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Abstract: Power system health prognosis is a key process of condition-based maintenance. For the
problem of large error in the residual lifetime prognosis of a power system, a novel residual lifetime
prognosis model based on a high-order hidden semi-Markov model (HOHSMM) is proposed. First,
HOHSMM is developed based on the hidden semi-Markov model (HSMM). An order reduction
method and a composite node mechanism of HOHSMM based on permutation are proposed. The
health state transition matrix and observation matrix are improved accordingly. The high-order model
is transformed into the corresponding first-order model, and more node dependency information
is stored in the parameter group to be estimated. Secondly, in order to estimate the parameters
and optimize the structure of the proposed model, an intelligent optimization algorithm group
is used instead of the expectation–maximization (EM) algorithm. Thus, the simplification of the
topology of the high-order model by the intelligent optimization algorithm can be realized. Then, the
state duration variables in the high-order model are defined and deduced. The prognosis method
based on polynomial fitting is used to predict the residual lifetime of the power system when the
prior distribution is unknown. Finally, the intelligent optimization algorithm is used to solve the
proposed model, and experiments are performed based on a set of power system data sets to evaluate
the performance of the proposed model. Compared with HSMM, the proposed model has better
performance on the power system health prognosis problem and can get a relatively good solution in
a short computation time.

Keywords: high-order hidden semi-Markov model; composite node; model reduction; state duration;
polynomial fitting; residual life prognosis

1. Introduction

With the development of technology, the operation of power systems has an increasing
demand for higher reliability, lower environmental risks, and higher human safety. Power
system failures usually come at the cost of high maintenance costs and uncertain downtime.
However, it is difficult to obtain accurate health status and predict failures of a power
system in time. Thus, power system health prognosis is an important topic in reliability
and maintenance engineering, which determines how to properly integrate positioning
degradation data into power system fault detection and failure prevention [1]. Health
prognosis involves evaluating the current state, classifying the current state of several
failure modes, and predicting the residual lifetime of the power system. Residual lifetime
refers to the remaining life from the current health status to the functional failure of
the system.

As a probabilistic statistical method, the hidden Markov model (HMM) has a good
randomness representation ability and potential structural relationship description ability.
It is widely used in the field of complex system modeling. Carey first migrated HMM
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from the field of speech recognition to the field of power system fault diagnosis, creating a
new research direction of fault diagnosis [2]. Researchers proposed an improved hidden
Semi-Markov model (HSMM) to get rid of the constraints of HMM characteristics, which
further divided the macro-states into micro-states, and made a priori assumptions about
the time distribution of each macro-state to successfully realize the application of HMM in
the field of residual lifetime prediction. Liu et al. proposed an HSMM of information fusion,
completed the diagnosis and life prediction of equipment, and achieved good results [3].

System health prognosis is a complex process, and the real-time operation of the
power system is particularly difficult. Most of the methods in the field of reliability involve
intensive calculation and processing of a large number of historical data [4,5]. The methods
are usually divided into three categories: model-driven models, physical models, and
data-driven models.

The design of the physical model considers the operating conditions to model the
operating process of the system. The models integrate the physical features and numeric
features of the system under monitoring and develop the mappings between parameters
and prognostics features, such as rotating machinery [6,7] and lithium-ion batteries [8].
However, it is difficult to guarantee its accuracy. There is no perfect physical model to
adapt to the system.

The data-driven model is suitable for systems with little prior knowledge or a complex
structure because of the characteristics of using existing data to predict the health of the
system. Moreover, they rely solely on the past observed trajectories [9], including neural
networks [10–12], support vector machines [13,14], and Gaussian process regression [15].
Finding the effective part of the original data is an arduous task. The main disadvantages
of this model are slow convergence and the ease in which it falls into local minimums;
these shortcomings limit the application of this model.

Model-driven models focus on the prediction level fusion of information. For the
first time, Dong et al. used HSMM to conduct research on various sensor diagnoses [16].
Then, several variants of Markovian-based models were applied to the diagnosis and
prognostics of equipment. Yan et al. used HSMM-based equipment health estimation
and proposed several new methods to effectively predict equipment RUL [17]. Li et al.
proposed an improved HMM that is improved through performance degradation and
successfully applied it to the reliability evaluation of wind turbine bearings [18]. Huang
et al. proposed an improved HMM based on a predictive neural network and applied it
to a motor drive system to evaluate the proposed model [19]. These studies performed
well in different domains, whereas the modification was mostly done in the modeling
part, and little consideration was given to signal preprocessing and parameters estimation’
furthermore, the recognizing and training processes of model-driven models are usually
time-consuming, so they are applied to offline health prognosis.

In order to better refer to the historical statistical information to improve the model
recognition rate, a high-order hidden Markov model (HOHMM) was proposed by re-
searchers. For the problem of parameter explosion and a more complex derivation of
the high-order model, researchers have established an order reduction algorithm, ORED,
to simplify HOHMM. Basically, the fast incremental algorithm was proposed to train
HOHMM and the three problems were discussed, respectively [20]. Compared with the
successive order reduction of the ORED algorithm, Hadar proposed a more complex algo-
rithm based on the idea of equivalent transformation, which transformed any high-order
model into the corresponding first-order model [21]. The above researchers provide a
general research method for the research of the high-order model. However, in the process
of reducing the order of HOHMM to HMM, it is necessary to re-deduce each variable
of the model and re-evaluate the parameters based on the Baum–Welch algorithm. With
the increase of the order of the model, the workload will increase explosively. Dong et al.
established the HO-HMMAR model, deduced variables, and better solved the optimal
portfolio problem [22]. Heng et al. established the daily average temperature evolution
model and assumed that the asymmetric component was a high-order hidden Markov
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process. The results showed that the model can effectively capture the characteristics of
temperature data under various conditions Polynomial fitting was a simple tool for nonlin-
ear fitting, which has efficient data processing ability [23]. Ritesh et al. used the coefficients
of polynomial fitting to generate the feature vector of iris recognition and verified the
effectiveness of the polynomial method through the benchmark IITD and casia-v4 interval
iris data [24]. With the popularization of neural networks and various machine learning
methods, the flashpoint of polynomial fitting became dimmer and dimmer in the field
of fault diagnosis. However, the polynomial fitting is one of the few methods that can
directly write the analytical formula of a nonlinear relationship. It cannot be done by the
neural network.

The problem of parameter estimation has always been the most difficult link of the
probability model. The EM algorithm with a heavy workload depends on the initial value
and can easily fall into local optimization; thus, more and more researchers are turning
their attention to various intelligent optimization algorithms. The algorithm of Yu [13] and
other genetic algorithms were combined within the grey model. The numerical results
showed that the new method combined with a genetic algorithm (GA) can greatly improve
the prediction accuracy. Krause [14] et al. used the function approximator based on a
GA to estimate the parameters of the induction motor, which achieved better results than
other methods. Zhang [15] and others used the artificial immune algorithm to optimize
HMM and obtained the initial observation matrix with the highest identification degree.
Zhang [16] and others used an adaptive genetic particle swarm optimization algorithm
to optimize HSMM and obtained more accurate results than traditional HSMM. How an
intelligent simulation algorithm can be used to simplify the research process of HMM is a
point that should be paid attention to in future research.

In order to obtain more accurate and practical predictions under the premise of
unknown distribution, the contribution of this paper is to propose an improved HOHSMM
for the health prognosis of the power system. First, the framework of HOHSMM based
on HSMM is established. By considering the ORED algorithm and Hadar’s equivalent
transformation, a model reduction method based on permutation is proposed, which
uses the definition of the high-order hidden Markov group model to transform it into
the corresponding first-order model, and the solution of three problems of the low-order
model can be used in the high-order complex model. Moreover, the transition probability
matrix and observation probability matrix are deformed so that the interdependence
information of nodes in the high-order complex model is naturally integrated into the
model parameters, and the effect of simplifying the model is achieved. Then, the auxiliary
resident variables are defined and deduced, and the parameter group carrying more
dependency information is estimated by using the intelligent optimization algorithm
group. The maximizing occurrence probability of observation is described as objective,
the decomposition dependency of the high-order model is represented by the parameter
group, and the complexity is transferred from the model itself to the parameter group. The
polynomial fitting method is used to fit each resident variable sequence, and the residual
lifetime of the power system is predicted when the distribution is unknown. Finally, the
proposed model is verified and evaluated with one power system data set. The results
show that the method proposed in this paper is feasible and effective.

This article aims to develop a more superior power system health prognostics method.
The paper is organized as follows: Section 2 introduces first-order and high-order HMM,
and Section 3 develops an improved high-order hidden semi-Markov model. Then, the
residual lifetime prognosis method of this paper is proposed in Section 4. Section 5 analyzes
and discusses the case study of this article, and finally the article is concluded in Section 6.

2. Hidden Markov Model
2.1. First-Order HMM

The first-order HMM can be described as λ = (π, A, B). It is composed of observable
nodes and hidden state nodes. The health state of the node at time t is represented by
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Statet, then the transition between the hidden state of the hidden state node conforms to
the Markov property.

Prob(Statet|State1 · · · Statet−1) = Prob(Statet|Statet−1)

Note that the total number of health states is N and the total number of observa-
tions is M. π is the initial state distribution vector in the model, and it is the probability
value of each state of power system when t = 1, π = [π]1×N . A is the transition prob-
ability matrix, and A =

[
aij
]

N×N . aij is the probability value from state i to state j, and

aij = Prob(Statet+1 = j
∣∣Statet = i) ,

N
∑

i=1
aij = 1,

N
∑

j=1
aij = 1. B is the observation probability

matrix, and B = [bi(k)]N×M; it is the probability value of the observation generated by the
node under state i and Prob(ot = k|Statet = i) . ot represents the observation value at time

t, and meets
N
∑

i=1
bi(k)=1 and

M
∑

k=1
bi(k)=1.

In order to solve the evaluation problem of HMM, that is, Prob(O|λ), forward–
backward variables based on HMM are usually developed, and the evaluation problem is
decomposed into recursive expressions of forward–backward variables. In order to solve
the learning problem, the Baum–Welch algorithm is usually used to solve the parameter
set −λ, which may optimize the model and produce the current observations. Its idea is to
establish the Lagrange multiplier equation between the current parameter group λ and the
maximum parameter group λ, and calculate the partial derivative under the constraints
of each parameter to optimize the current parameters. In order to solve the prognosis
problem, dynamic programming is applied to HMM to produce the Viterbi algorithm to
find the most likely health state path. Due to its own characteristics, the conventional
HMM has the defects that it must obey the exponential distribution and cannot describe
the deterioration of the power system.

2.2. The High-Order HMM

The high-order hidden Markov model (HOHMM) is a generalization of the first-order
Markov model, and it retains more historical statistical information. It is assumed that the
current health state of the research object is related to the previous health states. Taking an
n-order hidden Markov model as an example, its health state at time t(t > n + 1) is related
to the health state at the previous n times, and it is expressed as

Prob(Statet|State1 · · · Statet−1) = Prob(Statet|Statet−N · · · Statet−1)

HOHMM is different from the conventional HMM, and it is described as λ =(
π, A, B, Ă, B̆

)
, where Ă is the state transition matrix only applicable to the previous

n times and B̆ is the observation probability matrix only applicable to the previous n times.
HOHMM also has three problems from HMM. However, due to relatively complex node
dependencies, the dependencies become more complex with the increase of orders, and the
model parameters will increase exponentially. Thus, the research on HOHMM generally
focuses on model order reduction. HOHMM improves the model recognition rate on the
basis of retaining more historical statistical information, but it still fails to overcome the
shortcomings of HMM.

3. Improved High-Order Hidden Semi-Markov Model

In this paper, by considering the shortcomings of HMM and the advantages of high-
order modeling, an improved high-order hidden semi-Markov model (HOHSMM) is
proposed based on HSMM.

Taking the second-order HSMM as an example, the model can be described as
λ =

(
π, A, B, Ă, B̆

)
. It is usually assumed that each sub-state conforms to the same time

distribution, and the topology of a second-order HSMM is described in Figure 1.
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Figure 1. The illustration of two-order HSMM.

3.1. The Model Order Reduction Based on Permutation Mapping

Similarly, taking the second-order HOHSMM as an example, due to the structural
changes of the second-order model, the model parameters and related algorithms can
be changed accordingly. The respective algorithms for solving the three problems of the
low-order model are not applicable to the high-order model. Thus, this paper proposes a
model reduction method based on combinatorial mapping, and it is essential to merge the
hidden state nodes corresponding to two adjacent time points in the second-order model
into one node; then, the merged nodes can be modeled by the Markov process, as shown in
Figure 2.

Figure 2. The illustration of the model reduction based on permutation. (a): Division of compound
nodes; (b): Markov chain model with reduced order after compound nodes.

In this paper, a health state in HSMM generates a segment of observations, as opposed
to a single observation in the HMM. Thus, the states in a segment semi-Markov model
are called super states. Each super state consists of several single states, which are called
son states, which can be seen in Figure 2. Figure 2a is a division of the model on the
second-order HOHSMM, and the adjacent state nodes can be combined into a new, larger
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node. The relationship between the two health states in the new node has no impact on the
Markov property of the whole model. The Markov property of the new model after order
reduction can be described as Equation (1).

Prob(Statet, Statet−1|Statet−1 · · · State1) = Prob(Statet, Statet−1|Statet−1, Statet−2)(t ≥ 3) (1)

The description of time in the new model also changes t to (t, t + 1). If the first element
of the time combination (t, t + 1) is the unique index of the time of the new model, the
time can also be expressed as t̆. t̆ is different from t in the mathematical sense, but in
the physical sense, t̆ = t. When the implicit state node of the new model combination
time t̆ is expressed as (Statet̆, Statet+1), it generates two groups of observations, ot̆ and
ot̆+1, where, ot̆+1 completely depends on (Statet̆, Statet+1) and ot̆ completely depends on(
State ˘t−1, Statet

)
. Moreover, at time t̆− 1, the observations connected by dotted lines are

the same observation in Figure 2b, and the sub-state set connected by dotted lines is also
the same sub-state set. Thus, each group of observations can be obtained from the unique
combined hidden state node, while the unique determined observations corresponding to
the combined hidden state can be only retained (except the initial time) in its topology.

In the reduced order model, taking the combination of hidden states as the modeling
object, different states are essentially an arrangement problem. Based on the above partial
definitions of HMM parameters, if a second-order HOHSMM has N different super states,
and considering the power system has performance degradation and the state is irreversible,
then there are C2

N + N states appearing in the original model. In this paper, a simple
mapping between the arrangement scheme and natural numbers is introduced, as shown
in Equation (2), where i, j are states, respectively.

Index = Mapping(i, j) = 4i + j−
i

∑
z=0

(i, j ∈ (0, 1 · · ·N − 1), j ≥ i) (2)

In the parameters of the second-order HOHSMM original model, the transition prob-
ability matrix becomes the transition probability cube of N × N × N and the observa-
tion probability matrix becomes the observation probability cube of N × N × M. The
initial probability distribution remains unchanged and the initial transition probability
matrix and the initial observation probability matrix are the same as the first-order model.
The new model parameters after order reduction are composed of a transition probabil-
ity matrix (C2

N + N)× (C2
N + N), observation probability matrix (C2

N + N)× M, initial
probability distribution, initial transition probability matrix, and initial observation prob-
ability matrix. Letting the reduced-order transition probability matrix be Â with the
element âij(i, j ∈ (0, · · ·N − 1)), the reduced-order observation probability matrix is B̂,
and the element is b̂ij(i, j ∈ (0, · · ·N − 1)). For λ =

(
π, A, B, Ă, B̆

)
, the element of π is

πi(i ∈ (0, · · ·N − 1)), the element of Ă is ăij(i, j ∈ (0, · · ·N − 1)), and the element of B̆ is
b̆i(j)(i, j ∈ (0, · · ·N − 1)).

Based on the order reduction method in Section 3.1, the transition probability matrix
Â ((C2

N + N) × (C2
N + N)) after dimension reduction can be obtained. The transition

probability matrix Â is sparse, and the actual amount of effective data in the matrix that is
not 0 is

N−1

∑
j=0

(
−j2 + jN + N − j

)
(3)

where j is the second state in the state arrangement (i, j). Taking the second-order
HOHSMM with n = 4 as an example, the effective data of the reduced probability transfer
matrix of order reduction are 20. In Table 1, the positions represented by 1 and 1* are the
effective data, the composite state represented by the column header at the position of 1* is
the main state, and the composite state represented by the column header at the position of
1 is defined as the transition state, while the location represented by 0 is invalid data.
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Table 1. Sparse representation of two-order HOHSMM reduced-order transition probability matrix with 4 states.

From/To Perm (0,0) (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)

Perm index/index 0 1 2 3 4 5 6 7 8 9
(0,0) 0 1 * 1 1 1 0 0 0 0 0 0
(0,1) 1 0 0 0 0 1 * 1 1 0 0 0
(0,2) 2 0 0 0 0 0 0 0 1 * 1 0
(0,3) 3 0 0 0 0 0 0 0 0 0 1
(1,1) 4 0 0 0 0 1 * 1 1 0 0 0
(1,2) 5 0 0 0 0 0 0 0 1 * 1 0
(1,3) 6 0 0 0 0 0 0 0 0 0 1
(2,2) 7 0 0 0 0 0 0 0 1 * 1 0
(2,3) 8 0 0 0 0 0 0 0 0 0 1
(3,3) 9 0 0 0 0 0 0 0 0 0 1

*: Main state; Shadow: Valid data.

3.2. The Model Reasoning

In view of the idea of a forward–backward algorithm, a linger time (LT) mechanism is
introduced, and an auxiliary variable ξt(i) is established, as is described in Equation (4).

ξt(i, d) = Prob(O[1:t], LT((i, i)) = d
∣∣∣λ) (t ≥ d) (4)

The probability that the observation sequence O[1:t] is generated at the cut-off time t
and has stayed in the current state for d time under a given model parameter group λ can
be obtained by Equation (4).

In this section, the sparse representation of the transition probability matrix of the
general second-order HOHSMM is given, and the significance of the main state and the
transition state can be described, respectively. The transition among the different main
health states of the conventional second-order model is a gradual process.

Main state→ (Transition state sequence)→ Next main state
This transformation process needs at most j− i + 2 time points to be fully described.

Taking the transition from the health state (0,0) to (3,3) as an example, the transition process
needs five time points to be described, as shown in Figure 3.

Figure 3. Schematic diagram of main state transition process.

In order to facilitate model reasoning, a transition variable ϑt(j, i, Road) is defined,
representing the process intermediate value from the main state (j, j) to the time main state
(i, i) of t time. The main states, by being transferred out, can be defined as acceptance states,
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and the main states being transferred in can be defined as return states.
→
t is defined as the

time point when the acceptance states appear.

(1) For i = 0 and d = t, ξt(i) can be described as

ξt(0, d) = Prob(O[1:t], LT(0) = d
∣∣∣λ) (5)

The recursive initial value is

ξt(0, 1) = π0b̆0(o1)b̆0(o2)ă00 (6)

The inner transfer recursion is

ξt(0, d) = ξt−1(0, d− 1)â(0,0)(0,0)(t− 1) b̂(0,0)(ot) (7)

(2) For i = 1, ξt(i) can be described as

ξt(1, d) = Prob(O[1:t], LT(1) = d
∣∣∣λ) (8)

The acceptance state can only be (0,0) and the transition state can only be (0,1). Then,
the acceptance value is ξt−d(0, t− d), ϑt(0, 1, Road) = â(0,0)(0,1)(t− d + 1)b̂(0,1)(ot−d+1).
Thus, the recursive median is described as ξt(1, 0)=ξt−d(0, t− d)â(0,0)(0,1)(t− d + 1)b̂(0,1)

(ot−d+1)â(0,1)(1,1)(t− d + 2)b̂(1,1)(ot−d+2), and the recursive equation of internal trans-
fer is

ξt(1, d) = ξt−∆t(1, d− 1)â(1,1)(1,1)(t− ∆t)b̂(1,1)(ot) (9)

(3) For I = 2, the acceptance states can be (0,0) and (1,1) and ξt(i) can be described as

ξt(2, d) = Prob
(

O[1:t], LT(2) = d
∣∣∣λ) (10)

The inner transfer recursion is

ξt(2, d) = ξt−1(2, d− 1)â(2,2)(2,2)(t− 1) b̂(2,2)(ot) (11)

Sit1: When the acceptance state is (0,0), it needs four time points to describe from (0,0)
to (2,2) and the acceptance value is

ξ→
t

(
0,
→
t
) →

t ∈ {t− d− 3, t− d− 2} (12)

The corresponding ϑt(0, 2, Road) can be described as â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,2)

(→
t + 2

)
b̂(2,2)

(
o→

t +3

) →
t = t− d− 3

â(0,0)(0,2)

(→
t
)

b̂(0,2)(ot−d−1)â(0,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

) →
t = t− d− 2

(13)

The corresponding return value is given by Equation (14). ξ→
t

(
0,
→
t
)

â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,2)

(→
t + 2

)
b̂(2,2)

(
o→

t +3

) →
t = t− d− 3

ξ→
t

(
0,
→
t
)

â(0,0)(0,2)

(→
t
)

b̂(0,2)(ot−d−1)â(0,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

) →
t = t− d− 2

(14)

Sit2: When the acceptance state is (1,1), it needs three time points to describe from

(1,1) to (2,2) and the corresponding
→
t = t− d− 2 acceptance value is

→
t −1

∑
du=1

ξ→
t
(1, du)
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ϑt(1, 2, Road) is

â(1,1)(1,2)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(1,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

)
(15)

The return value is

→
t −1

∑
du=1

ξ→
t
(1, du)â(1,1)(1,2)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(1,2)(2,2)

(→
t + 1

)
b̂(2,2)

(
o→

t +2

)
(16)

(4) For I = 3, the acceptance states can be (0,0), (1,1), and (2,2) and ξt(i) can be described as

ξt(3, d) = Prob
(

O[1:t], LT(3) = d
∣∣∣λ) (17)

Inner transfer recursion is

ξt(3, d) = ξt−1(3, d− 1)â(3,3)(3,3)(t− 1) b̂(3,3)(ot) (18)

Sit1: When the acceptance state is (0,0), it needs five time points to describe from (0,0)
to (3,3), and the corresponding acceptance value is

ξ→
t

(
0,
→
t
) →

t ∈ {t− d− 4, t− d− 3, t− d− 2} (19)

ϑt(0, 3, Road) can be described as
â(0,0)(0,1)

(→
t
)

b̂(0,1)

(
o→

t +1

)
â(0,1)(1,2)

(→
t + 1

)
b̂(1,2)

(
o→

t +2

)
â(1,2)(2,3)

(→
t + 2

)
b̂(2,3)

(
o→

t +3

)
â(3,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

)→
t = t − d − 4

2
∑

i=1
â(0,0)(0,i)

(→
t
)

b̂(0,i)

(
o→

t +1

)
â(0,i)(i,3)

(→
t + 1

)
b̂(i,3)

(
o→

t +2

) →
t = t− d− 3

â(0,0)(0,3)

(→
t
)

b̂(0,i)(ot−d−1)â(0,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t− d− 2

(20)

The return value is the product of the corresponding acceptance value and the inter-
mediate value.

Sit2: When the acceptance state is (1,1), it needs four time points to describe from (1,1)
to (3,3), and the corresponding acceptance value is

ξ→
t

(
1,
→
t
) →

t ∈ {t− d− 3, t− d− 2} (21)

The corresponding intermediate value ϑt(0, 3, Road) is â(1,1)(1,2)

(→
t
)

b̂(1,2)

(
o→

t +1

)
â(1,2)(2,3)

(→
t + 1

)
b̂(2,3)

(
o→

t +2

)
â(2,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

) →
t = t− d− 3

â(1,1)(1,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(1,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t− d− 2

(22)

The recursive median is ξ→
t

(
1,
→
t
)

â(1,1)(1,2)

(→
t
)

b̂(1,2)

(
o→

t +1

)
â(1,2)(2,3)

(→
t + 1

)
b̂(2,3)

(
o→

t +2

)
â(2,3)(3,3)

(→
t + 2

)
b̂(3,3)

(
o→

t +3

) →
t = t− d− 3

ξ→
t

(
1,
→
t
)

â(1,1)(1,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(1,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

) →
t = t− d− 2

(23)

Sit3: When the acceptance state is (2,2), it needs three time points to describe from
(2,2) to (3,3), and the corresponding acceptance value is

ξ→
t

(
2,
→
t
) →

t ∈ {t− d− 2} (24)

The corresponding intermediate value ϑt(2, 3, Road) is
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â(2,2)(2,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(2,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

)
(25)

The recursive median is

ξ→
t

(
2,
→
t
)

â(2,2)(2,3)

(→
t
)

b̂(1,3)

(
o→

t +1

)
â(2,3)(3,3)

(→
t + 1

)
b̂(3,3)

(
o→

t +2

)
(26)

The general recursive equation of ξt(i, d) can be expressed by Equation (27):

ξt(i, d) =
i

∑
j=0

[(
t

∏
k=t−d

â(i,i)(i,i) b̂(i,i)(ok)

)
ct

∑
di=1

∑
Road∈R

ξct(j, di)ϑt(j, i, Road)

]
(27)

where ct = t− d− lr + 1, lr is the length of Road.
Based on the above classification and derivation of recursion, the auxiliary variables ξt

in the higher state are decomposed into the expression of lower auxiliary variables. In the
recursive process, all the transition process state paths meeting the main state transition can
be generated, and ξt(i, d) can calculated by traversing all possible transition state paths.
The transition state paths included by each main state are given in Table 2, where x is not
included in the path length.

Table 2. Path generator for each main state transition process.

From To Road From To Road

(0,0) (1,1) [0,0,1,1] (0,0) (3,3) [x,x,0,0,3,3]
(0,0) (2,2) [x,0,0,2,2] (1,1) (2,2) [1,1,2,2]
(0,0) (2,2) [0,0–2,2] (1,1) (3,3) [1,1–3,3]
(0,0) (3,3) [0,0–3,3] (1,1) (3,3) [x,1,1,3,3]
(0,0) (3,3) [x,0,0,1,3,3] (2,2) (3,3) [2,2,3,3]
(0,0) (3,3) [x,0,0,2,3,3] – – –

By the given model parameters, the probability of generating observations O is

Prob(O|λ) =
N−1

∑
i=0

D

∑
d=1

ξT(i, d)

Auxiliary variable τt(index) is the probability of being in Mapping−1(index) at time t
under the premise of the given model parameters and observations.

τt(index) = Prob(Statet = Mapping−1(index)
∣∣∣λ, O)

Where τ0(index) can be obtained by calculating π, Ă, B̆, and the τt(index) recursive
equation can be shown as follows.

τt+1(index) =
prob

(
o→

t +1
, Statet = Mapping−1(index)

∣∣∣λ)
∑9

indexi=0 prob
(

o→
t +1

, Statet = Mapping−1(indexi)
∣∣∣λ)=

b̂(index)

(
o→

t +1

)
∑9

i=0 τt(i)â(i)(index)

∑9
indexi=0 b̂(index)

(
o→

t +1

)
∑9

i=0 τt(i)â(i)(indexi)

(28)

For the corresponding low-order model, the probability in a single state i(i ∈ (1, 2, 3, 4))
at time t can be described by the high-order model.

Prob(St = i) = ∑
indexi∈I

τt−1(indexi)

I is the index set corresponding to the second sub state i under different composite
states, and the index correspondence is given in Table 3.
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Table 3. Index correspondence.

Son State Index Gather (I) Perm Gather

0 {0} {(0,0)}
1 {1,4} {(0,1),(1,1)}
2 {2,5,7} {(0,2),(1,2),(2,2)}
3 {3,6,8,9} {(0,3),(1,3),(2,3),(3,3)}

For the parameter estimation problem, this paper selects the intelligent simulation al-
gorithm group to replace the Baum–Welch algorithm and carries out a two-stage estimation.
First, a one-stage likelihood function L

(
λ, Ă, B̆

)
is established, and it is described as

L
(
λ, Ă, B̆

)
= Prob(O[1:2]

∣∣∣λ, Ă, B̆)

For the situation of the current λ, Ă, B̆, if the probability of the first two observations
is generated, then the optimal λ, Ă, B̆ in one stage is

λ, Ă, B̆ = argmax
λ,Ă,B̆

Prob(O[1:2]

∣∣∣∣λ, Ă, B̆)

The two-stage likelihood function is

L(A, B) = Prob(O[3:]

∣∣∣λ, Ă, B̆, A, B)

In the situation of the current λ, Ă, B̆, A, B, the probability from the third to the final
observation is generated, and the corresponding optimal parameters A, B in the second
stage are

A, B = argmax
A,B

Prob(O[3:]

∣∣∣∣λ, Ă, B̆, A, B)

Different intelligent simulation algorithms are used to optimize and compare the
two-stage likelihood function, and finally to select the best result.

4. Residual Life Prognosis under Uncertain Distribution

For the recursive reasoning on the duration of each state in Section 3.2, the system
duration of each health state and the joint probability value of the observation can be
obtained. In fact, there is a certain correlation between the observations generated by the
system and the system duration in a single state, and it can be described by the observation
and state transition matrix through a specific mode. In order to obtain the edge probability
of the system duration in each health state, it is advisable to assume that system observation
and dwell are independent of each other. For the above obtained ξt(i, d), by calculating
the generation probability of the corresponding observation, the conditional probability
equation can be obtained.

Prob(LT(i) = d|λ) = ξt(i, d)
Prob(O|λ)

The time represented by each time point is used to calculate the probability that a
certain state produces the duration, and a group of duration probability sequences are
obtained. Generally, when the discrete data points are known, an a priori distribution
assumption is conducive to study the continuity characteristics of the data. However, if
the data distribution is incorrectly assumed, there will be great errors in the fitting and
the original properties of the data will be lost. Thus, this paper proposes a method to fit
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the data under an unknown distribution based on polynomial regression. The polynomial
regression can be described as

f n(x) = w0 + w1x + w2x2 + w3x3 · · ·+ wmxm

Letting the m-order polynomial function fitted by duration probability sequences
generated by health i be described as Ldsm

i(t), the residual lifetime of system at time t can
be obtained.

RUL1(t) =
N−1

∑
i=0

∫ D

t

Ldsn
i(x)Ri∫ D

0 Ldsni(y)dy
(x− t)dx +

N−1

∑
j=i+1

∫ D

t
xLdsm

j(x)Rjdx

Prob(st = i) (29)

where, D is the maximum duration of each state and Prob(st = i) is the probability in health
state i at time t. Ri, Rj are the integral scaling coefficients after continuous discrete data.

5. Case Study

This paper verifies and evaluates the proposed model and method through the exam-
ple of the system health diagnosis and life prediction of one power station. A LW42A-40.5
high voltage circuit breaker system was selected as the experimental platform; it was
equipped with a CT14 spring operating mechanism, three-phase linkage during opening
and closing, and SF6 was used as the arc extinguishing medium. An LW42A-40.5 high
voltage circuit breaker system is mainly used in 35 kV power transmission and distribution
systems for protection and control. The vibration signals of the system in the laboratory
were collected by a hydraulic accelerometer installed parallel to the rotating shaft of the
power system. In the application example, the power system was filled with 20, 40, 60,
and 80 mg of micro dust, respectively, and a fixed length time window every 10 min to
collect a vibration signal (P6) of about 1 min was used, as shown in Figure 4. Then, the
vibration signal was divided into five layers by using 10 dB wavelets and the array of
high-frequency and low-frequency wavelet coefficients were obtained. The dimensionally
reduced wavelet coefficients were used as the input feature sequence vector of DGHMM.
During the whole experiment, the states of the power system could be divided into four
types: Baseline, Cont1, Cont2, and Cont3. Cont3 is the complete failure state of system. The
whole experimental analysis platform was Python 3 and the platform running environment
was Windows 10.

The power system state monitoring information was used to predict the state of health.
In order to obtain a reliable health prognosis, the features to be monitored should be sensi-
tive to vibration trends. We used wavelet transform to remove noise from the original signal
and perform feature extraction in this paper [25]. It can generate a suitable framework to
study the multi-scale transient representation of the signal. It is also good at time-frequency
analysis and processing non-stationary signals. More than one characteristic should usually
be used for a healthy prognosis. Here, a wavelet amplitude model based on the overall
monitoring signal was used to demonstrate how to use features for health prognosis.
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Figure 4. Experimental bench and signal acquisition.

5.1. Partial Data Preview

Using the vibration signal monitoring data from the hydraulic accelerometer, the
health status diagnosis and residual life prognosis of the power system were carried out.
Part of the vibration data (P6) after wavelet transform is shown in Table 4.

Table 4. Partial wavelet transform data of P6.

Time Spot Sen 1 Sen 7 Sen 15 Sen 23 Sen 32

1 2.62 19.53 5.66 0.06 0.96
3 2.65 20.24 6.10 0.06 1.04
5 2.39 17.45 4.92 0.06 0.87
7 2.07 16.15 3.98 0.06 0.75
9 2.25 18.53 4.51 0.06 0.81

11 2.24 21.44 4.38 0.06 0.87
13 2.41 5.37 6.84 0.08 1.66
15 2.58 6.16 7.96 0.09 1.84
17 2.53 6.07 7.63 0.09 1.84
19 2.44 6.24 7.71 0.10 1.84
21 20.66 9.68 8.42 0.11 2.17
23 5.06 8.75 7.20 0.10 1.89
25 7.53 8.82 8.15 0.10 2.00
27 5.74 8.37 7.19 0.10 1.89
29 3.46 8.25 7.16 0.10 1.92
31 41.78 7.98 7.12 0.15 1.86
33 31.08 7.90 6.98 0.14 1.84
35 60.15 7.99 7.03 0.15 1.85
37 77.27 7.80 7.12 0.17 1.84
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5.2. Parameter Estimation of the Intelligent Optimization Algorithm Group

Considering that the maximum expectation algorithm has a large dependence on
the initial value, we used a genetic algorithm (GA), particle swarm algorithm (PSO), and
artificial fish swarm algorithm (AFSA) to estimate the parameters of the proposed model
under the same set of full observations, respectively.

The maximum number of iterations was 300, and the number of population (the
number of particles in a particle swarm) was 30. The GA adopted a large parameter
adaptive value encoding and decoding strategy. The PSO adopted the fixed inertia weight
strategy, with an inertia weight of 0.5 and a learning factor of 2. The AFSA perception field
was 1 and the crowding factor was 0.6. The objective optimization model was to maximize
the occurrence probability of observation. The iterative process and results are shown in
Figure 5. Under the premise of the same population number and iteration times, GA had
good results with a continuous evolution and maximum likelihood. The likelihood values
of the parameter groups found by the three optimization algorithms are shown in Table 5,
and the reduced probability transition probability matrix is given in Table 6.

Table 5. The maximum likelihood of each algorithm.

Algorithm Maximum Likelihood

GA 9.8665 × 10−8

PSO 2.44412 × 10−13

AFSA 7.22939 × 10−13

Table 6. The optimal probability transfer matrix is represented sparsely.

From/To Perm (0,0) (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (3,3)

Perm index/
index 0 1 2 3 4 5 6 7 8 9

(0,0) 0 7.78 ×
10−1

4.45 ×
10−2

4.50 ×
10−1

2.67 ×
10−2 0.00 0.00 0.00 0.00 0.00 0.00

(0,1) 1 0.00 0.00 0.00 0.00 8.53 ×
10−1

1.40 ×
10−1

7.00 ×
10−3 0.00 0.00 0.00

(0,2) 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.44 ×
10−1

2.56 ×
10−1 0.00

(0,3) 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(1,1) 4 0.00 0.00 0.00 0.00 8.66 ×
10−1

1.32 ×
10−1

2.45 ×
10−3 0.00 0.00 0.00

(1,2) 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.97 ×
10−1

3.44 ×
10−3 0.00

(1,3) 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(2,2) 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.87 ×
10−1

1.13 ×
10−1 0.00

(2,3) 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
(3,3) 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

5.3. Residual Lifetime Prognosis

Based on the model reasoning, the duration of each state was analyzed, and the full
probability equation was used for equivalent replacement in the calculation process. The
different duration values of each state at different time points were separated according
to the state to obtain the duration probability sequence of each state, and the polynomial
regression was used to fit the sequence to obtain their respective analytical formulas. In the
fitting process, the order m with less of a resonance effect on the prediction of the residual
life of the subsequent state was preferentially selected (priority selection principle). The
polynomial fitting of four different states at the final time point is given as an example in
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Figure 6. The optimal values of fitting in the four states were 20, 15, 19, and 17 respectively,
and the detailed polynomial regression coefficients are given in Table 7.

Figure 5. Swarm intelligence algorithm iteration process.

Figure 6. The polynomial fitting of each state at the final time.
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Table 7. The polynomial fitting coefficients of each state at the final time.

Coeff. Index
State Type

State0(20) State1(15) State2(19) State3(17)

0 −2.38819 × 10−45 1.89034 × 10−32 −3.01553 × 10−41 −4.21246 × 10−37

1 7.47909 × 10−42 −6.14991 × 10−29 1.02846 × 10−37 1.23709 × 10−33

2 −9.90244 × 10−39 9.03133 × 10−26 −1.54556 × 10−34 −1.56243 × 10−30

3 6.85507 × 10−36 −7.90982 × 10−23 1.31921 × 10−31 1.0738 × 10−27

4 −2.21019 × 10−33 4.59824 × 10−20 −6.68384 × 10−29 −3.92341 × 10−25

5 −1.73946 × 10−31 −1.86838 × 10−17 1.65986 × 10−26 2.81649 × 10−23

6 4.20376 × 10−28 5.44157 × 10−15 2.2419 × 10−24 4.69387 × 10−20

7 −1.12487 × 10−25 −1.14607 × 10−12 −3.79886 × 10−21 −2.7376 × 10−17

8 −3.1407 × 10−23 1.73894 × 10−10 1.72559 × 10−18 8.37058 × 10−15

9 3.36199 × 10−20 −1.8709 × 10−8 −4.83436 × 10−16 −1.67201 × 10−12

10 −1.2786 × 10−17 1.3854 × 10−6 9.40639 × 10−14 2.29806 × 10−10

11 2.98005 × 10−15 −6.72669 × 10−5 −1.31442 × 10−11 −2.18798 × 10−8

12 −4.69272 × 10−13 1.982402 × 10−3 1.32469 × 10−9 1.41766 × 10−6

13 5.09843 × 10−11 −3.1177213 × 10−2 −9.50595 × 10−8 −6.00431 × 10−5

14 −3.77167 × 10−9 2.04641444 × 10−1 4.72263 × 10−6 1.5492 × 10−3

15 1.82137 × 10−7 −2.9072277 × 10−1 1.55018 × 10−4 2.1526379 × 10−2

16 −5.28119 × 10−6 — — 3.118172 × 10−3 1.26386828 × 10−1

17 7.74612 × 10−5 — — 3.3825859 × 10−2 1.61790099 × 10−1

18 4.00078 × 10−4 — — 1.54167196 × 10−1 — —
19 4.512709 × 10−3 — — 1.47377792 × 10−1 — —
20 6.50429 × 10−4 — — — — — —

In principle, negative values are not allowed for probability integration, but polyno-
mial regression shows obvious fluctuation characteristics, positive and negative values
have certain offset effect, and resonance also exists at the same time point in different states.
It is not difficult to predict that the predicted residual life value may have certain fluctuation
characteristics. In order to better fit the polynomial, the original data points were linearly
interpolated combined with the characteristics of the original data. In Figure 7, the red
point is the original data point, that is, the adaptive duration generation probability value,
the light blue is the interpolation point, and the yellow line is the polynomial fitting line.

Figure 7. Residual lifetime prognosis of P6.

Finally, the residual life prognosis of P6 is shown in Figure 7, in which the discrete
prediction points have been interpolated and smoothed. Mark 1 shows that there is a large
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deviation in the predicted value at the final time point. Corresponding to the phenomenon
of the initial fluctuation range of the polynomial regression formula in each subgraph
of Figure 7 being large but the fluctuation gradually decreasing with the increase of the
time point, this is the result of the priority selection principle. The phenomenon of early
damage appears at Mark 2, corresponding to the phenomenon of residence early reduction
in Figure 6d.

Compared with the low-order HSMM results [3], the residual life prognosis by the
proposed model in this paper is shown in Table 8. From the sampling time point, the overall
effect of the residual life prognosis method based on HOHSMM and polynomial fitting
is significantly better than that of the conventional HSMM. The case shows that the life
prognosis method based on HOHSMM and polynomial regression is effective and feasible.

Table 8. Relative error analysis of the predicted RU.

Actual RUL
Model of This Paper HSMM

Predicted RUL The Relative
Error (%) Predicted RUL The Relative

Error (%)

300 357.010 19.00 302.558 0.85
260 266.729 2.59 299.643 15.25
220 180.068 18.15 297.954 35.43
170 142.383 16.25 194.981 14.69
150 120.147 19.90 192.081 28.05
120 98.159 18.20 188.666 57.22
110 102.573 6.75 102.471 6.84
90 79.956 11.16 100.291 11.43
50 39.600 20.80 97.675 95.35

Mean relative
error/% 14.76 29.4592

6. Conclusions

The diagnostic condition of mechanical systems is that the training data are sufficient
and the samples of different categories in the training data have a balanced distribution. In
the whole life cycle of a high-voltage circuit breaker system, it is in normal state most of
the time, and the number of normal samples in the actually monitored signal will be more
than the number of fault samples, resulting in the imbalance of training data and unknown
distribution. Thus, for the problem of large error in the residual lifetime prognosis of power
systems, a novel residual lifetime prognosis model based on HOHSMM and polynomial
fitting was proposed. Based on HSMM, an order reduction method and composite node
mechanism of HOHSMM based on permutation were proposed. The order reduction
method of the permutation and combination model is simple and intuitive and uses the
definition of the high-order hidden Markov group model. The high-order model can be
transformed into the corresponding first-order model by changing the observation angle,
and the solution of the three problems of the low-order model can be used in the high-order
complex model. The intelligent optimization algorithm group can be used to replace
the EM algorithm to estimate the parameters and optimize the structure of the proposed
model, and the simplification of the topology of the high-order model by the intelligent
optimization algorithm can be realized. The complex dependency information in the
high-order model is transferred to the deformed parameter group. It effectively simplifies
the model and provides a new idea for the study of this kind of model. Finally, a case
was studied to verify the proposed model. From the experimental results, the comparison
between the proposed model and HSMM showed several advantages of the proposed
model, indicating that the remaining life prediction based on polynomial fitting has better
performance for the health prognosis problem of the power system.
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