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Abstract: The present paper compares the flow structure and flame dynamics during combustion
of methane and syngas in a model gas-turbine swirl burner. The burner is based on a design by
Turbomeca. The fuel is supplied through injection holes between the swirler blades to provide
well-premixed combustion, or fed as a central jet from the swirler’s centerbody to increase flame
stability via a pilot flame. The measurements of flow structure and flame front are performed by
using the stereo particle image velocimetry and OH planar laser-induced fluorescence methods.
The measurements are performed for the atmospheric pressure without preheating and for 2 atm
with the air preheated up to 500 K. The flow Reynolds numbers for the non-reacting flows at these
two conditions are 1.5 × 103 and 1.0 × 103, respectively. The flame dynamics are analyzed based
on a high-speed OH* chemiluminescence imaging. It is found that the flame dynamics at elevated
conditions are related with frequent events of flame lift-off and global extinction, followed by re-
ignition. The analysis of flow structure via the proper orthogonal decomposition reveals the presence
of two different types of coherent flow fluctuations, namely, longitudinal and transverse instability
modes. The same procedure is applied to the chemiluminescence images for visualization of bulk
movement of the flame front and similar spatial structures are observed. Thus, the longitudinal and
transverse instability modes are found in all cases, but for the syngas at the elevated pressure and
temperature the longitudinal mode is related to strong thermoacoustic fluctuations. Therefore, the
present study demonstrates that a lean syngas flame can become unstable at elevated pressure and
temperature conditions due to a greater flame propagation speed, which results in periodic events
of flame flash-back, extinction and re-ignition. The reported data is also useful for the validation of
numerical simulation codes for syngas flames.

Keywords: synthesis gas; syngas; combustion chamber; swirl combustor; swirling flame; gas as
turbine combustor; particle image velocimetry; planar laser-induced fluorescence; proper
orthogonal decomposition

1. Introduction

The efficient combustion of synthesis gas or ‘syngas’ in gas turbines is becoming more
relevant due to the development of integrated gasification combined cycle (IGCC) power
plants, where the products of coal gasification are burned in gas turbines [1]. Moreover,
syngas can be obtained from biomass and even some types of waste [2]. Therefore, the stud-
ies of syngas combustion at elevated pressure and temperature conditions are important.
Modern low-emission gas turbine combustors are based on a lean premixed combustion
technology [3]. The optimization of the flow aerodynamics allows organizing efficient
fuel combustion with low concentrations of both CO and NOx in combustion products.
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In particular, NOx lower than 5 ppm (corrected to 15% O2) can be obtained for modern
swirl burners [4–6]. However, it is well recognized that the lean combustors are prone to
unstable operation and thermoacoustic pulsations [7,8], which results in reduced efficiency
of the burning and leads to damage to the turbine. Therefore, it is important to study the
contribution of different physical and chemical processes to the feedback mechanism of the
thermoacoustic resonance [9–12]. Another important issue for syngas premixed flames in
lean combustors is an increased probability of the flame flash-back due to the increased
turbulent flame speed because of the hydrogen presence [13,14].

Modern optical measurement techniques provide detailed information on the local
pulsations of the gas velocity, temperature, and species concentration. However, such
measurements are quite expensive and difficult for real combustion chambers due to
several reasons, including strong vibrations and limited optical access. Therefore, the
impact of different processes on unsteady flow and flame dynamics is performed for
research combustion sectors, which are equipped with observation windows, allowing for
detailed optical measurements and modeling basic phenomena in real combustors [15–22].
Nowadays, planar optical methods like the particle image velocimetry (PIV) and planar
laser-induced fluorescence (PLIF) have become very popular for the measurements of flow
structure and dynamics and for the analysis of flow/flame interactions [23–26].

PLIF provides the detection of different types of molecules in a selected cross-section
of the reacting flow studied, including OH, CO, NO, SO2, and others [27–33]. Therefore,
the PIV and PLIF methods are used simultaneously for the measurements of the velocity
flow field and visualization of high-temperature regions, where chemical reactions take
place. In particular, PLIF for HCO or simultaneously for HCHO and OH can be used to
visualize the regions with intensive heat release [34–38]. Two-line or thermally-assisted OH
PLIF can be used for the evaluation of temperature fields hot combustion products [39–42].
Since swirl-stabilized combustors for gaseous or liquid fuels are commonly used in gas
turbines, the flow and flame for their models are intensively studied by using the PIV and
OH PLIF methods [43–45]. There is also a growing interest in the optical diagnostics of
syngas combustion in swirl-stabilized burners [21].

Currently, the flow structure and dynamics, the flame stability and thermoacous-
tic pulsations, flame blow-off or flash-back are studied for different types of model and
realistic gas-turbine swirl burners. The most popular ones among them are a low-swirl injec-
tor [4,5,8,14], a TECFLAM burner [46], model combustors based on a design by Turbomeca
(a generic nozzle studied in Janus and others [15,47] and a model gas-turbine burner
studied in Meier and others [7,24]), a G30 dry low emission burner by Siemens [48–50],
a dual-swirler as a model of air-blast injector [16,23]. There are also a number of papers
for dual swirlers of more sophisticated designs, e.g., LPP (lean premixing prevaporiz-
ing, [51,52]) and PERM (partially evaporated, rapidly mixed, [53,54]) injectors by Avio
or so-called BIMER experimental setup [55,56]. There are also some studies for triple
swirlers [57–59] and for realistic burners, like different lean premixed prevaporized in-
jectors (see studies in cooperation with General Electric [18,20], Rolls-Royce [17,19,22,60],
Jaxa [45], and other companies [61,62]) and lean premixed burners by Siemens [21,63].

There are also several detailed studies of flame dynamics and flow structure for
syngas combustion under gas-turbine conditions for simple flame configurations [64] and
for model [65–68] and realistic [69–71] swirl burners. It is generally recognized that the
methane replacement by syngas leads to flame flash-back problems due to a higher flame
propagation speed. It is also noted that the flame propagation speed affects the frequency
(and mode) of thermo-acoustic instabilities [66,70]. Therefore, further investigations of
syngas flame dynamics and stability in swirl-stabilized combustion chambers are needed.

The present paper compares the flow and flame dynamics for methane and syngas
burning in a model gas-turbine combustor based on the design by Turbomeca [15] utilizing
PIV, OH PLIF measurements, and high-speed imaging of OH* chemiluminescence. The
data is processed by a snapshot proper orthogonal decomposition (POD) to extract large-
scale coherent structures [72]. Section 2 of the paper provides details on the experimental
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setup and data processing. The time-averaged data are reported in Section 3.1. The coherent
structures, extracted from the PIV/PLIF data OH* images, are discussed in Sections 3.2
and 3.3, respectively. The obtained results demonstrate that at elevated pressure and
temperature conditions, syngas lean flames can become unstable due to periodical events
of flame flash-back, extinction, and re-ignition.

2. Experimental Setup
2.1. Combustor

The details on the combustion chamber, including a 3D model of the geometry, can be
found in [47]. The combustion chamber is equipped with observation windows, which are
made of fused silica and provide flame observation and optical diagnostics for the pressure
up to 8 atm. A radial swirler is placed upstream of the inlet (with the inner diameter D of
37 mm) of the combustion chamber. The chamber outlet is organized by an axisymmetric
contraction choked nozzle. The throat of the nozzle is cooled by water. The air is supplied
through the swirler and two peripheral slots inside the chamber. The slots are used for the
film-cooling of the observation windows and contraction nozzle.

The swirler provides two zones of gas combustion, viz., a pilot central jet and a main
premixed zone. Therefore, the fuel gas can be supplied from a central nozzle drilled
through the centerbody of the swirler, or between the vanes of the swirler. The air and fuel
flow rates are controlled by mass-controllers (Bronkhorst). Methane and syngas (H2/CO
mixture) are supplied from pressurized vessels. In practice, the syngas composition differs
strongly depending on a feedstock, processing technology, and gas treatment [73]. In
laboratory studies, the H2:CO ratio is often fixed as 1:2 or 1:1 (e.g., [74]) by referring to coal
or oil gasification processes, respectively [1]. For simplicity, the 1:1 H2/CO mixture is used
in the present case, expecting a higher flash-back effect for the greater hydrogen content.
The global equivalence ratios of the studied flames are 0.33 and 0.2 for the methane and
syngas, respectively. The ratios between the flowrates of the pilot and main fuel are 0.3
and 0.17, respectively. These flowrates were selected close to lean blow-off conditions for
the flames.

The swirler is mounted between the combustion chamber and a cylindrical plenum
chamber, equipped with a cord-shaped electric wire heater for the air preheating and a
perforated plate to produce well-determined inflow conditions. The flows were studied for
the normal (293 K and 1 atm.) and elevated (500 K and 2 atm.) temperature and pressure.
The Reynolds numbers for non-reacting air flows at these conditions are 1.5 × 104 and
1 × 104, respectively. The flame parameters are provided in Table 1 (please note that the
values of normal liter per minute, ln/min, correspond to the normal temperature and
pressure standard of NIST). For the PIV measurements, the air flow was seeded with TiO2
solid particles by a mechanical mixer, placed upstream of the plenum chamber.

Table 1. Flame parameters.

Air Flowrate
(ln/min) Fuel Type

Fuel Flowrate
Main/Central

(ln/min)
Equivalence Ratio Air Temperature (K) Pressure (atm.)

398 Methane 10.7/3.2 0.33 293 1
398 Methane 10.7/3.2 0.33 500 2
398 Syngas 29/4.9 0.2 293 1
398 Syngas 29/4.9 0.2 500 2

2.2. Measurement Equipment

The used stereo PIV system consisted of 4 Mpix CCD cameras (ImperX Bobcat IGV-
B2020) and a double-head pulsed Nd:YAG laser (Beamtech Vlite 200). The cameras were
equipped with optical lenses (Sigma 105 mm) with scheimpflug adapters and band-pass
(532 ± 5 nm) optical filters. The PIV system was combined with a OH PLIF system (see
Figure 1), which consisted of a tunable dye laser (Sirah Precision Scan), pumped by a pulsed
Nd:YAG laser (QuantaRay) and an sCMOS camera equipped with an intensifier (LaVision
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IRO). The radiation of the dye laser passed through BBO doubling crystal to obtain the
wavelength of 283 nm to excite the fluorescence of OH for the Q1(8) line of the A2Σ+–X2Π
(1–0) band. The fluorescence images were captured by the intensified camera, equipped
with an optical lens, made of fused silica, and a band-pass optical filter (300–320 nm). The
lasers and cameras were synchronized by a TTL signal generator.

The cameras were also spatially calibrated by putting a flat calibration target inside
the combustion chamber, imaged in different normal-to-plane locations prior to the ex-
periments. A part of the PLIF laser sheet was reflected into a calibration cuvette, filled
with Rhodamine solution. The fluorescence inside the cuvette was captured by another
CCD camera (ImperX Bobcat IGV-B4820) to compensate for a non-uniform laser sheet
distribution during PLIF image processing. It was also used to account for the shot-to-shot
fluctuations of PLIF laser energy. The PLIF laser pulse was arranged between the time
interval of two PIV laser shots. The exposition of the PLIF camera was 200 ns.

High-speed visualization of the flame dynamics was performed separately by using a
high-speed intensifier (LaVision high-speed IRO) connected to a CMOS camera (Photron
SA5). The intensifier included an S20 photocathode and was equipped with another fused
silica UV lens and a band-pass optical filter for OH* (300–340 nm). The acquisition frame
rate was 9.9 kHz. Direct images of the flames were also captured by using a photo camera.
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Figure 1. The scheme of the experimental setup.

2.3. Data Processing

The images were stored and processed by using an in-house “ActualFlow” software.
The PIV images were processed by an iterative cross-correlation algorithm with continuous
window shift and deformation [75]. The stereo calibration and reconstruction are based
on 3rd-order polynomial mapping functions, evaluated for each camera during the stereo
calibration [76]. The same model was used for the back-projection of the PLIF images.
Before that, the PLIF images were processed to remove a background signal (captured
without combustion, when the PLIF laser was running), correct for the non-uniform laser
sheet and energy variation, account for the laser beam attenuation during the absorption
inside the combustion chamber [47]. In total, 1500 snapshots of the PIV/PLIF data were
captured for each flame case.

Afterwards, the PIV/PLIF snapshots were processed by a proper orthogonal decom-
position method. This was done based on the singular value decomposition (SVD) of the
data matrix [77] U = [u′(x, t1) . . . u′(x, tN)], where u′(x, ti) is the snapshot of fluctuating
velocity at the time instant ti.
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U = WΣVT , or u
′
(x, tk) =

N

∑
q=1

αq(tk)σqϕq(x), (1)

Here, the matrix of left-singular vectors W = [φ1(x) . . . φN(x)] contains the POD
modes, VT corresponds to the normalized temporal coefficients αq (V is the matrix of
right-singular vectors), and Σ = diag[σ1 . . . σN] is the matrix of singular values, which are
equal to square root values of the eigenvalues of covariation matrix. The POD modes and
temporal coefficients are orthonormal:

WTW = IM, VTV = IN , or
M

∑
k=1
ϕi(xk)ϕj(xk) = δij,

N

∑
k=1

αi(tk)αj(tk) = δij (2)

In Equation (2) δij is the Kronecker symbol and I is the identity matrix. The concen-
tration fluctuation fields C = [c′(x, t1) . . . c′(x, tN)] can be phase-averaged to obtain the
coherent pulsations of the concentration [78,79].

ĉq(x) =
(

1/
√

N
) N

∑
k=1

aqkc′(x, tk) (3)

3. Results
3.1. Average Flow Structure

Figure 2 compares the mean velocity and OH PLIF intensity data for different flames.
The velocity field is shown by vectors and normalized by the bulk velocity of the main
air flow, which are 6.36 and 5.43 m/s for the cases of normal and elevated conditions,
respectively. For each flame case, the OH PLIF data is normalized by a maximum value.
The data are captured in the central (x, y) plane with the origin (0, 0) defined at the center
of the pilot nozzle outlet.

In all cases, there is a central recirculation zone present. For the methane and syngas
flames at normal conditions the maximum lateral cross-section of the recirculation zone is
approximately of 0.76D and 0.88D, respectively. For methane, the elevated pressure and
temperature do not affect strongly the velocity distribution. However, the chemical reaction
zone in the inner shear layer appears to be thinner for the high pressure and temperature
case. For syngas at normal conditions, the time-averaged reaction zone is even thinner.
For the elevated pressure and temperature, the chemical reaction zone is stabilized close
to the centerbody and is much shorter. For this flame the lateral size of the recirculation
zone is also smaller, viz., approximately 0.62D. Moreover, the reverse flow magnitude
in the recirculation zone is considerably higher, because the flame is shifted upstream in
comparison to other flames.

Figure 3 shows the flame images captured by the photo camera. The soot is visible
for the flames at normal conditions because the flame is stabilized with the aid of the
central non-premixed jet. For syngas, the flame at elevated conditions is brighter and the
nozzle is incandescent due to intensive heating by the closely located flame front. This is
demonstrated by the average OH PLIF data, which indicates that the flame is stabilized
close to the centerbody. Remarkably, a very strong soot luminosity is observed for the
methane flame at the elevated pressure and temperature.
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Figure 4 shows the spatial distributions of the variance of the y-component of the
velocity fluctuations. There are two separate shear layers with intensive turbulent fluctu-
ations around the annular swirling flows for the methane and syngas flames at normal
conditions. For the elevated pressure and temperature, the shear layers are not distinct for
the methane and could not be seen at all for the syngas flame. Moreover, it is noteworthy
that the local variance of the vertical velocity component reaches 100% of the flow bulk
velocity for the latter case.
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3.2. Coherent Flow Structures

Figure 5 shows the instantaneous snapshots of the PIV and PLIF data. For each flame
they were captured simultaneously. The velocity fields demonstrate that large-scale vortex
structures are present around the annular swirling flow. Moreover, the reverse flow is not
steady. The PLIF snapshot for the methane flame at normal conditions demonstrates that
the flame can be detached, viz., its root on one side is located outside the swirler nozzle.
For the elevated conditions, the flame is stabilized inside the nozzle almost all the time. For
the syngas flame at normal conditions, the PLIF snapshot visualizes a flame front around
the central jet. The central jet is not seen in the velocity fields, because it was not seeded
by tracer particles. However, since the bulk velocity of the central jet is higher (more than
twice) for the syngas cases, it penetrates further inside the recirculation zone. For the
elevated temperature and pressure conditions a tip of the flame front is located close to the
central body and most of the flame surface is inside the swirler. Thus, the present flow case
is characterized by a partial flame flash-back.

The POD spectra of the velocity fluctuations for the studied flames are shown in
Figure 6. One most intensive mode is detected for the methane flame at normal condi-
tions. This mode is shown by vectors in Figure 7, where the color corresponds to the
phase-averaged value of the OH PLIF intensity fluctuations. This mode corresponds to
a transverse hydrodynamics instability mode with almost asymmetrical pulsations of
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velocity components and OH PLIF intensity on opposite sides of the flow. In contrast,
the second and the third POD modes are related to almost symmetrical pulsations of the
velocity along the annular jet and symmetrical variation of the OH PLIF signal in the flow
core. These two different types of POD modes are considered to be related to a large-scale
transversal and longitudinal hydrodynamic instability modes. For the methane flame
at elevated pressure and temperature, the POD spectrum corresponds to a monotonous
decrease of the kinematic energy content with the mode number. As Figure 8 shows,
the first mode is related to nearly symmetric OH PLIF intensity pulsations in the upper
part of the recirculation bubble and strong coherent pulsations of the longitudinal flow
velocity. This POD mode should correspond to a longitudinal instability mode, whereas
the transverse hydrodynamics mode appears only as the fourth POD mode.
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Figure 8. First four POD modes with phase-averaged OH PLIF intensity for methane flame at elevated conditions.

For the syngas flame at normal conditions, the first and second POD modes have
considerably greater energy than the remaining modes. Their spatial distributions in
Figure 9 show that the second POD mode corresponds to nearly symmetrical coherent
fluctuations of OH PLIF signal around the central jet and also along the annular swirling
jet. The velocity fluctuations are related to a flapping motion of the annular jet. Traces of a
transversal hydrodynamic mode are seen in the first, third, and fourth POD modes with
low coherent fluctuations of the OH PLIF intensity. For the syngas at elevated conditions,
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the first and second POD modes, depicted in Figure 10 are not perfectly symmetrical, but
appear to be related to two phases (shifted by π/2) of a strong longitudinal hydrodynamics
instability mode (they correspond to a much greater kinematic energy than the other
modes), coupled with very strong pulsations of the OH PLIF intensity (up to 20%). The
third and fourth POD modes are nearly asymmetrical and expected to be produced by a
transversal mode.
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3.3. High-Speed Imaging of Flame Front Dynamics

Figures 11 and 12 show the time-averaged and instantaneous distributions of OH*
chemiluminescence signal, respectively. Generally, except for one case, the time-averaged
data of the chemiluminescence projection onto the image corresponds well to the time-
averaged OH PLIF data, obtained for the central cross-section of the flame. For the syngas
at normal and elevated conditions, the OH* chemiluminescence signal is the most intensive
above the diffusion central flame (at y/d ≈ 1.2 and 0.4, respectively), whereas the OH
fluorescence intensity is greater for the flame front near the swirler’s nozzle exit. This
can be due to the fact that the OH radical in hydrocarbon flames is produced mainly via
chemical reaction (4), whereas the electronically excited OH* is formed predominantly by
another chemical reaction (5) [80,81]. Moreover, the chemiluminescence of CO2* also should
significantly contribute to flame radiation in the wavelength range of 300–340 nm [82].

•H + O2 → •OH + •O (4)

CH + O2 → CO + OH∗ (5)

The animations of the OH* high-speed imaging are provided as Supplementary
Materials for this paper. The examples of the snapshots are shown in Figure 12. At
normal conditions, the flame front was stabilized around the central recirculation zone
and penetrated inside the nozzle. It is also observed to be partially lifted, when the flame
is blown-off on one side by the flow (see the example in Figure 12a). For the elevated
conditions, the flame dynamics are found to be more complex, associated with periodical
lift-off of the entire flame (Figure 12c), turbulent propagation against the rotating annular
flow and also frequent events of global extinction (Figure 12e,f), after the flame front
penetration inside the swirler. However, the flame was not blown-out by the flow due to
the presence of the central diffusion pilot flame.
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Figure 12. Instantaneous snapshots of OH* chemiluminescence for methane (a,c,e) and syngas (b,d,f) flames at normal
conditions (a,b) and elevated pressure and temperature (c–f).

The local variance for OH* image is shown in Figure 13. To visualize a bulk, coherent
movement of the flame front, the SVD (1) is applied to the OH* chemiluminescence images.
Whereas the POD is a common term for the velocity data analysis, the SVD decomposition
for the projections OH* chemiluminescence is referred to as principle component analysis
(PCA), as it is more common in literature. The PCA spectrum is shown in Figure 14. In
analogy to the POD of velocity data, for the case of methane flame at normal conditions,
the first PCA mode has a much greater magnitude in comparison to the remaining modes.
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Figure 14. PCA spectra of OH* images (a) and spectrum of the temporal coefficient of the first mode for the syngas flame at
elevated pressure (b).

The first four modes of the PCA for the OH* chemiluminescence images for the
methane flame at normal conditions are shown in Figure 15. The first and second modes are
clearly related to the transversal and longitudinal modes of large-scale coherent variations
of the flame front pattern. For the present case, the characteristic frequency of the temporal
coefficient variation for the transversal bulk mode corresponds to 26 Hz and the Strouhal
number of StT = 0.15. For the longitudinal mode, no such peak is found for the spectrum
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of α(t). For the other flame case, the difference in modes’ amplitude is not so strong.
However, for each flame such two different types of bulk modes, viz., nearly symmetrical
and asymmetrical, are detected.
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Figure 15. Four first PCA modes of OH* chemiluminescence images for methane flame at normal conditions.

Figure 16 shows the PCA modes of the OH* images for the methane flame at the
elevated conditions. The first PCA mode is related to the transversal movement, whereas
the longitudinal movement appears in the second and third PCA modes, which correspond
to a phase shift of π/2. The longitudinal oscillations correspond to a peak near 22 Hz in the
Fourier spectrum of α(t) or to StL = 0.15. The PCA modes for the syngas flames at normal
and elevated conditions are shown in Figures 17 and 18, respectively. For the normal
condition, the bulk movements in the transversal and longitudinal directions correspond to
the first and second PCA, correspondingly. The Fourier spectra of the temporal coefficients
for these modes do not have a distinguishing peak for a certain dedicated frequency. For the
elevated conditions, the longitudinal bulk mode is related to the first and third PCA modes,
for which a very sharp peak was found at 68 Hz (StL = 0.46) in the spectra of the temporal
correlation coefficients (see the example in Figure 14b). The transverse bulk movement
mode was also detected for the present case (second PCA mode), but its spectrum does not
contain any distinguished peak.
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4. Conclusions

The present paper reports on the PIV and OH PLIF measurements of the flow structure
during the combustion of methane and syngas in a model gas-turbine combustor. The
flames are stabilized by a generic swirler, based on a design by Turbomeca, which supplies
a part of the fuel as a pilot central jet and injects the remaining part between the vanes
of the swirler to organize the premixed lean combustion. The flames are studied at both
normal and elevated pressure and temperature for the equivalence ratios close to the
lean blow-off limits. The flame dynamics are also visualized by using high-speed OH*
chemiluminescence imaging. The data are processed by SVD to reveal coherent flow
structures and bulk movement of the turbulent flame.

The methane flame at normal conditions is not perfectly stable with the events of
partial lift-off. However, the dynamics are much more complex for the elevated pressure
and temperature conditions, associated with the lift-off of the entire flame, global extinction,
and re-ignition. The first few POD modes for PIV/PLIF data reveal the presence of
coherent longitudinal and transversal modes. These modes are not perfectly symmetrical,
or asymmetrical, since the local gas density fluctuations are not accounted for during the
decomposition. Nevertheless, the traces of the longitudinal and transversal coherent modes
of velocity fluctuations are detected in all cases.

The SVD analysis of OH* chemiluminescence also reveals similar spatial modes for
the bulk flame movement. The Fourier analysis of the temporal coefficients for these modes
show that for atmospheric methane flame, which is less stable than the syngas flame, the
transversal mode corresponds to the Strouhal number StT = 0.15. For the elevated pressure,
the unsteady flame dynamics is associated with longitudinal oscillating bulk movement
of the turbulent flame pattern. For the syngas flame with strong pulsations, the Fourier
spectrum features several peaks at different frequencies with the most intensive for the
Strouhal number of StL = 0.46.
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In summary, the dynamics of the lean methane flame close to the lean blow-off limit
is found to be related with the events of asymmetrical flame lift-off, accumulation of the
me-thane inside the recirculation zone (due to the presence of the pilot jet), and flame
re-entrance into the swirler nozzle. Therefore, detected transversal and longitudinal spatial
modes for this flame are associated with these events of the flame lift-off and re-entrance.
For the elevated conditions, the lift-off of the entire methane flame is observed, followed by
the flame re-entrance into the swirler with global extinction inside, followed by re-ignition
inside the combustion chamber by the diffusion central jet. The unsteady dynamics of the
syngas flame at elevated conditions, coupled with strong thermoacoustic pulsations, is
also related with periodic events of the flame flash-back, extinction inside the nozzle, and
re-ignition, but without flame lift-off due to a higher flame propagation speed.

Therefore, the present study shows that the scenario of unsteady dynamics lean syngas
flames can be sufficiently different from that for methane flames. Thus, the combustion
of lean syngas flames in model gas-turbine combustion chambers deserves additional
studies for a wider range of parameters to develop efficient methods for the suppression of
thermoacoustic pulsations in lean combustors.

Supplementary Materials: The following are available online at https://zenodo.org/record/5724
552#.YbHTRXIo-Uk, An archive, containing four video animations of high-speed OH* chemilumi-
nescence imaging of methane flame and syngas flames in a model gas-turbine combustor at normal
and elevated conditions, is provided as Supplementary Materials. Video S1: Animation of OH*
chemiluminescence for methane flame at normal conditions. Video S2: Animation of OH* chemilumi-
nescence for syngas flame at normal conditions. Video S3: Animation of OH* chemiluminescence for
methane flame at elevated conditions. Video S4: Animation of OH* chemiluminescence for syngas
flame at ele-vated conditions.
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