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Abstract: Optimization of the sizing and operation strategy of a complex energy system requires
a large computational burden because of the non-linear nature of the mathematical problem. Ac-
cordingly, using a conventional numerical method with only a physics-based model for complete
optimization is impractical. To resolve this problem, this paper adopted an optimization method of
using an artificial intelligence scheme that combines an artificial neural network (ANN) and a genetic
algorithm (GA). Especially, the ANN was constructed based on results from a physics-based model to
obtain a large amount of accurate simulation data in a short time frame. A distributed generation (DG)
system based on a gas turbine (GT) and renewable energy (RE) was simulated to demonstrate the
usefulness of the optimization method. In consideration of the capacity and partial load performance
of the GT, the optimization of the sizing and operation strategy of the DG system was performed for
three system design scenarios. The optimization criteria were cost-effectiveness and eco-friendliness.
The method reduced the calculation time by more than three orders of magnitude while maintaining
the same accuracy as the physics-based model. The approach and methodology are expected to be
applicable to accurate and fast optimization of various sophisticated energy systems.

Keywords: optimization; sizing; operation strategy; distributed generation; gas turbine; renewable
energy; artificial intelligence

1. Introduction

In 2015, the UN declared sustainable development goal 7: “Ensure access to affordable,
reliable, sustainable and modern energy for all” [1]. Moreover, with increasing awareness of
the climate crisis, renewable energy (RE) is attracting attention. According to a very recent
IEA report [2], RE is expected to meet 80% of the total electricity demand growth during
the next decade and overtake coal by 2025 as the primary means of producing electricity.

Modern energy must also be supplied to people in remote areas at low costs. In
principle, unlike centralized generation, distributed generation (DG) can supply energy to
isolated areas with low construction cost and transmission loss [3,4]. Energy paradigms are
moving from fossil fuel-based centralized generation to DG, especially those based on RE.

The main drawback of RE is the intermittency of power generation. To compensate
for the intermittency, flexible resources need to be installed, such as conventional power
generation and energy storage systems (ESSs). However, inappropriate sizing and opera-
tion strategies for flexible resources might increase the investment cost of the system or
threaten the reliability of energy supply. Therefore, it is essential to optimize the sizing and
operational strategy.

To accurately determine the DG sizing and operation strategy, information on the
power generation, climatic conditions, and load profile for input data is essential. Espe-
cially, many studies proposed optimization methods driven by simplified performance
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equations or measured power data. Brandoni et al. [5] and Ren et al. [6] used linear pro-
gramming, and Bischi et al. [7] applied mixed-integer linear programming to optimize a
DG system using simplified equations. Li et al. [8] represented a DG system by simple
equations, and Tutkun et al. [9] used the measured power data, and they adopted a genetic
algorithm (GA) for an optimal DG system. As the DG system has become more complex,
improved optimization methods for accurate solutions have appeared in recent years.
Moradi et al. [10], Nayanatara et al. [11], Morvaj et al. [12], and HA et al. [13] proposed a
hybrid method that combines two different optimization algorithms. Alvarado et al. [14]
suggested a technology selection and operation model for optimal selection of a DG system.
Falke et al. [15] decomposed a DG optimization problem into three steps to reduce the
computational complexity. Vale et al. [16], Golestani et al. [17], and Kampouropoulos
et al. [18] predicted extensive power generation data using a regression model, which
was then employed for DG optimization. However, the accuracy of these approaches is
highly dependent on detailed performance data, which is difficult to collect. Moreover, a
regression model trained by the measured data that concentrate on a specific condition can
run into an overfitting problem, as shown in Figure 1a.
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Figure 1. Illustration of the comparison between regression models trained by measured data and 
a physics-based model: (a) Regression model trained by measured data; (b) Regression model 
trained by a physics-based model. 

Figure 1. Illustration of the comparison between regression models trained by measured data and a physics-based model:
(a) Regression model trained by measured data; (b) Regression model trained by a physics-based model.

For this reason, various studies have tried to optimize a DG system using a physics-
based model. A physics-based model is reliable because it clearly shows the assumptions
and constraints of the problem with accurate implementation of technical performance [19].
Mayer et al. [19], Merei et al. [20], and Ogunjuyigbe et al. [21] conducted optimization
studies with a GA using a physics-based model of hybrid energy system. Hou et al. [22]
also used a physics-based model and then adopted an epsilon-constraint method as an
optimization method. However, due to the strong non-linear nature of the mathematical
equations of a physics-based model, a vast computational burden is accompanied inevitably
to assure a global optimum [23].

In this study, an artificial intelligence technique that combines a regression model and
a metaheuristic algorithm was used to ensure a realistic representation of the operation
characteristics of each system component and an accurate global optimum of a DG system
with low calculation burden. There is an important difference between the previous
studies [16–18] and this study. Previous studies used a regression model to generate data
to compensate for the insufficient amount of measured data. On the other hand, in this
study, to obtain a simulation technique that is accurate and very fast, a regression model
was used to mimic a physics-based model. Also, when the regression model is trained
by a physics-based model, overfitting can be avoided because it is possible to collect and
augment the trained data evenly in a wide range, as shown in Figure 1b.

An artificial neural network (ANN) was adopted for the regression model since it
can reflect the non-linear nature of a problem [24]. As an optimization method, a GA was
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used. Compared with other metaheuristic algorithms, the GA requires the work of ranking
solutions, but is well constructed due to earlier introduction and is less prone to premature
convergence [25]. Also, since GA can use any kind of fitness function, whether the problem
is linear or non-linear and discrete or continuous [26], GA is adequate as an optimization
method for the DG system, which is a collection of various components. The DG system
investigated consists of a gas turbine combined cycle (GTCC), photovoltaics (PV) units,
wind turbines (WTs), and batteries. In general, DG between 5 and 50 MW is classified as
mid-scale [27], although some others have stated that DG of 20 MW or less is a small-scale
system [28]. This study targets DG for regional power generation, and it is assumed that
DG is installed near demand sources that use an average of about 20 MW of electricity. The
optimization of the sizing and operation strategy of a DG system was carried out for three
system design scenarios. The major features of this study are as follows:

• An artificial intelligence technique that combines an ANN and GA is applied for the
complete and robust optimization of the sizing and operation strategy of a DG system.

• The ANN is introduced to simulate the physics-based model that can describe the
real operating characteristics of every component and improve the computational
efficiency.

• Optimization of the sizing and operation strategy of the DG system was performed in
consideration of the cost-effectiveness and eco-friendliness.

2. System and Modeling
2.1. System Description

Figure 2 shows a conceptual diagram of the DG system. The figure is a simplified
diagram of the target DG system but includes all the essential components. The detail of
each component is described in Sections 2.2–2.4. Black solid arrows indicate the flow of
electricity. Electricity from the power sources is converted to DC power through inverters.
DC power is charged/discharged in batteries or traded in the electricity market according
to the supply and demand of electricity. Users are supplied as much AC power as needed
through the DC-to-AC inverter. In this study, the efficiency of the DC/AC inverter is
assumed to be 92%.
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Figure 2. Conceptual diagram of distributed generation system and power supply flow.

Dotted arrows indicate the power control to match the generated electricity to the
demand. The black dotted line means the user’s ever-changing demand. The management
and control unit receives the demand information and controls the power generation
of each power source. The blue dotted lines are for when the GT operates under full
load, and the red ones are for when the GT operates under partial load. When the GT
operates at full load, the charge/discharge power of the batteries and the purchase/sales
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electricity are controlled to fulfill the demand. When the GT operates at partial load, the
management and control unit receive the information on the power generation of the RE as
well as the demand information, and control the power generation of the GT as well as the
charge/discharge power of the batteries and the purchase/sales electricity. The detailed
power flow process is described in Section 3.3.

A district of Jeju City on Jeju Island, South Korea, was selected as the power-demand
source in this study. The population of the district is 14% of the city population, and the
electricity demand is about 20 MW. The average annual weather conditions of Jeju City
were used [29].

The annual average demand profile was obtained by multiplying the power consump-
tion factor [30] and the average regional power consumption [31]. The most recent available
data from 2018 were used. Hourly calculation was adopted (the weather conditions and
power demand change every hour). Figure 3 shows the annual weather conditions and
power demand profile.
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To analyze the DG system performance, in-house code was developed using MAT-
LAB [32]. Each power source was modeled using physics-based governing equations.
Polynomial equations from NASA [33] were used to calculate the properties of the air
and combustion gas while assuming ideal gas behaviors. CoolProp [34] was used for the
property calculation of water.

2.2. Gas Turbine Combined Cycle

Two GTs with different capacities were used to evaluate the effects of their performance
changes on the sizing and operation strategy of the DG system under the same power
demand. To simulate the GTCC, we used the specifications of 15-MW (Titan 130, Solar
Turbines, San Diego, CA, USA) and 5.7-MW (Taurus 60, Solar Turbines, San Diego, CA,
USA) GTs [35–38]. The components and power generation capacity of the GTCC using the
15-MW GT were obtained from actual operation [39]. The same values were used for the
bottoming cycle (BC) parameters of GTCCs with the 15-MW GT and 5.7-MW GT. The GTCC
simulation program is based on one developed by our research group [40]. The program
was originally developed for steady-state [40,41] and dynamic GT simulations [42] and
was further customized for the purpose of this study.

2.2.1. Gas Turbine

Figure 4 shows the configuration of the GT. In this study, we simplified the compressor
and turbine as a single stage each, and all the cooling air was assumed to be extracted from
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the compressor outlet. The feasibility of this method has been verified [43], and it has been
successfully used for performance analysis [44–46].
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The design performance was analyzed by referring to datasheets [35,36] and published
papers [37,38]. The design parameters are presented in Table 1. The GT power and efficiency
are defined in Equation (1).

.
WGT =

.
WSηconv, ηGT =

.
WGT/

( .
m f LHV

)
where

.
WS =

.
Wturbηme −

.
Wcomp (1)

Table 1. Design parameters and performance of the 15-MW and 5.7-MW gas turbines.

Parameter
15-MW 5.7-MW

Value Ref. Value Ref.

Compressor inlet mass flow rate 49.1 kg/s [35] 21.5 kg/s [36]
Compressor pressure ratio 17.1 [35] 12.2 [36]

Turbine rotor inlet temperature 1180 ◦C [37] 1080 ◦C [38]
Turbine exhaust gas temperature 495 ◦C [35] 510 ◦C [36]

Gas turbine power 15 MW [35] 5.7 MW [36]
Gas turbine efficiency 0.352 [35] 0.315 [36]

Natural gas (NG) is the fuel for the GT, and its low heating value (LHV) is 49,299 kJ/kg.
Its composition is as follows: 91.33% methane, 5.36% ethane, 2.14% propane, 0.95% n-
butane, and 0.22% nitrogen by volume. The mechanical efficiency was assumed to be 99%.

An off-design model is required to simulate the performance of the GT accurately. As
shown in Figure 5, performance maps [47] were used to model the off-design behaviors.
Each map consists of the semi-dimensionless flow rate, pressure ratio, isentropic efficiency,
and the semi-dimensionless speed defined in Equation (2).

M =
.

min
√

Tin
pin

, PRcomp = pout
pin

, PRturb = pin
pout

Ω = N√
Tin

, ηcomp =
hout,s − hin
hout − hin

, ηturb = hin − hout
hin − hout,s

(2)
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The powers were calculated as follows.

.
Wcomp =

.
mair,in(hout − hin),

.
Wturb =

.
mrotor,in(hrotor,in − hrotor,out) (3)

A variable inlet guide vane (VIGV) in front of the compressor controls the inlet air
flow rate during partial load operation. Compressor map scaling was used to predict
the changes in the flow rate and pressure ratio according to the angle of the VIGV. The
flow rate and pressure ratio were multiplied by the VIGV correction factor, as shown in
Equation (4) [48].

.
mco =

.
mor × c fVIGV , PRco = PRor × c fVIGV (4)

2.2.2. Bottoming Cycle

The BC is a single pressure system and is composed of an economizer (ECON), evapo-
rator (EVAP), superheater (SPHT), condenser, and pump. Figure 6 shows the configuration
of the BC, and the design parameters are listed in Table 2. The design parameters were
taken from the literature [40] using the same type of 15-MW GT, and the parameters were
also equally applied to GTCC using the 5.7-MW GT. The power output of the steam tur-
bine is calculated using Equation (5). The mechanical efficiency, gearbox efficiency, and
generator efficiency were assumed to be 99%, 98.5%, and 98%, respectively.

.
WST =

.
m(hin − hout)ηmeηgearηgen (5)
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Table 2. Design parameters of the bottoming cycle.

Parameter
Value

Ref.
15-MW GT 5.7-MW GT

Steam turbine inlet pressure 1687 kPa [39]
Steam turbine inlet temperature 225.6 ◦C [39]

Steam turbine efficiency 0.75 [39]
Steam turbine outlet pressure 100 kPa Assumed

Pinch point temperature difference 10 ◦C Assumed
Exhaust gas temperature 170.3 ◦C 167.8 ◦C Result

Steam turbine power 2.6 MW 1.2 MW Result

According to the calculation results, the power output of the steam turbine was 2.6 MW,
and the exhaust gas temperature from the HRSG was 170.3 ◦C when the 15-MW GT was
used. When the 5.7-MW GT was used, the power of the steam turbine was 1.2 MW, and the
exhaust gas temperature was 167.8 ◦C. The simulated performance outputs are summarized
in Table 2. In the off-design model, the operating pressure of the condenser is constant. The
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power consumption of the pump is very small compared to other components, so it was
assumed that there is no change in the pump efficiency.

The NTU method was used to simulate the off-design models of the heat exchangers
of the HRSG. The effectiveness of a heat exchanger was calculated using Equations (6)–(8).
Equation (7) was applied to the ECON and SPHT, while Equation (8) was used for the EVAP.

NTU =
UA

Cheat,min
(6)

ε =
1− exp[−NTU(1 + Cr)]

1 + Cr
where Cr =

Cheat,min

Cheat,max
(7)

ε = 1− exp(−NTU) (8)

The overall heat transfer coefficient was calculated using Equation (9). The exponent
is 0.6 according to the literature [49]. Finally, the unknown temperatures of the heat
exchangers were calculated using Equation (10).(

U
Ud

)
=

( .
mhot
.

mhot,d

)a

(9)

 ε =
Tc,out − Tc,in
Th,in − Tc,in

, where (Ch ≥ Cc)

ε =
Th,in − Th,out
Th,in − Tc,in

, where (Ch < Cc)
(10)

Equation (11) was used to describe the relationship between the pressure ratio and
mass flow rate in the steam turbine. The inlet flow rate and outlet pressure of the steam
turbine were determined by the off-design model of the HRSG and the operating pressure
of the condenser. The control valve is fully opened and operates in sliding pressure mode.
The sliding pressure operation provides better partial load efficiency for the GTCC in
comparison to other operation modes [50].

.
min
√

Tin
pin

/
.

min,d
√

Tin,d

pin,d
=

√
1−

(
1

PR

)2
/

√
1−

(
1

PRd

)2
(11)

2.3. Renewable Energy
2.3.1. Photovoltaics

A commercial 53-W PV module [51] was used to simulate the PV system. Table 3
shows the main parameters for the PV module in standard test conditions. The PV module
is controlled by maximum power point tracking (MPPT) using the perturb and observe
(P&O) algorithm.

Table 3. Design parameters of the photovoltaic module.

Parameter Value Ref.

Open circuit voltage 21.6 V

[51]

Short circuit current 3.27 A
Voltage at the maximum power point 17.4 V
Current at the maximum power point 3.05 A

Short circuit current temperature coefficient 0.0017 A/K
Maximum power output 53 W

Series resistance 0.2 ohm Result
Shunt resistance 305.3 ohm Result

The characteristics of the PV module are determined by arraying PV cells. The electric
current of a PV cell was calculated using Equation (12). The exponent indicating the degree
of ideality is 1.6 according to the literature [51,52]. The values of the serial and parallel
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resistances were calculated by performing iterative calculations at the maximum power
point (MPP). The light generation current is dependent on the insolation and temperature,
as described in Equation (13).

IPV = Iph − Io

[
exp

(
VPV + Rs IPV

aVT

)
− 1
]
− VPV + Rs IPV

Rp
(12)

Iph = [ISTC,sc + Ki(T − TSTC)]×
G

GSTC
(13)

The saturation current was calculated using Equation (14). The reference temperature
is 301.18 K, and the saturation current at the reference temperature is 2.07× 10−6 according
to the literature [51]. The band gap energy is 1.12 eV [53].

I0 = I0,re f

[
T

Tre f

]3

exp

[
qEg

ak

(
1

Tre f
− 1

T

)]
(14)

Finally, the power output was calculated as follows considering the number of instal-
lations and capacity factor.

.
WPV,net = nPV × I ×V × ηinv = nPV ×

.
WPV , CFPV =

.
WPV
.

WPV,r
(15)

Figure 7 compares the characteristic I-V curves of the PV predicted by our model and
data from the manufacturer [54], which show the reliability of the model.
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2.3.2. Wind Turbine

The wind speed at the hub height is calculated by the wind profile power law in
Equation (16). The exponent is 0.14 according to the literature [55].

v0

v
=

(
H
H0

)α

(16)

A 3-MW off-shore WT was modeled in this study [56]. It was assumed that wind blows
from the front of the WT. The main parameters are presented in Table 4. The power output
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is calculated as follows in consideration of the number of installations and capacity factor.

.
WWT,net = nWT ×

(
1
2

ρAv3Cp

)
× ηinv = nWT ×

.
WWT , CFWT =

.
WWT
.

WWT,r
(17)

Table 4. Design parameters of the wind turbine.

Parameter Value Ref.

Cut-in wind speed 3 m/s

[56]

Rated wind speed 10 m/s
Cut-out wind speed 20 m/s

Rotor diameter 134 m
Blade length 65.5 m
Hub height 90 m

Rated power 3 MW Result
Blade pitch angle 2.3◦ Result

The power coefficient is calculated using Equation (18), which is a function of the
tip-speed ratio and blade pitch angle.

Cp = 1
2

(
116
λi
− 0.4β− 5

)
exp

−16.5
λi

λi =

(
1

1
λ + 0.089−

0.035
β3 + 1

)
where λ = ωr

v
(18)

The WT power is controlled according to the wind speed based on Equation (19). The
WT does not generate electricity when the wind speed is below the cut-in speed or above
the cut-out wind speed. When the wind speed is between the cut-in and rated wind speeds,
the MPPT control adopting the P&O algorithm is used, and the blade pitch angle is fixed
for optimal power generation. The optimal pitch angle was calculated as 2.3◦ using the
given parameter data. When the wind speed is higher than rated wind speed, the blade
pitch angle is controlled to sustain the rated power.

.
WWT(U) =


0 (U < Uci or U > Uco).
WWT (Uci ≤ U ≤ Ur ).
Wr (Ur < U ≤ Uco )

(19)

Figure 8 shows the relation between the wind speed and the generated power from the
WT. The results of the simulation model are compared with the data provided by the manu-
facturer [56]. The model results are quite close to the actual data from the manufacturer.
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2.4. Battery Energy Storage System

Lead-acid batteries have been proven to be stable and reliable and are being used as
utility-scale batteries [57]. Therefore, a lead-acid battery was also adopted in this study. The
state of charge (SoC) is the percentage of the remaining capacity of the battery. Conversely,
the depth of discharge (DoD) is the percentage of capacity removed from the fully charged
battery. In general, full charging or discharging accelerates battery aging, so there are
minimum and maximum values of SoC [58].

The parameters of the lead-acid battery are listed in Table 5. It was assumed that the
charge/discharge of the battery is done according to constant-current/constant-voltage
mode. The battery is charged or discharged with a constant current until the voltage
reaches the final voltage (the cut-off voltage) [59,60]. When the voltage reaches the limit, it
is charged or discharged with a constant voltage. The charging/discharging efficiency is
89.5% [61], and the charge/discharge cycle was assumed to be once a day.

Table 5. Design parameters of the lead-acid battery.

Parameter Value Ref.

Nominal voltage 2 V [60]
End-of-charge voltage 2.4 V [59]

End-of-discharge voltage 1.75 V [60]
Minimum SoC 20% [58]
Maximum SoC 90% [58]

Charging efficiency 89.5% [61]
Discharging efficiency 89.5% [61]

To simulate the lead-acid battery, the CIEMAT model [62] was used. The battery ca-
pacity is expressed using the discharge current and temperature, as shown in Equation (20).
We assume that the rated charge time of the battery is 10 h.

C
C10

=
1.67

1 + 0.67
(

IBat
I10

)0.9 (1 + 0.005∆T) where ∆T = T − 25 (20)

The voltage is calculated using Equation (21).

Vch,Bat = [2 + 0.16(1− SoC)]+
IBat
C10

(
6

1+IBat0.86 +
0.48

(1−SoC)1.2 + 0.036
)
× (1− 0.025∆T)

Vdis,Bat = [2.085− 0.12(1− SoC)]−
IBat
C10

(
4

1+IBat1.3 +
0.27

SoC1.5 + 0.02
)
× (1− 0.007∆T)

(21)

The SoC and DoD are calculated using Equations (22) and (23). The amount of battery
power is calculated with Equation (24).

SoC(t) =

{
SoC(t− 1) + ηchQ(t)

C
SoC(t− 1)− Q(t)

ηdisC
where Q(t) = I × t (22)

DoD(t) = 1− SoC(t) (23)

S(t) = ηinvQ(t) (24)

The lifetime of the battery is related to the number of charge/discharge cycles.
Figure 9 [63] shows the cycles to failure versus DoD for a typical deep-cycle lead-acid
battery. The numerical curve-fitting relation of Figure 9 is based on Equation (25).

Cycletot
= 12193− 78268× DoD + 205444× DoD2 − 234878× DoD3 + 96518× DoD4 (25)
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3. Analysis and Optimization
3.1. Overview

Optimal sizing and operation strategies are essential for providing stable power supply
in DG. To obtain the optimal sizing and operation strategy, it is necessary to analyze the
performance of the DG system over time and to use an optimization algorithm. However,
traditional numerical methods have limitations in performing complete optimization
because they are based on a highly non-linear physical model to describe the detailed
operating characteristics. This is also true if we try to perform the optimization directly
using our in-house code, which analyzes the performance of the DG system through
several physics-based governing equations and the Newton–Raphson method to solve them
simultaneously. Therefore, the computational load would increase rapidly if optimization
were attempted using the physics-based model directly.

Therefore, we decided to perform the optimization using a stepwise method to reduce
the calculation burden drastically and to perform the optimization effectively. Firstly, an
ANN was adopted to obtain a vast amount of operation data based on the limited results
from running the physics-based model. Next, the battery charge/discharge scheduling
was determined using the ANN model. Objective functions for optimization were then
constructed based on operating data, including the results of the battery scheduling. Finally,
the optimization was conducted using a GA.

The overall processes for optimization of the sizing and operation strategy of the DG
system are shown in Figure 10. The optimization processes can be divided into processes
A–D. An optimal method was found for the three cases to obtain the best sizing and
operation strategy of the DG system. In case 1, a 15-MW GT is used, and it operates under
full load regardless of the operation characteristics of the RE. In case 2, the 15-MW GT is
still used, but it is operated under partial load according to the operation characteristics of
the RE.

The actual lowest power output of a GT is usually limited by emissions regulations.
The ratio of the lowest power to the full power is usually called the turn-down ratio. In
this study, the turn-down ratio was set as 50% of the rated power by referring to current
practices [64]. In case 3, a 5.7-MW GT is used, and it operates under full load all day. In
this case, the GT alone cannot satisfy the electricity demand, so it is necessary to use a
significant amount of the RE power to satisfy the demand.

• Case 1: 15-MW GT, full load operation
• Case 2: 15-MW GT, partial load operation (down to 50% power)
• Case 3: 5.7-MW GT, full load operation
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3.2. Artificial Neural Network Model

Feed forward neural networks (FFNs) are the most widely used neural networks. An
FFN has input layers, output layers, and hidden layers. The number of neurons in the
hidden layer affects the accuracy of the ANN model and is determined by the size of the
input and output layers. This value is uncertain, so it is determined empirically. In this
study, the ANN model for the GTCC and RE was constructed using the Deep Learning
Toolbox of MATLAB [32]. The construction process of the ANN model is shown in process
A in Figure 10.

Before constructing the model, a parametric study was first performed using a physics-
based model to obtain a database for learning. The database is summarized in Table 6. The
input data were divided into 30 sections to use the appropriate dataset for analysis. The
training function was the Levenberg–Marquardt training function, which is the fastest, and
the ANN model had 2000 epochs. The number of hidden neurons with the smallest mean
squared error (MSE) was selected.

Table 6. Input and output datasets for artificial neural network models.

Component
Input Data

Output Data
Parameter Range

Common Tamb 0–40 ◦C -

Gas turbine combined cycle
.

WGT
7.5–16 MW (15-MW GT)/
2.8–6 MW (5.7-MW GT)

.
WGTCC,

.
m f

Photovoltaic module G 0–1000 W/m2 .
WPV , I, V

Wind turbine U 0–50 m/s
.

WWT , Cp

In the case of a conventional ANN model trained using measured data, a test dataset
is necessary to avoid overfitting. However, in this study, the test dataset is unnecessary
because the ANN model is trained with data of a uniform distribution obtained from the
physics-based model. Therefore, a larger amount of dataset can be used to train the model,
making it possible to build an ANN model that is more similar to a physics-based model.
Accordingly, 90% of the dataset was used for training and the remaining 10% was used for
validation. The ANN model was constructed using the database through the physics-based
model and hyper-parameters.
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3.3. Battery Charge/Discharge Scheduling

The battery charge/discharge scheduling was used to calculate the objective function
of the GA (see process B in Figure 10). Figure 11 shows the detailed process for the
scheduling. The power outputs of the RE and GTCC were calculated using the ANN model.
The power outputs of the RE were calculated according to ambient air conditions. Then,
the surplus or insufficient electricity for users was determined according to the operation
mode of the GT.
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Figure 11. Operation strategy process for battery charge/discharge scheduling. 
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and some remains, all the remaining electricity charges the batteries. When the generated 
electricity is not sufficient to meet the demand, a decision is made about whether to dis-
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The factors considered in this decision are the amount of electricity charged in the batter-
ies and the electricity price according to time.  

The electricity is first discharged during the on-peak time, and then the remaining 
electricity in the batteries is discharged at mid- and off-peak times. If electricity is insuffi-
cient to meet the demand, electricity is purchased from the grid to compensate for the 
shortfall. Otherwise, the electricity left in the batteries is sold to the electricity grid. The 
battery scheduling for one day is determined through this process, and the battery lifetime 
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If the GT is operated at full load, the power of the GT is generated fully regardless
of the demand. If not, the GT operates between maximum and minimum to match the
demand. When the electricity generated from the power sources satisfies the power
demand and some remains, all the remaining electricity charges the batteries. When the
generated electricity is not sufficient to meet the demand, a decision is made about whether
to discharge the electricity from the batteries or to purchase electricity from the electricity
grid. The factors considered in this decision are the amount of electricity charged in the
batteries and the electricity price according to time.

The electricity is first discharged during the on-peak time, and then the remaining
electricity in the batteries is discharged at mid- and off-peak times. If electricity is insuf-
ficient to meet the demand, electricity is purchased from the grid to compensate for the
shortfall. Otherwise, the electricity left in the batteries is sold to the electricity grid. The
battery scheduling for one day is determined through this process, and the battery lifetime
is calculated by Equation (25).

3.4. Objective Functions for Optimization

The objective functions for the optimization were (1) the levelized cost of electricity
(LCOE), (2) the load sharing rate of the RE, and (3) the self-consumption rate. They were
embedded in the optimization process in the fitness function of the GA (see process C in
Figure 10). The objective functions were calculated using the output of the power source
and the result of the battery scheduling.

LCOE is used as an index representing the cost-effectiveness and sizing of the various
power generation systems, especially with RE. The lower the LCOE, the higher the cost-
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effectiveness is [65]. LCOE is calculated using Equation (26) by considering the total
generation cost including installation cost, O&M cost, fuel cost, electricity purchase cost,
sales rate, and the degradation rate of each generator during the project period. The usual
PV lifetime is known to be 25 years [66], which was selected as the project period for the
DG system.

Obj1 = LCOE =

Cap +
T
∑

n=1

(Cap×i+OM+FC+(Purel−Salesel))
(1+r)n

T
∑

n=1

(EGTCC×(1−dGTCC)+EPV×(1−dPV)+EWT×(1−dWT))
(1+r)n

(26)

The parameters and data used in the LCOE calculation are summarized in Table 7. The
cost of the GTCC was calculated using a correlating equation for the price of commercial
GTCC plants [50,67]. The costs of the PV module, WT turbine, and battery were obtained
from references in consideration of their cost trends [68,69]. With PV and WT, the BoS cost
is half the cost of the PV module or WT turbine [70,71]. Fuel cost was obtained from the
local NG price [72], and the average exchange rate in 2020 (1180 won/$) was applied [73].
The yearly amount of generated electricity was calculated by considering the degradation
rate and discount rate [69].

The electricity purchase cost was calculated by considering the average annual am-
bient temperature and the electricity prices in spring and autumn in South Korea, as
summarized in Table 8 [74]. All electricity sales were assumed to be from the RE. In
South Korea, the renewable portfolio standard (RPS) is being enforced to promote the
expansion of RE. According to the RPS, the sales of electricity are determined by the sum
of the system marginal price (SMP) and renewable energy certificate (REC) price while
considering weights.

Table 7. Costs of each device for distributed generation system.

Parameter Value Ref.

Installation
cost

GTCC
.

WGTCC

(
32000

.
WGTCC

−0.3 + 154
)

$ [67]

PV Module: 400 $/kW
BoS: 400 $/kW [68,70]

WT Turbine: 980 $/kW
BoS: 980 $/kW [69,71]

Battery 300 $/kWh [67]
Inverter 194 $/kW [61]

O&M cost

GTCC 3 $/MWh (variable)
0.6 M$/year (fixed) [50]

Inverter 1% of the module cost [61]
PV 1% of the turbine cost [69]
WT 1% of the battery cost [69]

Fuel cost 14.7 won/MJ [72]

Electricity purchase 365×∑24
1 (Pel(t)× |X(t)|)

i f X(t) = E(t)−Q(t) > 0, X(t) = 0
-

Electricity sales 365×∑24
1 (X(t)× (SMP + REC× wPV/WT))

i f X(t) = E(t)−Q(t) < 0, X(t) = 0
-

Degradation
rate

GTCC 10% [69]
PV 0.5% [69]
WT 0.5% [69]

Discount rate 8% [69]
Interest rate 5% [69]

Exchange rate 1180 won/$ [73]
Project period 25 years [66]
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Table 8. Electricity price according to time.

Base Price Electricity Price

Off-peak time
7220 won/kW

61.6 won/kWh
Mid-peak time 84.1 won/kWh
On-peak time 114.8 won/kWh

Weights of 0.7 for PV and 2.0 for WT were used in accordance with the regulations in
South Korea. The SMP and REC price vary depending on the time and market conditions
of the day before. The hourly SMP shown in Figure 12 was used, and the REC prices were
102,472 won/MWh for PV and 102,868 won/MWh for WTs [75].
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The load sharing rate of the RE was obtained using Equation (27). The load sharing
rate is the ratio of the generated electricity to the power demand. It was assumed that the
electricity demand and the amount of generated electricity from RE changes every hour, so
the load sharing rate was calculated as the average value of the load sharing rate for 1 day.

Obj2 = Load sharing rate =

.
WPV,net(t) +

.
WWT,net(t)

L(t)
(27)

The self-consumption rate is defined as the percentage of electricity that is consumed
locally from the overall generated electricity. The expression for the self-consumption rate
is Equation (28) [76]. A high self-consumption rate means that the power generation is not
excessive compared to demand, while a low self-consumption rate means that the power
sources are somewhat excessive compared to demand.

Obj3 = Self-consumption rate =

24
∑

t=1
Min

(
L(t),

.
Wnet(t)+S(t)

)
24
∑

t=1

.
Wnet(t)

where
.

Wnet(t) =
.

WPV,net(t) +
.

WWT,net(t) +
.

WGTCC(t)

(28)

3.5. Genetic Algorithm

A GA was used in the final step of the entire process, as shown in Figure 10. The Opti-
mization Toolbox provided by MATLAB [32] was used. As a result, the entire calculation
package covering all the steps in Figure 10 was constructed in a MATLAB framework.

The procedure of finding the optimal solution using a GA is shown in process D in
Figure 10. A fitness function is used to determine the fitness of the initial population,
and generations made using selection, crossover, and mutation are repeated until the
population satisfies the termination criteria. After several generations, local optimums
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that satisfy the termination criteria are produced. The initial population of the GA was
set at 1000, and the number of generations was set as at least 100. To find the solution
to the optimization problem with multi-objective functions introduced in Section 3.4, a
computational option called ‘gamultiobj’ was used.

The standard GA provided by MATLAB outputs many local optimums. Therefore, a
ranking operation is required to obtain only one global optimum. In this study, a weighted
objective function was used to find one global optimum among the local optimums. The
weighted objective function consists of a combination of the objective functions described
in Section 3.4. For stable and profitable DG, this study focused on the cost-effectiveness of
the DG system and the ratio of the power generated from RE. In other words, we assumed
that the sizing and operation strategy is optimized when the LCOE is the lowest, and the
load sharing and self-consumption rate are the highest. As a result, the weighted objective
function was set using the following equation, where the three weights for the individual
objective functions were set to be equal.

Weighted objective function = 1
3

Obj1,max−Obj1
Obj1,max−Obj1,min

+

1
3

Obj2−Obj2,min
Obj2,max−Obj2,min

+ 1
3

Obj3−Obj3,min
Obj3,max−Obj3,min

(29)

It is assumed that the PV modules and batteries are arrayed in series. The capacity of
the battery was calculated as the sum of all remaining power after meeting the demand
in consideration of the constraints of the SoC. The sizing and operation strategy was
optimized using 26 design variables, such as the numbers of PV units and WTs and the
hourly charged/discharged energy of the battery. The optimization problem in this study
is summarized in Equation (30). At least one PV unit and WT must be installed, and
the charged and discharged energy of the battery is determined in consideration of the
electricity generation and electricity transaction volume.

• Maximize the weighted objective function (Equation (31)) subject to

nPV > 0, nWT > 0 (n is integer)
Q(t) = E(t), where E(t) ≥ 0
Q(t) = E(t) + X(t), where E(t) < 0(t = 1, 2, · · · , 24)

(30)

• Design variables: nPV , nWT , Q(1), Q(2), · · · , Q(24)

4. Results and Discussion
4.1. Performance of the ANN Model

A personal computer with a quad-core processor (Intel Core i7-4770 3.40 GHz) and
16 GB of RAM was used in the simulation. Prior to the main analysis, the ANN model’s
accuracy and computational efficiency were checked. In building the ANN model, it took
511.9 s (GTCC: 478.5 s, PV: 31.44 s, WT: 1.995 s) to collect data from the physics-based
model and 184.2 s (GTCC: 55.99 s, PV: 48.06 s, WT: 80.17 s) to train the ANN model.

Figure 13 shows the training results of the ANN model. Figure 13a shows the MSE of
the ANN model according to the number of hidden neurons. The ANN model was trained
and validated according to the epoch by selecting the number of hidden neurons with the
smallest MSE in Figure 13a. The training and validation results of each ANN model were
illustrated in Figure 13b–d. The ANN model of the GTCC had nine hidden neurons, and
MSE was 4.3 × 10−4. In the ANN model of the PV module and WT, seven and six hidden
neurons were selected, and the MSE values were 2.7 × 10−4 and 1.8 × 10−5, respectively.

The input datasets in Table 6 were used to check the performance of the ANN model,
and their ranges were segmented randomly by 100. The input data were put into the
physics-based model and the ANN model to compare the power output. The performance
results are summarized in Figure 14. The results confirmed that the ANN model was
well built.
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Table 9 shows the results of the computational efficiency improvement through the
ANN model. In the table, “Simple” denotes conditions where the performance of the
DG system was analyzed using one randomly combined optimization parameter set,
while “Total” means conditions where the optimization was conducted using the GA.
When analyzing the performance in the “Simple” conditions, the calculation time was a
minimum of 28.06 s and maximum of 58.07 s when using the physics-based model. The
time was drastically reduced when using the ANN model to a minimum of 0.004716 s and
a maximum of 0.002860 s.

Table 9. Improvement in computational efficiency through artificial neural network model according
to the cases.

Case

Calculation Time Required Memory

Physics-Based
Model

Neural Network
Model

Physics-Based
Model

Neural Network
Model

Case 1
Simple 28.06 s 0.004716 s

423.3 MB 175.9 MBTotal 2,806,000 s 538.7 s

Case 2
Simple 58.07 s 0.002860 s

426 MB 160.2 MBTotal 5,807,000 s 259.8 s

Case 3
Simple 31.74 s 0.003612 s

387.8 MB 168.8 MBTotal 3,174,000 s 362.5 s
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Photovoltaic module; (c) Wind turbine.

In the “Total” conditions, the GA performed a total of 100,000 variations (initial
population × generations) for the performance analysis. Considering the variations, the
calculation time of the physics-based model was estimated to be a minimum of 2,806,000 s
and a maximum of 5,807,000 s (32–67 days). However, the calculation time of the ANN
model was a minimum of 259.8 s and a maximum of 538.7 s (4–9 min).

Comparing the memory required for calculation, a maximum of 426 MB and a min-
imum of 387.8 MB were required for the calculation using a physics-based model, but a
maximum of 175.9 MB and a minimum of 160.2 MB were required for the calculation using
the ANN model.

In summary, the computation speed of the ANN model is a minimum of 5200 times
faster than the physics-based model and a maximum of 22,300 times faster. Even when
including the data collection and training time, the time required was reduced by at least
2200 times and up to 6000 times. Even when the ANN model was used, the memory re-
quired for the calculation was reduced by up to 62.3% compared to when the physics-based
model was used. Consequently, the calculation burden of the DG system performance
required for optimizing the size and operation strategy can be greatly reduced. Thus, the
validated ANN model was used to generate the performance of the DG system in a vast
range of operating conditions, as shown in Section 3.2 and process D of Figure 10.

4.2. Optimization Results

The results of the optimization for each case are shown in Table 10 and Figure 15.
The details of the variations in design variables and objective functions according to the
number of calculations for the representative case (case 1) are presented in Appendix A. In
Figure 15, the black dotted line indicates the power demand from Figure 3. The solid blue
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line shows the sum of the produced power excluding the batteries, and the red chain line
represents the total amount of power generated, including the battery discharge power.
The bar graph is the charged/discharged energy of the batteries. A positive value means
charged energy, and a negative value means discharged energy.

Table 10. Results of the genetic algorithm according to the gas turbine operation mode.

Parameter Case 1 Case 2 Case 3

PV
Number 138,117 613,062 693,810
Power 0.5 MW 2.8 MW 3.2 MW

WT
Number 2 2 3
Power 1.3 MW 1.3 MW 1.9 MW

Battery

Capacity 7.6 MWh 0.2 MWh 0.6 MWh
Charged energy 6.1 MWh 0.15 MWh 0.5 MWh

Discharged energy 4.9 MWh 0.11 MWh 0.36 MWh
Electricity sales 0 MWh 0.09 MWh 0.26 MWh

DoD 57.9% 66.6% 66.7%
Cycles 1005.9 795.8 795.0

Objective
functions

LCOE 0.1947 $/kWh 0.1667 $/kWh 0.2891 $/kWh
Load sharing rate 8.0% 17.2% 21.5%

Self-consumption rate 99.5% 99.9% 99.9%
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In case 1, the 15-MW GT operates under full load all the time. To meet the electricity
demand, 138,117 PV units (7.6 MW) and 2 WTs (6 MW) must be installed. However, during
the daytime, the average capacity factor of the PV was 8.6%, and the capacity factor of
the WT was 21.4%, so the power generated from RE was about 0.5 MW for the PV units
and 1.3 MW for the WTs on average. The load-sharing rate based on the output of the RE
was 8.0%.

The battery capacity in case 1 was 7.6 MWh because only the battery was used as a
flexible resource. The DoD and cycles of the batteries were 57.9% and 1005.9 cycles. Due
to the large capacity of the batteries, LCOE was relatively high at 0.1947 $/kWh. The
batteries were charged with 6.1 MWh of electricity for 8 h, and 4.9 MWh of electricity was
discharged for 16 h when the power demand was insufficient.

In case 2, the 15-MW GT ran at partial load. In this case, since the GT and battery
were flexible resources, the required number of PV units was 613,062 (32.5 MW), and the
required number of WTs was 2 (6 MW). The average power generation of the PV and WT
was about 2.8 MW and 1.3 MW, respectively.

Unlike case 1, the amount of power generated from the GT was adjusted to match
the power demand at 3:00–6:00 and 13:00–16:00 when the power demand was low. In
particular, since the turn-down ratio of the GT was set to 50% of its rated power, the RE
capacity could be increased, while the capacity of the batteries could be kept low. The
load-sharing rate of the RE was 17.2%, which was about 9.2%p higher than that of case 1.
The capacity of the batteries was 0.2 MWh, which is much smaller than in case 1 (i.e., only
2.7% that of case 1), because the batteries were charged at 14:00 when the RE power peaked.

Considering the SoC constraints, the actual power stored in the batteries was 0.15 MWh,
and 0.11 MWh was discharged. Only 0.02 MWh was used to meet the demand for the other
peak time, when the purchase price of electricity was high, and the rest of the electricity
was sold through the electricity grid. Due to the short charge and discharge time, a large
amount of power was transferred from the batteries at one time, so the batteries had
795.8 charging/discharging cycles, which were 20.9% shorter than in case 1.

In case 2, the RE capacity was larger, and the battery charge/discharge cycles were
shorter than in case 1, so battery replacement must be performed more often (i.e., the life
is shorter). However, the cost reduction effect due to the sensible reduction in battery
capacity was greater than the negative effect of the more frequent battery replacement, so
LCOE was 0.1667 $/kWh, which is 14.4% lower than in case 1.

Case 3 used a 5.7-MW GT, which has much lower power capacity compared to cases
1 and 2, and it runs at full load. The number of PV units was 693,810 (34 MW), and the
number of WTs was 6 (9 MW). The power generation was 3.2 MW for the PV and 1.9 MW
for the WTs. The load-sharing rate of the RE was 21.5%, which was 13.5%p higher than in
case 1 and 4.3%p higher than in case 2.

In this study, it was more economical to meet the demand by purchasing electricity
from the electricity grid than to increase the capacity of the batteries. As a result of the
optimization, the capacity of the batteries was 0.6 MWh, which was larger than in case
2 due to the increased RE, and the batteries were charged at 14:00 when the amount
of power generated from the RE peaked. Considering the constraints of the SoC and
charging/discharging efficiency, the charged energy was 0.5 MWh, and the discharge was
0.36 MWh.

An amount of 0.26 MWh of the total discharged energy was sold to the market, and
the rest was discharged to supply the demand at times when the electricity purchase price
was high. As with case 2, since the batteries in case 3 charge or discharge a large amount of
electricity at once, the DoD was high at 66.7%, and the charge/discharge cycle was 795.0.
In case 3, the battery capacity was minimized, but due to the increased capacity of RE and
the cost of purchasing electricity to meet the power demand, LCOE was 0.2891 $/kWh,
which is 48.5% higher than in case 1 and 73.4% higher than in case 2.
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5. Conclusions

The results and conclusions of this study are summarized as follows.

1. To simplify the calculation process of the complex DG system, an ANN model was
constructed. The current ANN model based on the physics-based model, unlike the
conventional ANN model based on measured data, did not require a test dataset for
overfitting. Therefore, a large proportion of the dataset was used for training the
ANN model, so the ANN model mimicked the physics-based model very well: The
MSE had a maximum of 2.7 × 10−4 and a minimum of 1.8 × 10−5. As a result, the
ANN model showed an improvement of at least 5200 times and at most 22,300 times
for calculation time and reduced the memory required for calculation by up to 62.3%.
Therefore, the ANN model is suitable for use in the optimization calculation of the
DG system.

2. The sizing and operation strategy of the DG system was optimized using the GA.
In addition, to determine only one global optimum solution among many local
solutions from GA, a weighted objective function considering eco-friendliness and
cost-effectiveness was used. The optimization results were summarized for three
cases according to the operation mode of the GT. In case 1, only the batteries acted as
flexible resources. Hence, it had the smallest sharing rate of RE and the largest battery
capacity, but had the longest life of the battery. In case 2, not only the batteries but
also the GT were used as flexible resources, so the capacity of the batteries was the
smallest. In case 3, the capacity of the GT is lower compared to cases 1 and 2, and
it had to operate at full load. It was found to be more economical to purchase the
electricity from a grid than to install the large capacity batteries, so case 3 had the
smaller battery capacity than case 1. However, in case 3, the installed capacity of RE
was larger, which makes the battery capacity larger than that of case 2. In cases 2 and
3, the life of the battery was shorter due to rapid charging and discharging.

3. Excessive power generation compared to demand leads to an increase in required
battery capacity, resulting in an increase in LCOE. In case 2, where the GT operated
flexibly, the LCOE was 14.4% lower than case 1 and 42.3% lower than case 3. In other
words, minimizing the role of the battery through flexible operation of a conventional
generator like the GTCC is the best choice for feasible and economic performance in
isolated regional DG.

This study is significant in that the artificial intelligence scheme that combines the
ANN and GA was applied to optimize the distributed generation system in terms of cost-
effectiveness and eco-friendliness, while improving the computational efficiency drastically.
The method is expected to be utilized effectively for the accurate optimization of complex
energy networks such as DG clusters, as well.
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Nomenclature

A Area (m2)
ANN Artificial neural network
a Ideality factor (-)
BC Bottoming cycle
C Capacity (Ah)
Cheat Heat capacity (kJ/K)
Cp Power coefficient (-)
Cr Heat capacity ratio (-)
CF Capacity factor (-)
Cap Capital cost ($)
Cycle Cycles of battery (-)
cf Correction factor (-)
DG Distributed generation
DoD Depth of discharge (-)
d Degradation rate (-)
E Electricity generation (MW)
ECON Economizer
ESS Energy storage system
EVAP Evaporator
Eg Band gap energy (eV)
FFN Feed forward neural network
FC Fuel cost ($)
G Solar Irradiation (W/m2)
GA Genetic algorithms
GT Gas turbine
GTCC Gas turbine combined cycle
I Current (A)
i Discount rate (-)
H Height (m)
h Specific enthalpy (kJ/kg)
K short-circuit current temperature coefficient (A/K)
k Boltzman constant (1.38 × 10−23 J/K)
L Power demand (MW)
LCOE Levelized cost of electricity ($/kWh)
LHV Lower heating value (kJ/kg)
M Semi-dimensionless mass flow rate (ms K0.5)
MPP Maximum power point
MPPT Maximum power point tracking
MSE Mean squared error
.

m Mass flow rate (kg/s)
N Speed (rpm)
NG Natural gas
NTU Number of transfer unit
n Number
OM O&M cost ($)
Obj Objective function
PR Pressure ratio (-)
PV Photovoltaics
Purel Electricity purchase price ($)
P&O Perturb and observe
p Pressure (kPa)
Q Charged/discharged energy (MWh)
q Electron charge (1.6 × 10−19 C)
R Resistance (ohm)
RE Renewable energy
REC Renewable energy certificate
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RPS Renewable portfolio standard
r Blade radius (m)
S Stored energy (MWh)
SMP System marginal price
SPHT Superheater
Salesel Electricity sale price ($)
SoC State of charge (-)
T Temperature (◦C)
t Time (h)
U Overall heat transfer coefficient (W/m2 K)
V Voltage (V)
VIGV Variable inlet guide vane
v Wind speed (m/s)

.
W Power (MW)
WT Wind turbine
w Weights (-)
X Electricity transaction volume (MWh)
Greek
α Exponent (-)
β Blade pitch angle (o)
ε Effectiveness (-)
η Efficiency (-)
λ Tip-power ratio (-)
λi Constants
ρ Density (m3/s)
Ω Semi-dimensionless speed (rpm/K0.5)
ω Rotor speed (rad/s)
Subscripts
air Air
Bat Battery
c Cold
ch Charge
co Corrected map
comp Compressor
conv Conversion
d Design
dem Demand
dis Discharge
f Fuel
GT Gas turbine
g Generator
gear Gear box
h Hot
in Inlet
inv Inverter
max Maximum
me Mechanical
min Minimum
o Saturation
opt Optimal
or Original map
out Outlet
p Shunt
ph Light generation
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r Rate
ref Reference
rem Remain
rotor Rotor
S Shaft
ST Steam turbine
STC Standard test condition
s Isentropic
sc Short-circuit
se Series
T Thermal
t Turbine
tot Total
VIGV Variable inlet guide vane
0 Near-surface
10 Rated charge time of battery is 10 h
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Appendix A

Table A1. Variations in design variables and objective functions according to the number of calculations for case 1.

Iteration

Design Variables Objective Functions Weighted
Objective
Function

Number
of PV

Number
of WT

Charging Rate of Battery [MWh] LCOE
[$/kWh]

Load
Sharing Rate

Self-Consumption
Rate1 h 2 h 3 h 4 h . . . 22 h 23 h 24 h

1 207,946 9 −14.58 3.63 6.89 8.07 −17.40 −17.91 −15.57 676.06 0.28 0.94 0.63
2 569,001 8 −19.33 2.18 4.58 5.46 −15.13 −15.02 −18.76 881.06 0.32 0.91 0.54
3 649,810 5 −10.14 0.66 3.54 4.68 −9.41 −8.65 −8.51 596.26 0.26 0.93 0.61
4 715,253 1 −9.77 −11.65 0.67 2.57 −8.44 −8.91 −9.66 494.31 0.17 0.97 0.64
5 709,664 9 −14.63 2.18 4.13 4.84 −11.69 −11.90 −11.53 876.09 0.38 0.87 0.49
6 303 1 −0.65 −1.41 16.04 61.08 −0.69 −0.43 −0.51 220.03 0.03 1.00 0.66
7 687,130 1 −9.29 −12.29 0.72 2.73 −10.89 −9.55 −10.93 476.96 0.16 0.97 0.64
8 749,938 9 −16.87 2.11 4.00 4.68 −10.20 −16.48 −14.78 798.22 0.39 0.86 0.50
9 659,032 9 −19.47 2.15 4.31 5.05 −13.87 −20.55 −18.91 913.85 0.37 0.88 0.50
10 207,946 9 −19.63 1.97 4.28 5.11 −14.35 −15.56 −21.58 906.11 0.34 0.90 0.52
11 427,860 1 −9.07 −9.13 1.54 5.85 −7.79 −7.88 −7.77 318.68 0.11 0.98 0.68
12 279,406 1 −6.72 −7.78 3.70 14.11 −7.83 −5.44 −6.34 236.50 0.08 0.99 0.70
13 718,296 9 −17.39 2.11 4.10 4.80 −15.34 −15.06 −14.22 1380.90 0.38 0.88 0.37
14 658,993 9 −19.41 2.15 4.31 5.05 −13.97 −20.45 −18.89 917.29 0.37 0.88 0.50
15 602,976 8 −17.75 2.09 4.42 5.28 −14.35 −14.73 −18.63 995.00 0.33 0.91 0.50
16 716,119 9 −17.46 2.11 4.11 4.81 −15.33 −14.96 −14.51 1352.51 0.38 0.88 0.38
. . . . . .
345 706,953 8 −13.76 1.91 4.01 4.79 −11.69 −11.72 −11.70 841.60 0.35 0.89 0.52
346 751,660 9 −16.24 2.11 3.99 4.68 −11.55 −16.64 −14.59 804.39 0.39 0.86 0.50
347 614,281 8 −17.94 2.05 4.37 5.22 −14.44 −14.86 −17.99 937.97 0.33 0.91 0.52
348 710,349 4 −10.25 −10.73 2.90 4.10 −9.66 −8.06 −8.30 593.94 0.24 0.94 0.61
349 751,450 1 −8.62 −11.83 0.63 2.39 −12.12 −9.67 −12.56 515.67 0.17 0.96 0.63
350 359,758 1 −7.78 −7.23 2.10 8.02 −8.16 −7.33 −6.91 279.42 0.10 0.99 0.69
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