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Abstract: Microgrid (MG) is a small-scale grid that consists of multiple distributed energy resources
and load demand. The microgrid energy management system (M-EMS) is the decision-making centre
of the MG. An M-EMS is composed of four modules which are known as forecasting, scheduling,
data acquisition, and human-machine interface. However, the forecasting and scheduling modules
are considered the major modules from among the four of them. Therefore, this paper proposed an
advanced microgrid energy management system (M-EMS) for grid-connected residential microgrid
(MG) based on an ensemble forecasting strategy and grey wolf optimization (GWO) based scheduling
strategy. In the forecasting module of M-EMS, the ensemble forecasting strategy is proposed to
perform the short-term forecasting of PV power and load demand. The GWO based scheduling
strategy has been proposed in scheduling module of M-EMS to minimize the operating cost of grid-
connected residential MG. A small-scale experiment is conducted using Raspberry Pi 3 B+ via the
python programming language to validate the effectiveness of the proposed M-EMS and real-time
historical data of PV power, load demand, and weather is adopted as inputs. The performance
of the proposed forecasting strategy is compared with ensemble forecasting strategy-1, particle
swarm optimization based artificial neural network, and back-propagation neural network. The
experimental results highlight that the proposed forecasting strategy outperforms the other strategies
and achieved the lowest average value of normalized root mean square error of day-ahead prediction
of PV power and load demand for the chosen day. Similarly, the performance of GWO based
scheduling strategy of M-EMS is analyzed and compared for three different scenarios. Finally, the
experimental results prove the outstanding performance of the proposed scheduling strategy.

Keywords: energy management system; grey wolf optimization; forecasting; microgrid; particle
swarm optimization

1. Introduction

The control and management of microgrid (MG) are responsible for handling several
issues such as frequency and voltage regulation, the intermittent nature of renewable energy
resources (RES), the mismatch among generation and load demand, and battery energy
storage systems (BESS) [1]. Adopting the hierarchical control approach as a structured
solution in MG is prompted by the diversity of control aspects, particularly when several
processes are needed to complete multiple tasks [2,3]. Generally, the hierarchical control
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of MG is segregated into three levels, i.e., primary, secondary, and tertiary level. The
primary level of control performs the local control of MG, which includes power sharing
and voltage and frequency regulation, while the secondary level performs the restoration
of voltage and frequency along with the synchronization. Finally, the tertiary level, which
is known as the MG energy management system (M-EMS), manages the power flow among
different available power generation resources to meet the load demand. The scope of this
research work is focused on the final level of hierarchical control of MG. When several RES
and BESS are available in MG as energy resources, then M-EMS is essential to meet the
desired objectives of MG [4]. The MG-EMS provides a sequence of reference commands
that determine the operation of each available power source and guide the power flow
within the MG. The requirement of M-EMS is necessary for both modes of operation of
MG. However, the role of M-EMS depends on the configuration of MG. For example, the
M-EMS controls the power flow from and to the main grid during the grid-connected mode
of operation [5].

Over the past few years, researchers have proposed several M-EMSs for grid-connected
MG. A rule-based EMS has been proposed in a previous study [6], for grid-connected MG
and simulated using the PSCAD software. The proposed model ensures the economical
and reliable operation of the PV, battery, and fuel cell-based grid-connected MG. The
master/slave control is also used to maintain the voltage and frequency stability of the MG
system. The concept of prosumers in the grid-connected MG system was introduced in [7].
The MG system is composed of prosumers and a microturbine. A prosumer consists of
a PV, a BESS, and an ultra-capacitor. The proposed EMS contains two parts, namely, the
central EMS and the local power management system. Rule-based central EMS controls
power flow within an MG to meet prosumer demand, and reference power is provided in
the EMS to maintain the prepared power-sharing among different power generation units
with an interval of 0.5 h. By contrast, the local power management system maintains the
primary frequency regulation and power balance within an MG.

To minimize the operating costs of grid-connected MG, Fossati et al. [8] proposed a
novel energy management system (EMS) that applies two genetic algorithm (GA)-based
fuzzy logic controllers. The first GA is used to schedule power with an MG and set the
fuzzy rule of the expert system, whereas the second GA optimally tunes the membership
functions of the fuzzy logic controller. The effectiveness of the proposed method is de-
termined by comparing its performance with the simple rule- and manually tuned fuzzy
logic controller-based EMSs. Similarly, for a grid-connected MG, Santis et al. [9] proposed
a fuzzy expert system-based EMS that performs better than the classic GA-based model.
The hierarchical GA is used to tune the minimum rule-based fuzzy logic controller of EMS,
and the efficiency parameters of BESS improve the MG performance.

A mixed-mode EMS was previously proposed [10] for grid-connected MG, imple-
mented for three different operational modes, namely, on/off, power-sharing and con-
tinuous run modes. The solutions use mixed-integer linear programming (MILP) for the
on/off mode and LP for the latter two. BESS sizing is also computed to meet the opera-
tional requirements of MG. An optimal EMS was previously proposed [11] to minimize
the operating costs of residential MG, including energy cost, penalty cost on adjustable
load, associated cost and range anxiety term of the EV battery. The critical, adjustable and
movable loads were considered, and the range anxiety term EV battery was taken as the
fear factor of energy drain before reaching the target location. The designed MG system
was managed using MILP to achieve the desired objectives.

Shen et al. introduced a MILP-based EMS for peak shaving application to maximize
revenue by using renewable resources and BESS-based MG [12]. The authors considered
the demand response scheme and assumed that the load demand of MG is always higher
than that of the power generation. Two new indices related to peak shaving are introduced
by the author. One bus and an IEEE 14 bus MG system are also simulated to validate the
effectiveness of the proposed model. Similarly, a MILP-based EMS was implemented to
minimize the operating and maintenance costs of the MG system, along with the demand
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response scheme and three different types of loads, namely, curtailable, reschedulable and
critical load demand [13]. The proposed concept was verified through MATLAB, and the
simulation results indicated the advantages of the proposed model.

A regrouping particle swarm optimization (PSO)-based scheduling method for indus-
trial MG was presented in the previous studies [14,15]. The proposed scheduling strategy
performed the 24-h-ahead optimum scheduling of the power generation units to feed the
load demand. The objective function of the developed scheduling method includes the
operating, maintenance, and purchasing power costs from the main grid. The proposed
strategy provides better results than GA with respect to global optimum solution and
computation time. Similarly, Faridnia et al. proposed a PSO-based scheduling method
for MG that minimized the operational cost of tidal generation and BESS-based MG [16].
Alavi et al. proposed a PSO-based scheduling approach to perform the optimal operation
of grid-connected MG [17]. The proposed framework minimized the operation, emission,
and reliability cost of the MG. A point estimation approach on the basis of beta and Weibull
density functions was used to model uncertainties of solar and wind power. Previous
research [18] proposed a two-stage optimal energy and reserve management system using
stochastic weight PSO for grid-connected MG. The proposed model performed power
scheduling and estimated the reserve in the first stage. The second stage, reserve dispatch,
was performed to handle the stochastic nature of renewable resources. The aim of the
presented framework is to minimize load shedding, fuel consumption, emission, voltage
deviation, and energy trade costs involved in MG utilization.

A hybrid differential evolution (DE) and modified PSO-based scheduling methods
were proposed in the previous study to minimize the operational and emission cost of
MG [19]. The proposed approach also considered demand response, time-of-use tariffs,
and generation reserve schedule. In the previous studies, PSO and regularized PSO-
based optimum scheduling methods were presented to perform the economic operation
of MG [20–23]. The proposed method considers the stochastic nature of PV and wind
power, as well as load demand and electricity price. The proposed model was simulated
using MATLAB to verify the efficiency of the proposed approach compared with existing
approaches. A previous research work introduced a GA-based scheduling approach to
optimize power generation and for the reserve scheduling of grid-connected MG [24]. The
scenario generation and reduction approach were used to model uncertainties of wind
power and load. The objective function considers the operating, capital, active power
reserve, purchasing power (from the grid), and reactive power support costs. Automatic
controller status switches were used to improve the economic advantages of MG. Simi-
larly, another scheduling method using GA was proposed in [25] that minimizes network
losses, operational and emission costs of MG. The superior performance of the GA-based
scheduling method was analyzed using simulation and compared with the MILP-based
scheduling method.

Based on existing literature, it can be summarized that the forecasting and schedul-
ing strategies in existing M-EMS can be further improved for effective and economical
operation of MG. Therefore, this research work proposes an efficient M-EMS using en-
semble forecasting strategy and grey wolf optimization-based scheduling strategy for
grid-connected MG. The proposed strategy has been compared with several existing com-
petitive strategies to prove the efficiency of proposed method. The main contributions of
this research work are listed as follows:

• This paper proposed an ensemble forecasting strategy in the forecasting module of
M-EMS for day-ahead prediction of PV power and load demand.

• The proposed forecasting strategy is compared with ensemble strategy-1, particle
swarm optimization based artificial neural network (PSO-ANN), and back-propagation
neural network (BPNN) to prove the effectiveness of the proposed ensemble forecast-
ing strategy.

• A grey wolf optimization (GWO) based scheduling strategy is proposed in scheduling
module of M-EMS to perform the optimum scheduling of available power resources



Energies 2021, 14, 8489 4 of 19

in grid-connected MG and analyzed the performance of proposed scheduling strategy
for three different scenarios.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the
architecture of the understudy MG. A detailed description of the proposed forecasting and
scheduling strategy of M-EMS is provided in Section 3. Section 4 presents the experimental
results of the forecasting and scheduling strategy of M-EMS, while the conclusion is
provided in Section 5.

2. System Description and Modeling

In this study, the performance of the proposed M-EMS is tested on a small-scale grid-
connected residential MG using real time data of PV power and load demand. Figure 1
illustrates the structure of the understudy MG. The grid-connected residential MG is
comprised of PV panels with a capacity of 7 kW and BESS with a capacity of 10 kWh. The
residential MG has the ability to share the power with the main grid with a limit of 2.5 kW.

Figure 1. Structure of the understudy MG.

The M-EMS is mainly responsible for ensuring the stable and economical operation
of the MG. The operating cost of the MG is minimized by proper utilization of BESS. The
mathematical modeling of the PV and BESS is provided as follows:

• Photovoltaic Power Generation System: Photovoltaic (PV) generates electric power
from solar energy via a PV module. The output power of the PV module depends on
solar irradiation, atmospheric temperature, efficiency, and area of the PV module. The
hourly output power of the PV system can be calculated using Equation (1).

PPV(t) = APVnPV R(t)[1− 0.005(T(t)− 25)] ∀t > 0 (1)

where, APV is the area of the PV module in m2, nPV is the efficiency of the module, R is
the solar irradiation in Wm−2 and T is atmospheric temperature in degrees centigrade.

• Battery Energy Storage System: A BESS is composed of series-parallel strings of
batteries. There are several types of batteries available in the market which have
different chemical characteristics, numbers of cycles, and depth of discharge. In
this research, a lithium acid battery is used as a BESS. Lithium acid batteries have
commonly been used for electric energy storage in residential MGs. The state of
charge and discharge of BESS at each time interval can be calculated by following
these mathematical equations:
In charge mode (PBESS(t) < 0)

EBESS(t) = EBESS(t− 1)− ηBCPBC(t)∆t (2)
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In discharge mode (PBESS(t) > 0)

EBESS(t) = EBESS(t− 1)− PBD(t)
ηBD

∆t (3)

where PBC(t) and PBD(t) are the charging and discharging battery power (kW),
EBESS(t) is battery energy (kWh), ηBC is battery charging efficiency, ηBD is battery
discharge efficiency, ∆t is the scheduling time step.

3. Proposed Microgrid Energy Management System

Figure 2 shows an intelligent M-EMS based on an improved hybrid forecasting and
optimal scheduling proposed for grid-connected MG. The proposed M-EMS can be divided
into several stages, as follows: collecting the weather, PV power, and load demand data;
processing the input from historical data and forecasting the PV power and load demand;
and optimally scheduling energy resources to meet the desired objective and load demand.
Finally, the data acquisition (DAQ) and human–machine interface (HMI) modules allow
users to analyze and monitor different input parameters, including historical weather, PV
power and load demand data. Sections 3.1 and 3.2 provide a detailed description of the
forecasting and scheduling modules of the M-EMS, respectively.

Figure 2. Proposed microgrid energy management system.

3.1. Proposed Forecasting Strategy

The proposed ensemble forecasting strategy is based on the systematic combination
of three FNN models for day-ahead forecasting of PV power and load demand. These
FNN models are trained by improved PSO to optimally calculate the weights and biases
for improving forecasting accuracy. The output of all models is aggregated using the
Bayesian model averaging (BMA) method, which can be seen in Figure 3. To perform
the forecasting of PV power and load demand, the historical data of weather, PV power,
and load demand are used as inputs for each model, and the details of historical data
is mentioned in Section 4. After that, the outputs of all models are combined using the
BMA method to gain the day-ahead forecasted values of PV power and load demand. The
working process of the proposed ensemble strategy has several steps, which are described
as follows:
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Figure 3. Proposed forecasting strategy.

1. Working Process of Proposed Strategy

• Data Preprocessing: The input parameters of all forecasting models are selected
based on correlation parameters with PV power and load demand for the fore-
casting of PV power and load demand. The selected parameters for PV power
forecasting are historical data of PV power, solar irradiance, temperature, wind
speed, and humidity. On the other hand, the chosen correlated parameters for
load demand forecasting are the same parameters as the authors of [26] chose
for load demand forecasting.

• Construction of Forecasting Models in Ensemble Strategy: Figure 3 highlights
the selected models in the proposed strategy. There are three FNN structures,
i.e., FNN with one hidden layer, FNN with two hidden layers, and FNN with
three hidden layers, that have been used in the proposed ensemble strategy. The
details about the FNN structure can be found in [26]. The improved PSO is used
to train each forecasting model, and the detail of the improved PSO is described
in the following subsection.

• Aggregation: The output of all forecasting models is aggregated using the BMA
method for attaining highly accurate forecasting results. The BMA is a statistical
method that combines the output of multiple forecasting models by inferring
consensus between them. Based on the posterior probabilities of each model, the
BMA approach assigns weights to individual forecasting models. In contrast to
a less accurate model, the higher value of weights is assigned to the extremely
accurate model. Further details about the BMA method can be seen in [27].

2. Improved Particle Swarm Optimization
PSO is a population-based algorithm that was proposed by Kennedy and Eberhart
in 1995 and inspired by offensive particle movement [28]. When the particles want
to move, they use present position and neighbor particle positions in order to reach
the particle with the best position. The particles are described with two vectors,
i.e., particle velocity Vj and particle position xi. In every movement step of the
particle population, every particle is updated by two values. The first value is the
best previous position of particle i that is called pbest and evaluated by using fitness
function. The second value is the best particle among all p-bests and is called gbest.
Any of the particles can update their new velocity and position by following equations:

Vi+1
j = w ·Vi

j + C1r1 · [Pbest − xi
j] + C2r2 · [Gbest − xi

j] j = 1, 2, 3......, n (4)

xi+1
j = xi

j + Vi+1
j (5)
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where r1 and r2 are random numbers that are selected in the interval of [0 1], w is the
inertia weight which is calculated using Equation (6).

w = wmax − (wmax − wmin)×
√

t
max iter

(6)

here, t is the current iteration, and max iter is the maximum number of iterations. The
C1 and C2 are cognitive constants which are selected as constant in standard PSO.
However, the author of [29] proposed mathematical equations to calculate the values
of C1 and C2, which improved the performance of PSO. The values of C1 and C2 can
be calculated as follows:

C1 =
2

√
1− sin(

ß
2
× t

max iter
) (7)

C2 =
2

√
sin(

ß
2
× t

max iter
) (8)

3.2. Proposed Scheduling Strategy

A key component of EMS is the scheduling module, which optimally controls power
flow in MGs to meet the objective function by setting decision variables. In this study, the
objective of optimal power flow is to maximize the utilization of PV power and minimize
the operational costs of MG. The objective function for each interval with respect to time
can be defined as:

J = min
T

∑
t=1

PPV(t)CPV + PBC(t)CBESS + PBD(t)CBESS + PG−I(t)CG−I − PG−E(t)CG−E (9)

where CPV and CBESS are the operational and maintenance costs of PV and BESS, respec-
tively; CG−I and CG−E are the costs of purchasing and selling power from the main grid at
time interval t, respectively; and T is the total time for optimum scheduling, which is 24 h.
The main decision variables for the grid-connected MG under study are the PV power (PPV)
imported and exported power (PG−I , PG−E) from/to the main grid, charge and discharge
power (PBC, PBD) of BESS, binary decision variables (α, β ) of BESS and the main grid and
capacity of BESS (EBESS). These decision variables are essential to achieve the economic
operation of grid-connected MG. Note that in Equations (9) and (10), the values of PBC,
PG−E are taken as absolute. In solving the optimal power flow problem, several systems
require constraints and limitations. One such constraint is the system power balance as
described by Equation (10).

PLoad(t)− PPV − PBD(t)− PG−I(t) + PBC(t) + PG−E(t) = 0 −→ tε[1 : T] (10)

EBESS(t) = EBESS(t− 1)− ηBCPBC(t)∆t− PBD(t)
ηBD

∆t −→ tε[1 : T] (11)

PBC(t)− Pmax
BC α 6 0 −→ tε[1 : T] (12)

PBD(t) + Pmax
BD α 6 Pmax

BD −→ tε[1 : T] (13)

PG−E(t)− Pmax
G−Eβ 6 0 −→ tε[1 : T] (14)

PG−I(t) + Pmax
G−I β 6 Pmax

G−I −→ tε[1 : T] (15)

Other variables that need consideration in solving the optimization problem are upper
and lower bounds which are listed below.

Pmin
PV 6 PPV(t) 6 Pmax

PV −→ tε[1 : T] (16)

0 6 PBC(t) 6 Pmax
BC −→ tε[1 : T] (17)
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0 6 PBD(t) 6 Pmax
BD −→ tε[1 : T] (18)

0 6 PG−I(t) 6 Pmax
G−I −→ tε[1 : T] (19)

0 6 PG−E(t) 6 Pmax
G−E −→ tε[1 : T] (20)

Emin
BESS 6 EBESS(t) 6 Emax

BESS −→ tε[1 : T] (21)

EBESS(0) = EBESS−initial (22)

EBESS−initial = EBESS−end (23)

In this study, the grey wolf optimization (GWO) is applied to achieve optimum
scheduling in a grid-connected residential MG. Mirjalili et al. (2014) proposed GWO as
a swarm-based heuristic approach inspired by the social hierarchy and natural hunting
behaviour of grey wolves [30]. Figure 4 shows that the social hierarchy of wolves can
be divided into four categories. The first and top level, alpha, is composed of males and
females that are responsible for decision-making, including hunting, sleep location and
wake-up time. The second level is beta, which helps the alpha in decision making and
implementing strategies at a lower level. Delta is the third level and tasked to follow
instructions from above and control the omega, which is the lowest level in the hierarchy,
follows commands of all groups and hunts for the pack.

Figure 4. Hierarchy of the grey wolf.

In GWO, the first three best solutions are assumed as alpha, beta and delta while the
remaining ones in the search space are considered as omega. While hunting, grey wolves sur-
round the prey, a behaviour that can be described mathematically by Equations (24) and (25):

F = |G · Xprey(t)− X(t)| (24)

X(t + 1) = Xprey(t)− D · F (25)

here, Xprey is the position of a prey, X is the position of a grey wolf, t is the present iteration,
and D and G are coefficients as obtained by using Equations (26) and (27).

D = 2a · r1 − a (26)

G = 2 · r2 (27)
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hence, r1 and r2 are random numbers between 0–1 while component a linearly decreases
from 2 to 0 over the number of iterations. During the optimization, the best solutions of the
first three parameters are saved and then used to update the position of the other wolves
(omega). This update is represented in mathematical form by the following equations:

Fα = |G1 · Xα(t)− X(t)| (28)

Fβ = |G2 · Xβ(t)− X(t)| (29)

Fδ = |G3 · Xδ(t)− X(t)| (30)

Based on the positions of the alpha, beta and delta, that of the prey is determined
using the following equations:

X1 = |Xα − D1 · Fα| (31)

X2 = |Xβ − D2 · Fβ| (32)

X3 = |Xδ − D3 · Fδ| (33)

X(t + 1) =
X1 + X2 + X3

3
(34)

where, Xα, Xβ, and Xδ indicate the positions of the alpha, beta and delta, respectively.
The exploration and exploitation of grey wolf search agents depend on the parameter D.
Specifically, exploration occurs if D > 1 and exploitation occurs if D < 1.

4. Experimental Results and Discussion

In this section, the experimental results of the proposed M-EMS for small-scale residen-
tial MG are presented and Figure 5 shows small-scale experiment setup of residential MG.
The proposed M-EMS is implemented using Raspberry Pi 3 B+ via python programming
language, and the output pins of Raspberry Pi 3 B+ are digital. Therefore, an Adafruit MCP
4728 digital to analog converter is used to convert the digital output of Raspberry Pi 3 B+
into analog form to display the output on the oscilloscope and also sending the signal to
the primary controller. Moreover, the local storage of Raspberry Pi 3 B+ is utilized for the
purpose of data storage.

Figure 5. Experimental setup.
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The experimental results comprises two sections, namely, forecasting and scheduling
results. Firstly, the forecasting results are discussed. The forecasting is performed by using
the proposed ensemble forecasting strategy and it involves the forecasting of PV power
and load demand. The normalized root mean square error (NRMSE), mean absolute error
(MAE), and absolute error (AE), are adopted to measure the forecasting accuracy of the
proposed strategy. The NRMSE, MAE, and AE can be calculated as follows:

NRMSE =

√
1
N ∑N

i=1(At − Pt)

At−max − At−min
(35)

MAE =
1
N

N

∑
i=1
| At − Pt | (36)

AE =| At − Pt | (37)

where Pt and At are forecasted and actual data, respectively, while N is the total number
of samples. The hourly data of PV power, load demand, and correlated parameters from
January 2016 to December 2017 are applied to study the performance of the proposed
forecasting strategy. The PV power and load demand data set are taken from a residential
home of Brisbane, and were provided by one of the Queensland energy providers, while
the historical weather (temperature, wind speed, and humidity) data is taken from Griffith
University weather station, Queensland. The hourly data samples of 2016 are applied for
training, while the hourly data samples of 2017 are employed for validation and testing.
The results for the proposed forecasting strategy are compared with ensemble strategy-1,
PSO-ANN, and BPNN. The ensemble strategy-1 used similar forecasting models as the
proposed strategy. However, the output of all models is aggregated using the equal weight
combination method in ensemble strategy-1.

Figures 6–9 show the 24-h-ahead forecasting results of PV power and load demand
for the chosen day of the case study. On the x-axis of each diagram, the time is depicted in
hours, and on the y-axis of each diagram the power is depicted in watts (W). In experimental
results, the data needs to be downscaled in order to display on the oscilloscope, therefore
one hour is downscaled to 208 millisecond on the x-axis while the 500 W is downscaled
to the 1 volt on the y-axis. The PV power forecasting result using the proposed ensemble
strategy, ensemble strategy-1, PSO-ANN, and BPNN is depicted in Figures 6 and 7, while
the AE values for all forecasting strategies are shown in Figure 10. It can be seen from
Figures 6 and 7 that the proposed ensemble strategy has closer results in comparison
with the other three strategies. The MAE and NRMSE values for the proposed strategy
(43.4362 W and 1.3201%) are smaller than ensemble strategy-1 (68.9142 W and 2.0192%),
PSO-ANN (93.4732 W, 2.7654%), and BPNN (133.5195 W, 5.0825%). A similar kind of trend
is observed for the maximum AE value of all strategies. However, the minimum AE value
for BPNN is lower than for the other three strategies.
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Figure 6. Forecasting result of PV power with proposed ensemble strategy and ensemble strategy-1.

Figure 7. Forecasting result of PV power with PSO-ANN and BPNN.

Figure 8. Forecasting result of load demand with proposed ensemble strategy and ensemble strategy-1.
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Figure 9. Forecasting result of load demand with PSO-ANN and BPNN.

Figure 10. Absolute error of all strategies for PV power forecasting.

Figures 8 and 9 show the forecasting results of load demand with the proposed strategy,
ensemble strategy-1, PSO-ANN, and BPNN, while Figure 11 illustrated the values of AE of
all forecasting strategies for load demand forecasting. It is clearly shown from the graphs
that the proposed ensemble strategy forecasts the load demand more accurately compared
to other strategies. The proposed strategy (0.3848%) has a lower NRMSE value in contrast
with ensemble strategy-1 (0.5347%), PSO-ANN (0.6550%), and BPNN (3.8287%). Similarly,
the efficiency trend in terms of MAE, maximum and minimum AE values for all strategies
have been seen. It can be seen from forecasting results that the proposed ensemble strategy,
ensemble strategy-1, and PSO-ANN provided better accuracy than BPNN. Because the
IPSO and PSO provided the optimized weights and biases of FNN/ANN which improved
the forecasting accuracy significantly. Moreover, the IPSO and PSO did not trap in local
minima like the backpropagation (BP) algorithm.
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Figure 11. Absolute error of all strategies for load demand forecasting.

In this research, a 7000 W PV and 10,000 Wh Li-ion battery energy storage system
(BESS) based grid-connected residential MG is studied as a case study to feed the residential
load demand. Three different scenarios, i.e., PBC is equal to PBD, PBC is greater than PBD,
and PBC is less than PBD, have been considered for analyzing the performance of GWO
based scheduling. Moreover, the deb rule is used to handle the system constraints in GWO
based scheduling. The maximum and minimum limits for imported and exported power
from the main grid for all scenarios are 0 and 2500 W, respectively. Similarly, the PV power
and load demand have the same values for all scenarios and are shown in Figure 12. The
maximum, minimum, and initial capacity of BESS are the same for the three scenarios
of 9000 Wh, 1000 Wh, and 4500 Wh. However, the maximum and minimum limits of
discharge and charge power of BESS is different and given in Table 1.

Figure 12. Forecasted PV power and load demand.
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Table 1. Discharging and charging power limit of BESS.

Scenario Parameter of BESS Minimum Limit Maximum Limit

Scenario-1 Discharging Power 0 1000 W
Charging Power 0 1000 W

Scenario-2 Discharging Power 0 500 W
Charging Power 0 1000 W

Scenario-3 Discharging Power 0 1000 W
Charging Power 0 500 W

The efficiency of BESS is taken as 95%. The operational and maintenance cost of PV
is negligible in Australia, but BESS has 0.001 cents per Wh operational and maintenance
cost. The residential grid tariff is dependent on time, i.e., off-peak, shoulder peak, and peak
hours in Australia, and it is known as the time of use tariffs (ToU) which is decided by the
Australian Government, and is taken from the “made energy easy” website which was
accessed in 2020. During the off-peak hours (10 p.m.–7 a.m.), the electricity buying price
is 0.0205 cents per Wh; during shoulder peak hours (7 a.m.–4 p.m., 8 p.m.–10 p.m.) it is
0.0255 cents per Wh; and during peak hours (4 p.m.–8 p.m.), it is 0.0345 cents per Wh. The
price of power selling to the grid is 0.0095 cents per Wh.

Figures 13–18 depict the experimental results of grid power and BESS power, while
the capacity of BESS for day-ahead is shown in Figure 19. In all three scenarios, the
cost of residential MG is minimized through the proper utilization of BESS. The grid
power includes the imported and exported power from the main grid, while the BESS
power comprises the discharging and charging power of the BESS. It can be seen from the
results that the value of imported power from the grid for three scenarios is 22,112.43 W,
22,420.64 W, and 21,104.57 W, respectively, while the exported power to the grid is 3155.843
W, 3464.367 W, and 2148.809 W. Similarly, the values of discharging for BESS for all scenarios
are 7742.885 W, 7415.042 W, and 5265.454 W. However, the charging power of BESS in the
study scenarios is 7743.319 W, 7415.161 W, and 5265.057 W.

Figure 13. Grid power for scenario-1.
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Figure 14. BESS power for scenario-1.

Figure 15. Grid power for scenario-2.

Figure 16. BESS power for scenario-2.
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Figure 17. Grid power for scenario-3.

Figure 18. BESS power for scenario-3.

Figure 19. BESS capacity for all scenarios.

The overall optimum operating cost for all scenarios using GWO based scheduling
is 483.62 cents, 499.09 cents, and 478.22 cents for the whole day. Scenario-3 provides
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the minimum cost among all the scenarios because the BESS takes the lowest power for
charging during shoulder peak compared to the other scenarios, which can be seen from
Figure 19. However, the BESS took the highest power for charging during shoulder peak
in other two scenarios, which increased the overall operating cost of residential MG.

5. Conclusions

In this paper, an M-EMS has been proposed to perform the day-ahead forecasting of
PV power and load demand, and minimize the operational cost of grid-tied residential MG.
The proposed M-EMS consisted of four different modules, i.e., forecasting, scheduling, data
acquisition (DAQ), and human–machine interface (HMI) modules. An improved ensemble
forecasting strategy that is a combination of three feedforward neural network models
which are trained by using improved PSO was proposed in the forecasting module of M-
EMS for day-ahead prediction of PV power and load demand. The grey wolf optimization-
based scheduling strategy was proposed in the scheduling module of M-EMS to perform
the optimum power flow of grid-connected residential MG. The DAQ and HMI module
was utilized to monitor, analyze, and modify the input parameters of the forecasting and
scheduling module. Finally, the proposed forecasting and scheduling strategy of M-EMS
was implemented using Raspberry Pi 3 B+ and validated through a small-scale experiment.
The experimental results indicate that the proposed forecasting strategy (1.3201% and
0.3848%) of M-EMS provides lower values of NRMSE as compared to ensemble strategy-
1 (2.0192% and 0.5347%), PSO-ANN (2.7654% and 0.6550%), and BPNN (5.0825% and
3.8287%) for forecasting of PV power and load demand. Similarly, the results of the
scheduling module of M-EMS show that scenario-3 provides minimum overall operational
cost of grid-connected residential MG among all the scenarios. The forecasting accuracy
of the improved ensemble forecasting strategy of the proposed M-EMS had limitations
due to the selection of a single optimization algorithm for optimizing the weights and
biases of FNN with different numbers of hidden layers. In addition, the deb rule was used
as a constraint handling method in the GWO based scheduling strategy of the proposed
M-EMS, which could provide premature convergence and lead to poor scheduling strategy
performance due to the existing overpressure on feasibility region. In future work, the
proposed M-EMS of grid-connected residential MG can be improved by integrating with it,
a better forecasting strategy and/or scheduling strategy. Another possible extension in the
proposed M-EMS might be to consider the battery degradation cost and/or emission cost.
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Abbreviations

AE Absolute error
ANN Artifical neural network
BESS Battery energy storage system
BMA Bayesian model averaging
BPNN Backpropagation neural netwok
DE Differential evolution
GA Genetic algorithm
GWO Grey wolf optimization
FNN Feedforward neural network
LP Linear programming
MG Microgrid
MAE Means absolute error
M-EMS Microgrid energy management system
MILP Mixed integer linear programming
NRMSE Normalized root means square error
PSO Particle swarm optimization
PV Photovoltaic
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