbol indicates
that the unit is turned on, while the (−) symbol indicates that it is turned off. Input data
from a typical 10-unit system is duplicated for the 20-unit system. The population size for
optimal results is presented in Table 4. The optimal commitment and generation schedules
for a 10-unit system utilizing MPSO-EO are produced in Tables 5 and 6, respectively. The
graphical representation for the performance of generating units is given in Figure 3. For a
20-unit system, Table 7 shows the commitment schedules and Figure 4 gives the graphical
representation for the performance of generating units. Table 8 shows the total fuel cost, the
start-up cost and the total operating cost for the two studied dimensions in test system 1
using MPSO-EO.

Table 2. Load and reserve data (test system 1) [23].

Time 1 2 3 4 5 6 7 8 9 10 11 12

Load demand 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Reserve values 70 75 85 95 100 110 115 120 130 140 145 150

Time 13 14 15 16 17 18 19 20 21 22 23 24

Load demand 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
Reserve values 140 130 120 105 100 110 120 140 130 110 90 80

Table 3. The 10-unit system input data [35].

Unit
a

($/h)
b

($/MWh)
c

($/MW2h)
Pimax
(MW)

Pimin
(MW) SCihot ($) SCicold ($)

MUTi
(h)

MDTi
(h)

Tcoldi
(h)

Initial
State (h)

Un 1 1000 16.19 0.00048 455 150 4500 9000 8 8 5 8
Un 2 970 17.26 0.00031 455 150 5000 10,000 8 8 5 8
Un 3 700 16.6 0.002 130 20 550 1100 5 5 4 −5
Un 4 680 16.5 0.00211 130 20 560 1120 5 5 4 −5
Un 5 450 19.7 0.00398 162 25 900 1800 6 6 4 −6
Un 6 370 22.26 0.00712 80 20 170 340 3 3 2 −3
Un 7 480 27.74 0.00079 85 25 260 520 3 3 2 −3
Un 8 660 25.92 0.00413 55 10 30 60 1 1 0 −1
Un 9 665 27.27 0.00222 55 10 30 60 1 1 0 −1

Un 10 670 27.79 0.00173 55 10 30 60 1 1 0 −1
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Table 4. Population size (test system 1).

Scale Maximum Iterations No. of Population Independent Runs

10 unit 100 25 30

20 unit 150 50 30

Table 5. Optimal scheduled operation for the 10-unit system over 24 h (test system 1).

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Un 4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Un 5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Un 6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Un 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Un 8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
Un 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Un 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 6. Optimal output power for the 10-unit system over 24 h (test system 1).

Hour Un 1 Un 2 Un 3 Un 4 Un 5 Un 6 Un 7 Un 8 Un 9 Un 10

1 455 245 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0
5 455 390 0 130 25 0 0 0 0 0
6 455 360 130 130 25 0 0 0 0 0
7 455 410 130 130 25 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0

10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 10 0
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 33 25 10 0 0
14 455 455 130 130 85 20 25 0 0 0
15 455 455 130 130 30 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0
20 455 455 130 130 162 33 25 10 0 0
21 455 455 130 130 85 20 25 0 0 0
22 455 455 0 0 145 20 25 0 0 0
23 455 420 0 0 25 0 0 0 0 0
24 455 345 0 0 0 0 0 0 0 0
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Figure 3. Performance of 10-generating units over 24 h (test system 1).

Table 7. Optimal scheduled operation for the 20-unit system over 24 h (test system 1).

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Un 4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Un 5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Un 6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Un 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Un 8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
Un 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
Un 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Un 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 13 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
Un 14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Un 15 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Un 16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
Un 17 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Un 18 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
Un 19 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
Un 20 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
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Figure 4. Performance of 10-generating units over 24 h (test system 1).

Table 8. Fuel cost, start-up cost and total operating cost obtained by MPSO-EO (test system 1).

Scale Fuel Cost Start-Up Cost Total Operating Cost

10 unit 559,887.0172 4090 563,977.0172

20 unit 1,114,911.5105 8400 1,123,311.5105

The solution quality of the 10- and 20-unit systems using MPSO-EO is compared
with the basic EO algorithm and other existing algorithms applied for solving the UCP
(Table 9) to prove the priority of MPSO-EO in solving the UCP. The analysis of numerical
results in Table 9 can be summarized as follows: MPSO-EO improves the solution quality
and achieves better performance over standard EO, LR [13], EP [36], SA [37], MA [38],
ICGA [39], GRASP [40], PSO-GWO [23], DPLR [6], ABFMO [18] and BFMO [18] for both
the 10- and 20-unit systems; on the other hand, MPSO-EO gives the same operating cost
as IQEA [41] and IBPSO [42] for the 10-unit system, but it outperforms both of them in
the 20-unit system results. QEA [43], BGWO1 [44] and hGADE/cur1 [27] outperform
MPSO-EO with slightly better results (less operating cost) for the 10-unit system, but the
last overcomes all of them in the 20-unit system with significant cost savings. The analysis
of simulation results proves the superiority and effectiveness of the MPSO-EO in solving
the UCP and supports the presented modification. The execution time comparison is not
considered as it differs by the differences in operating system and processor speed. The
convergence curves of MPSO-EO for the 10- and 20-unit systems are introduced in Figure 5.
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Table 9. Comparison of MPSO-EO with other algorithms (test system 1).

10 Unit 20 Unit

Approach Worst Average Best Worst Average Best

MPSO-EO 568,400.16 564,795.331 563,977.017 1,127,752.147 1,124,356.478 1,123,311.510
EO 577,281.91 568,893.790 564,286.949 1,140,682.515 1,131,797.256 1,125,263.048

LR [13] 565,825 565,825 565,825 1,130,660 1,130,660 1,130,660
EP [36] 566,231 565,352 564,551 1,129,793 1,127,257 1,125,494
SA [37] 566,260 565,988 565,828 1,129,112 1,127,955 1,126,251
MA [38] 567,022 566,787 566,686 1,128,403 1,128,213 1,128,192

ICGA [39] 566,404 566,404 566,404 __ __ 1,127,244
GRASP [40] 565,825 565,825 565,825 __ __ __

PSO-GWO [23] __ __ 565,210.2 __ __ __
DPLR [6] 564,049 564,049 564,049 __ __ 1,128,098
IQEA [41] 563,977 563,977 563,977 1,124,504 1,124,320 1,123,890
IBPSO [42] 565,312 564,155 563,977 1,125,216 1,125,448 1,125,730
QEA [43] 564,672 563,969 563,938 1,125,715 1,124,689 1,123,607

BGWO1 [44] 565,518.14 564,378.58 563,976.64 1,127,393.2 1,126,126.3 1,125,546.4
hGADE/cur1 [27] 564,350 564,088 563,959 1,125,076 1,124,502 1,123,426

ABFMO [18] __ 565,136 __ __ 1,131,551 __
BFMO [18] __ 564,864 __ __ 1,131,958 __

Figure 5. Comparison of convergence characteristics between MPSO-EO and EO (test system 1): (a) 10-unit system and
(b) 20-unit system.

4.2.2. Performance of MPSO-EO for Test System 2

This test system considers the variability of the load in each hour, and the load is
varied with a predefined standard deviation. Only the 10-unit system case is considered
under random load, which is distributed over two values known as the mean and standard
deviations (µ and σ) [45]. Table 10 involves typical values for µ and σ of the load [45–48].
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These values are given for each hour and are used to estimate the load value as a univariate
function. Tables 11 and 12 provide the optimum commitment and generation schedules,
respectively. The graphical representation for the performance of generating units is given
in Figure 6. In Table 13, total fuel cost, start-up cost and total operating cost using MPSO-
EO are presented. Table 14 introduces a comparison for the total operation cost between
MPSO-EO and standard EO. Figure 7 represents the convergence curve of MPSO-EO. The
statistics show that the developed hybridization is more effective than the standard method
in solving the UCP.

Table 10. Typical values for µ and σ (test system 2) [45].

Time 1 2 3 4 5 6 7 8 9 10 11 12

Mean deviation (µ) 1035.71 832.06 778.66 827.79 723.28 876.95 870.79 810.08 899.87 850.46 957.60 713.67
Standard deviation (σ) 9.448 9.627 10.960 11.435 8.367 9.364 10.076 10.131 9.928 12.044 10.465 10.123

Time 13 14 15 16 17 18 19 20 21 22 23 24

Mean deviation (µ) 890.86 816.91 1099.55 825.49 943.54 788.79 894.74 697.60 859.55 901.18 941.85 850.42
Standard deviation (σ) 9.668 10.432 9.505 10.651 8.501 9.229 10.588 8.637 9.783 11.136 9.694 9.475

Table 11. Optimal scheduled operation for the 10-unit system over 24 h (test system 2).

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Un 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Un 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Un 4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Un 5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Un 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Un 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Un 8 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Un 9 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Un 10 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 12. Optimal output power for the 10-unit system over 24 h (test system 2).

Hour Un 1 Un 2 Un 3 Un 4 Un 5 Un 6 Un 7 Un 8 Un 9 Un 10

1 455 455 0 0 106 0 0 10 10 0
2 455 150 92 110 25 0 0 0 0 0
3 455 150 65 85 25 0 0 0 0 0
4 455 150 89 108 25 0 0 0 0 0
5 455 150 36 58 25 0 0 0 0 0
6 455 150 116 130 25 0 0 0 0 0
7 455 390 0 0 25 0 0 0 0 0
8 455 330 0 0 25 0 0 0 0 0
9 455 425 0 0 0 0 0 0 10 10

10 455 384 0 0 0 0 0 0 0 10
11 455 455 0 0 0 0 0 45 10 10
12 455 249 0 0 0 0 0 0 0 10
13 455 416 0 0 0 0 0 0 10 10
14 455 361 0 0 0 0 0 0 0 0
15 455 358 130 130 25 0 0 0 0 0
16 455 150 88 108 25 0 0 0 0 0
17 455 204 130 130 25 0 0 0 0 0
18 455 150 69 90 25 0 0 0 0 0
19 455 156 130 130 25 0 0 0 0 0
20 455 150 23 45 25 0 0 0 0 0
21 455 150 106 124 25 0 0 0 0 0
22 455 162 130 130 25 0 0 0 0 0
23 455 202 130 130 25 0 0 0 0 0
24 455 150 101 119 25 0 0 0 0 0
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Figure 6. Performance of 10-generating units over 24 h (test system 2).

Table 13. Fuel cost, start-up cost and total operating cost obtained by MPSO-EO (test system 2).

Fuel Cost Start-Up Cost Total Operating Cost

10 unit 433,369.9353 4320 437,689.9353

Table 14. Comparison between MPSO-EO and standard EO (test system 2).

Approach 10 Unit

Worst Average Best

MPSO-EO 440,761.2383 438,129.907 437,689.9353
EO 448,188.7534 441,034.2414 437,730.8655

Figure 7. Comparison of convergence characteristics between MPSO-EO and EO for the 10-unit system (test system 2).
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5. Conclusions

This paper proposes a novel EO algorithm to solve the single-area UCP through
hybridization between standard EO and the modified version of PSO. The proposed
algorithm MPSO-EO is simple to implement as it depends on improving the update process
of particles’ positions to improve the population diversity. The problem is solved under
two test systems: deterministic and stochastic systems. The robustness and effectiveness of
MPSO-EO are tested with different dimensions. The results are promising and show the
advantage of the proposed modification over the standard EO. In the case of deterministic
load, MPSO-EO provides cost savings over standard EO and over most other algorithms for
the 10-unit system and offers the best cost savings among all algorithms when compared,
including standard EO for the 20-unit system. In case of stochastic load, a 10-unit system
is studied, and MPSO-EO outperforms standard EO with less operating cost. The main
limitation with the proposed algorithm is that the computational time is high to some
extent but, on the other hand, it gives highly effective performance and auspicious results.

The future work will be extended to include the following:

1. Solving the UCP with the integration of renewable energy sources and energy storage
systems;

2. Solving the stochastic UCP by considering uncertainty in both load and generation
sides to have a more reliable solution.
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Nomenclature

t Index of time horizon for a set of T
i Index of thermal generating units for a set of N
FCi(t) Fuel cost function of thermal unit i at time t
SCi(t) Start-up cost function of thermal unit i at time t
SDi(t) Shutdown cost function of thermal unit i at time t
SCihot

Hot start-up cost of thermal unit i
SCicold

Cold start-up cost of thermal unit i
MUTi Minimum up time of thermal unit i
MDTi Minimum down time of thermal unit i
TOFFi Time period that unit i was continuously off
TONi Time period that unit i was continuously on
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Tcoldi
Time period for cooling down of unit i

Pimin Minimum generation limit of thermal unit i
Pimax Maximum generation limit of thermal unit i
Pt

L Load demand of the system at time t
SRt Spinning reserve requirements of the system at time t
σLD

t Standard deviation of the load demand at time t
µLD

t Mean deviation of the load demand at time t
FT Total operating cost (objective function)
Pi(t) Output power of thermal unit i at time t
Ui(t) On/off state of the thermal unit i at time t
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