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Abstract: In this work, a new approach was developed for the detection of engine misfire based
on the long short-term memory recurrent neural network (LSTM RNN) using crank speed signal.
The datasets are acquired from a six-cylinder-inline, turbo-charged diesel engine. Previous works
investigated misfire detection in a limited range of engine running speed, running load or misfire
types. In this work, the misfire patterns consist of normal condition, six types of one-cylinder misfire
faults and fifteen types of two-cylinder misfire faults. All the misfire patterns are tested under wide
range of running conditions of the tested engine. The traditional misfire detection method is tested
on the datasets first, and the result show its limitation on high-speed low-load conditions. The LSTM
RNN is a type of artificial neural network which has the ability of considering both the current
input in-formation and the previous input information; hence it is helpful in extracting features of
crank speed in which the misfire-induced speed fluctuation will last one or a few cycles. In order
to select the engine operating conditions for network training properly, five data division strategies
are attempted. For the sake of acquiring high performance of designed network, four types of
network structure are tested. The results show that, utilizing the datasets in this work, the LSTM
RNN based algorithm can overcome the limitation at high-speed low-load conditions of traditional
misfire detection method. Moreover, the network which takes fixed segment of raw speed signal as
input and takes misfire or fault-free labels as output achieves the best performance with the misfire
diagnosis accuracy not less than 99.90%.

Keywords: engine misfire; pattern recognition; fault detection; LSTM; time-frequency analysis

1. Introduction

Engine misfire is a phenomenon of no-burning in cylinder which may be caused by
insufficient fuel injection, bad fuel quality, insufficient ignition energy, or mechanical failure,
etc. Since misfire fault will cause abnormal engine running condition and air pollution,
many researchers have been trying to put forward effective methods to achieve accurate
and real-time misfire detection.

The techniques for engine misfire detection can be categorized according to the utilized
sensor signals, which includes the method using engine body vibration signal [1], the
method using acoustic signal [2], the method analyzing exhaust gas temperature [3], the
method monitoring in-cylinder iron current [4], and the method using crank speed [5].
The method using engine body vibration signal could sample much information, since the
vibration signal is sampled with high resolution and is related to in-cylinder combustion.
However, a large amount of computation is required for processing vibration data. The
method using acoustic signal has not solved the problem of noise interference in practical
implementation. The method analyzing the temperature of exhaust gas is limited by the
sensor’s response time. The method monitoring in-cylinder iron current needs to modify
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the engine body. The method using crank speed has been adopted by many researchers,
since the crank speed can be sampled relatively easily and cannot be easily contaminated
by uncorrelated noise.

The misfire detection methods based on crank speed can be categorized into physical
model-based algorithms and data-driven diagnosis algorithms.

The model-based method is used to diagnose engine misfire by building the relation-
ship between crank speed and in-cylinder pressure based on the engine dynamic model.
Zheng et al. [5] designed a Luenberger sliding mode observer to estimate engine combus-
tion torque based on experimental crank speed of a four-cylinder engine. Rizvi et al. [6]
proposed a hybrid model for simulating the relationship between engine power and crank
speed fluctuations. Misfire was detected by using Markov chain. Helm et al. [7] estimated
engine torque based on a parametric Kalman filter. Misfire was detected by employing the
estimated torque and an interacting multiple model algorithm. Hmida et al. [8] proposed
the torsional model of crankshaft. The Lagrange method and Newmark algorithm were
employed to derive the equations of motion. The appearance of sidebands around the
acyclic frequency was adopted to detect misfire.

The model-based algorithm can lead to very accurate results if properly executed.
Nevertheless, the method needs precise engine model parameters which is hard to gauge
accurately. The damping is an example that cannot even be measured. Meanwhile, the
complexity of model-based algorithm may not permit the real time implementation of the
algorithm [9]. Therefore, this method has not been widely used in industrial application.

The data-driven diagnosis algorithms provide another way of misfire detection, in
which the misfire related characteristics are extracted directly from crank speed instead of
deriving the excitation torque or in-cylinder pressure. Misfire is detected by distinguishing
the misfire related characteristics from fault free. The representative data-driven method
is the engine roughness method which is proposed by Plapp et al. [10] and is still used
in modern vehicles. However, this method is limited on high-speed low-load conditions
when the number of engine cylinders is not less than six.

Another data-driven method is conducted by analyzing the typical frequencies of
crank speed. Taraza et al. [11] utilized the lowest three harmonic orders of crank speed
as an indicator for one-cylinder misfire detection. Geveci et al. [12] analyzed the first and
the second harmonic components of crank speed under normal and cylinder 1# misfire
conditions at various speeds and loads. This method is limited as well, since the speed
spectrum of two-cylinder misfire fault may be confused with one-cylinder misfire patterns.

Over the past about twenty years, machine learning algorithms developed rapidly and
have been exploited in misfire detection research field [13]. Compared with the algorithms
that one or some human-designed indicators are calculated for misfire detection, the
machine learning algorithm could extract more fault features from one signal or could
process many signals at the same time. Not only the crank speed, but also the engine
vibration and in-cylinder pressure have been used in the machine learning algorithm as
reported in the literature.

Li et al. [14] utilized the crank speed and the techniques including the empirical mode
decomposition, kernel independent component analysis, Wigner bispectrum and support
vector machine (SVM) for detecting misfire of a marine diesel engine. Chen and Randall [15]
designed a misfire detection method which consists of three stages: fault detection, fault
localization and fault severity identification. This method was achieved by using the
lowest four harmonic orders of crank speed and a fully connected artificial neural network
(ANN). Jung et al. [16] distinguish misfire and fault-free conditions using crank speed and
Kullback–Leibler divergence. SVM was utilized as the automatic classification tool. Gani
and Manzie [17] also employed the SVM technique and crank speed for classifying normal
condition, intermittent misfire and continuous misfire in cylinder 6# of engine. The accuracy
approached 100% in test dataset. In the work of Sharma et al. [18], the statistic features
of vibration signals, like standard deviation, kurtosis, median and so on, were selected as
fault features for misfire detection. The decision tree algorithm was employed for fault
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classification. As reported by Moosavian et al. [19], wavelet denoising technique, ANN,
least square support vector machine, and D–S evidence theory were applied for misfire
detection. The final classification accuracy of 98.56% was achieved by using acoustic and
vibration signal under idle condition. Gu et al. [20] utilized multivariate empirical mode
decomposition and SVM techniques for a twelve-cylinder diesel engine misfire detection.
Qin et al. [1] designed a deep twin convolutional neural network with multi-domain inputs
for misfire detection. Since the vibration signal was employed, the authors also studied
the algorithm’s performance when there was strong environmental noise on the vibration.
Jafarian et al. [21] employed vibration signals from four sensors placed on the engine
for misfire detection. The fast Fourier transform (FFT) was used for feature extraction;
the ANN, SVM, and k-nearest neighbor (kNN) algorithms were used for classification.
Liu et al. [22] took many signals, including engine speed, exhaust temperature, and fuel
consumption, as the inputs of ANN for misfire detection. Bahri et al. [23] detected misfire
of a homogeneous charge compression ignition engine by using in-cylinder pressure and
ANN model.

It can be seen that the mentioned data-driven diagnosis algorithms mainly focused on
the classical feature extraction methods, such as human-designed threshold, FFT, wavelet
transform and empirical mode decomposition, and traditional pattern recognition methods,
such as fully connected ANN and SVM. Thus, the algorithm performance often depends
on the proper selected features and the domain expertise in engine misfire. In addition,
the mentioned algorithms based on machine learning either mainly considered a few
engine speed and load conditions, or only considered a few one-cylinder misfire types. In
practice, the fault features would change with the engine running conditions or different
misfire types, and for a data-driven algorithm especially a machine learning algorithm, the
sample size is an important factor for the algorithm training. Therefore, there is still some
research work needs to do for applying the machine learning based algorithms into actual
industrial scenario.

Recurrent neural network (RNN) is a type of neural network which is good at process-
ing sequence data. Sequences may be of finite or countably infinite length, and may be
temporal or non-temporal. Examples of time-indexed data include the audio recordings
which are sampled at fixed intervals. In fact, RNNs are frequently applied to sequences
whose meaning are directly related to the data order but no explicit notion of time [24].
Engine crank speed is a type of sequence that the prior motion will affect the later motion.
For example, assuming the firing order of a six-cylinder engine is 1-5-3-6-2-4, if misfire
occurs in the first cylinder, not only the instantaneous speed variation of the first cylinder
changes, but also the fourth cylinder. Therefore, RNN is hopeful for misfire detection. For
the earlier RNN, it was difficult to handle the problems of vanishing and exploding gradient
that occurred when training RNN across many steps [25]. Therefore, in this paper, the
RNN with long short-term memory (LSTM) [26] which overcomes the training difficulties
is utilized.

Compared with misfire detection studies in literature, the main contribution of this
paper is as follows.

• A new misfire detection method that is based on LSTM RNN is proposed.
• Datasets for network training and testing are acquired in wide range of speed and

load conditions of the tested diesel engine, which ensures the diversity of datasets and
makes the network more applicable.

• For a six-cylinder engine, limited studies [12,16,22,27] have considered the detection
of two-cylinder misfire faults which include more misfire types and may disturb the
detection of one-cylinder misfire and even cause misdiagnosis. In this paper, besides
the one-cylinder misfire faults, all the fifteen two-cylinder misfire faults are considered
as well.

The rest of the paper is organized as follows. In Section 2, the experiment setup and
diesel engine rig tests are introduced. The speed characteristics under misfire and the
limitation of traditional misfire detection method are described in Section 3. The scheme



Energies 2022, 15, 300 4 of 24

of misfire diagnosis and the LSTM algorithm are introduced in Section 4. In Section 5, the
experimental results are analyzed and discussed. Finally, conclusions are given in Section 6.

2. Experimental Equipment and Data Acquisition
2.1. Test Rig Setup and Data Acquisition System

The test engine was a four-stroke, six-cylinder-inline diesel engine. In order to adjust
the fuel injection parameter conveniently, a diesel engine with electronic unit pump was
employed. In addition, with larger number of cylinders, an engine would operate steady,
so the fault features of misfire would become weaker relatively [28]. Thus, a six-cylinder
engine was selected. The basic technical data of engine is shown in Table 1. A hydraulic
dynamometer was connected to the engine for providing external load. A flexible shaft
coupling was mounted to connect the engine crank shaft and the dynamometer. Figure 1
shows the picture of the whole test-rig.

Table 1. Engine specifications.

Parameter Value

Engine type CY6BG332
Configuration Six-cylinder, inline, four-stroke
Air intake Turbocharged, intercooled
Firing order 1-5-3-6-2-4
Fuel injection system Electronic unit pump
Total displacement 5.95 L
Compression ratio 18.5
Rated power 88 kW @ 2200 r/min
Maximum torque 450 Nm @ 1000–1800 r/min

Energies 2022, 15, x FOR PEER REVIEW 4 of 25 
 

 

The rest of the paper is organized as follows. In Section 2, the experiment setup and 
diesel engine rig tests are introduced. The speed characteristics under misfire and the lim-
itation of traditional misfire detection method are described in Section 3. The scheme of 
misfire diagnosis and the LSTM algorithm are introduced in Section 4. In Section 5, the 
experimental results are analyzed and discussed. Finally, conclusions are given in Section 
6. 

2. Experimental Equipment and Data Acquisition 
2.1. Test Rig Setup and Data Acquisition System 

The test engine was a four-stroke, six-cylinder-inline diesel engine. In order to adjust 
the fuel injection parameter conveniently, a diesel engine with electronic unit pump was 
employed. In addition, with larger number of cylinders, an engine would operate steady, 
so the fault features of misfire would become weaker relatively [28]. Thus, a six-cylinder 
engine was selected. The basic technical data of engine is shown in Table 1. A hydraulic 
dynamometer was connected to the engine for providing external load. A flexible shaft 
coupling was mounted to connect the engine crank shaft and the dynamometer. Figure 1 
shows the picture of the whole test-rig. 

Table 1. Engine specifications. 

Parameter Value 
Engine type CY6BG332 
Configuration Six-cylinder, inline, four-stroke 
Air intake Turbocharged, intercooled 
Firing order 1-5-3-6-2-4 
Fuel injection system Electronic unit pump 
Total displacement 5.95 L 
Compression ratio 18.5 
Rated power 88 kW @ 2200 r/min 
Maximum torque 450 Nm @ 1000–1800 r/min 

 
Figure 1. The test-rig. 

A Kistler high-temperature pressure piezoelectric sensor, Type 6058A, was mounted 
in cylinder 1# through the glow plug hole for verifying misfire occurrence in cylinder 
chamber. A magnetic sensor, which was mounted opposite to the teeth on the flywheel 
was used to measure the angular speed of the crankshaft. The sensors’ signals were syn-
chronously sampled and primarily processed using Siemens LMS SCM05 system with 24-
bit ADC resolution and a maximum sampling rate of 102.4 kHz. 

2.2. Test Description 
The measurements were conducted over the engine speed range 800–2200 r/min with 

interval 100 r/min, at different load levels, as shown in Figure 2. For each engine speed 
and load value, the measurements were operated under normal, one-cylinder misfire and 
two-cylinder misfire conditions. The misfire types are shown in Table 2. Including normal 

Figure 1. The test-rig.

A Kistler high-temperature pressure piezoelectric sensor, Type 6058A, was mounted in
cylinder 1# through the glow plug hole for verifying misfire occurrence in cylinder chamber.
A magnetic sensor, which was mounted opposite to the teeth on the flywheel was used
to measure the angular speed of the crankshaft. The sensors’ signals were synchronously
sampled and primarily processed using Siemens LMS SCM05 system with 24-bit ADC
resolution and a maximum sampling rate of 102.4 kHz.

2.2. Test Description

The measurements were conducted over the engine speed range 800–2200 r/min with
interval 100 r/min, at different load levels, as shown in Figure 2. For each engine speed
and load value, the measurements were operated under normal, one-cylinder misfire and
two-cylinder misfire conditions. The misfire types are shown in Table 2. Including normal
condition, the total fault types are 22. The misfire condition was achieved by setting the
injection parameter zero on the programmable electronic control unit.
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Figure 2. Engine operating conditions.

Table 2. All the misfire types.

Categories Misfire Types

Normal condition Fault-free
One-cylinder misfire 1#, 2#, 3#, 4#, 5#, 6#

Two-cylinder misfire
Two consecutive cylinders. 1#5#, 3#5#, 3#6#, 2#6#, 2#4#, 1#4#;
Two cylinders with one-cylinder interval. 1#3#, 5#6#, 2#3#, 4#6#, 1#2#, 4#5#;
Two cylinders with two-cylinder interval. 1#6#, 3#4#, 2#5#.

The tests were conducted in an intensive engine running speeds and loads, and varied
in a wide range. Partial data were used for network training and the rest were used for
network testing. The size of training dataset had been set from large to small until an
optimal size was achieved.

3. The Speed Characteristics under Misfire and the Limitation of Traditional Misfire
Detection Method

When misfire occurs, the instantaneous engine crankshaft speed will drop and the
subsequent speed will rise up compared with the normal conditions. The variation of the
whole speed curve will be larger. An example is shown in Figure 3a, under the running
condition of 1000 r/min and 100 Nm, when a misfire occurs in cylinder 1#, as the dash
curve indicates, the speed becomes different from the normal condition. When the engine
speed is high and the load is low, as shown in Figure 3b, the variation rule of instantaneous
crankshaft speed becomes unclear, and the difference between normal and misfire condition
also becomes indistinguishable. Moreover, when two-cylinder misfire occurs, the fault
features expressed from engine speed curve is easily confused with that of one-cylinder
misfire condition, especially under the high-speed and low-load conditions. Figure 4a,b
show the comparison between speed curves of one-cylinder misfire and two-cylinder misfire.
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Therefore, for detecting misfire accurately, the fault features that can reduce or elimi-
nate the interference from engine speed and load should be found. One way to eliminate
the impact of engine running range is to divide it into small blocks and then find fault
features for each block [27]. However, this will increase workload when the engine running
range is large. The better way is to find or design an algorithm that can extract useful
feature or can learn more features for the whole engine running conditions.

An example of the traditional methods which is called engine roughness method
is introduced as below. This method calculates a misfire indicator that is based on the
difference of two consecutive angular accelerations. Equation (1) presents the calculation
of the indicator [10].

Si = (Ti+1 − Ti)/T3
i (1)

where Si is engine roughness of the ith cylinder. Ti is the time period from ignition of the
ith cylinder to ignition of the next cylinder in firing order.

Figure 5 shows the results of indicator S under different engine speeds and different
misfire patterns. When misfire occurs in cylinder i, the corresponding Si will become larger
than the predefined threshold. An example is shown in Figure 5a, the threshold can be
defined in range 15–19, and when Si is detected larger than the threshold, it is thought
the misfire happened in the cylinder i. This method is limited at the high-speed low-load
conditions. As shown in Figure 5b, under 1900 r/min and no-load condition, it is hard
to determine the threshold, and the two-cylinder misfire modes are easily confused with
one-cylinder misfire modes.

The unsatisfied results appeared at high-speed and low-load conditions are caused
by the background noise which has approximately the same order of magnitude with the
value related to the misfire presence. The reasons for relatively higher background noise
are mainly from the different burning behaviors caused by the systematic nonuniformity.
In addition, with the speed increasing and load decreasing, the signal to noise ratio will
decrease since the useful features caused by misfire will decrease. Figure 6 presents the
standard deviation of crankshaft speed under 800 r/min and no-load conditions. The
standard deviation is calculated once per cycle, the points in Figure 6 which are shown
in the form of mean value and standard deviation are calculated from 200 cycles of data.
The results clearly show that when misfire occurs, the amplitude of speed variation will
increase, and this is helpful for extracting misfire features. However, when engine speed
becomes higher and load becomes lower, the amplitude of speed variation decreases,
and the amplitude difference between normal and misfire patterns also decreases, as
shown in Figure 7. Then, the signal to noise ratio decreases. The limitation of the engine
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roughness method proves that it is hard to use too few features to achieve a perfect fault
detection result.

Since LSTM RNN is good at learning features of sequences, the LSTM RNN is utilized
in this paper to detect misfire and to overcome the limitation of traditional algorithm.
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4. The LSTM RNN

The classical artificial neural networks are design to extract features from datasets
whose sub-samples are independent with each other. In some application scenarios, like
natural language processing, the meaning of a whole sentence is dependent on the meaning
and order of the previous and later words. RNNs are designed to be applied in this kind
of research field. RNNs are connectionist models that capture the meaning of sequences
via cycles in the network. Basic architecture of an RNN is shown in Figure 8, which is an
unfold architecture.
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As presented in Figure 8, the forward pass of an RNN module looks the same as that
of a multi-layer perceptron which has a single hidden layer. The main difference is that the
activations of the hidden layer are from both the current input layer and the hidden layer
activations from the previous step, as described in Equation (2) [29]. Equation (3) calculates
the output value or vector. Thus, an RNN will map the input sequences into output.

h(t) = f
(

b + Wh(t−1) + Ux(t)
)

(2)

y(t) = Vh(t) (3)

where W, U and V are the weight matrices. b, x, h, f, and y donate the bias vector, input
vector, hidden layer vector, activation function and the output vector, respectively.

The classic RNN has the problem of a vanishing gradient [30]. In addition, sometimes
gradient explosion will also occur. This is because the error surface is either very flat or very
deep after updating weights in many time steps. This problem is also called the long-term
dependency problem. One effective way to solve this problem is using gating mechanism
to control the information passing path, such as LSTM.

LSTM RNN has the basic structure of RNN, which is a chain of repeating modules.
The main difference of an LSTM RNN from other RNNs is the structure of the module,
which is marked with shadow area in Figures 8 and 9. In a module of LSTM RNN, three
gates are designed to control the output.
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The main line of an LSTM module is the calculations of input vector, cell state and
output, as indicated by the blue dot and arrow in Figure 9. First of all, the input vector
of LSTM module is acquired by concatenating the outputs of the previous module and
the current inputs. Secondly, two gates are designed to adjust the cell state. As shown
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in Figure 9, the input gate is applied to decide whether the current inputs will be used
to update the cell state. By the same principle, the forget gate is applied to adjust the
proportion of previous cell state in the current one. This makes an LSTM module have the
memory function. Then the cell state will be updated and stored for the LSTM module
of next step. Next, an output gate is designed to adjust the output of the updated cell
which has been rescaled by a tanh activation function firstly. Finally, the output will be
transported to the next layer and the next module.

Equations (4) and (5) show the calculation of new candidate vector c̃(t) and input
gate vector i(t); Equation (6) calculates the forget gate vector f (t); the cell state c(t) can be
updated by Equation (7); the output gate vector o(t) is calculated by Equation (8); and the
final output h(t) will be acquired by Equation (9) [24]. The output vectors of these three
gates are all the values between 1 and 0, which will make the outputs of corresponding
layer change from original value to 0.

c̃(t) = tanh
(

Wc · [h(t−1), x(t)] + bc

)
(4)

i(t) = sigmoid
(

Wi · [h(t−1), x(t)] + bi

)
(5)

f (t) = sigmoid
(

W f · [h(t−1), x(t)] + b f

)
(6)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (7)

o(t) = sigmoid
(

Wo[h(t−1), x(t)] + bo

)
(8)

h(t) = o(t) ◦ tanh(c(t)) (9)

where sigmoid and tanh are activation functions. x(t) is the input vector from training
or testing dataset. h(t−1) and h(t) are the current and previous outputs of LSTM module,
respectively. [h(t−1), x(t)] means concatenating h(t−1) and x(t). bc, bi, b f , and bo are biases.
Wc, Wi, W f , and Wo are weight matrices. ◦means Hadamard product. When the network
is trained, bc, bi, b f , and bo are initialized with ones. For Wc, Wi, W f , and Wo, each weight
matrix is the concatenation of two matrices which are corresponding to h(t−1) and x(t),
respectively; accordingly, the two parts of a weight matrix are initialized, respectively. In
this work, both the two parts of each weight are initialized as uniform distribution which is
shown in Equation (10) [31].

W ∼ U

[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
(10)

where nj and nj+1 is the element number layer j and j + 1, respectively.
This is the key mechanism of LSTM RNN. The network training is also based on back

propagation through time (BPTT) strategy and gradient descent algorithm. Up to now,
there have been many types of variants on the LSTM, such as adding peephole connections,
using coupled forget and input gates, gated recurrent unit, depth gated RNNs and so on.
As reported in Greff’s work [32], the result of comparing these popular LSTM variants
shown that there were not significant differences among them. Therefore, the standard
LSTM RNN is adopted in this paper.

5. Signal Processing and Results Analysis
5.1. Network Training Strategy

The experiments have been described in Section 2.2. There are 70 different engine
running speeds and loads conditions in total. For each condition, 22 misfire types were
conducted. Under each fixed speed, load and misfire type condition, 200 cycles data were
sampled. Thus, the number of total datasets is 308,000 (22 × 70 × 200 = 308,000), and one
dataset corresponds to one engine power cycle which contains 120 speed data point.
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The datasets were acquired in a dense speed and load range. However, for industrial
application, it would be better to use small number of datasets to train a well-performed
neural network. Five division modes of training and testing datasets were attempted,
as described in Table 3. The arrangement of mode 1 will be attempted firstly, and if the
test result is higher than 90%, the rest arrangements will be tested. The arrangements of
modes 2_a, 2_b, 2_c, and 2_d are shown in Figure 10, in which the training datasets are
the conditions in shadow, the rest datasets are for testing. The arrangements in Figure 10a,
c will be attempted first, and if the test results are higher than 90%, the arrangements in
Figure 10b,d will be tested.

Table 3. Description of the training and testing datasets arrangement.

Description

Mode 1 All the datasets are arrange randomly, then 70% datasets are
chosen for network training and the rest for network testing.

Mode 2_a As shown in Figure 10a.
Mode 2_b As shown in Figure 10b.
Mode 2_c As shown in Figure 10c.
Mode 2_d As shown in Figure 10d.
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Figure 10. Different arrangements of training and testing datasets. (a) Arranging training data
in 100 r/min interval. (b) Arranging training data in 200 r/min interval. (c) Arranging training
data in dense speed and load interval. (d) Arranging training data in sparse speed and load in-
terval. The engine running conditions in grey shadows are used for network training, the rest for
network testing.
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In order to achieve a better performance of the LSTM RNN, four different structures
of input layer and output layer have been tested.

i. The first structure takes the original speed sequence as input. As shown in Figure 11a,
one LSTM cell has one input element and one output element. For each engine cycle
there are 120 speed points, and 120 output elements correspondingly. The output
types are the normal and misfire types in Table 2.

ii. For the second structure, inputs are the same as those in the first structure. For each
cycle, there is only one output element at the last LSTM cell. As shown in Figure 11b,
when the 120 input elements have been calculated, one detection result will be output.
The output types are the normal and misfire types in Table 2.

iii. In the third structure, one LSTM cell processes 20 raw speed points which correspond
to the interval of ignition from one cylinder to the next. As shown in Figure 11c, the
output of one LSTM cell consists of two categories: normal and misfire, which is
different from those in the first and second structures.

iv. The inputs of the fourth structure are not the raw speed data, but the lowest 20 real
and 20 imaginary parts of the frequency-domain results of instantaneous speed, as
shown in Figure 11d. The output types are the normal and misfire types in Table 2.
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The basic parameters for these four types of networks are summarized in Table 4.



Energies 2022, 15, 300 13 of 24

Table 4. The basic parameters of networks utilized.

The 1st Network The 2nd Network The 3rd Network The 4th Network

Preprocessing None None None
Fourier
synchrosqueezed
transform

Input mode of LSTM Sequence Sequence Sequence Sequence
Input size 1 1 20 40
Dimensionality of LSTM cell state
(Number of hidden layer elements) 20 3, 5, 10, 20, 40, 80 3, 5, 10, 20, 40, 80 3, 5, 10, 20, 40, 80

Output mode of LSTM Sequence Last Sequence Sequence
Output size of fully connected layer 22 22 2 22

Postprocessing None None Combining per
cycle None

5.2. Results Analysis
5.2.1. The First Network Structure

For the first structure which is designed as Figure 11a, one input group consists of
10 datasets, that is 1200 (120 × 10) speed data points. One output group has the same
length with the corresponding input. The network consists of one input layer, one LSTM
layer, and one output layer. The initial learn rate is 0.01 and the learn rate drop period is 3.
The adaptive moment estimation method is adopted for network training. The number
of elements of hidden layer is 20. When the training and testing datasets are arranged as
mode 1, the final training and testing accuracies are 17.35% and 15.36%, respectively. Since
the accuracies are not high, no more tests are attempted.

5.2.2. The Second Network Structure

The second structure is designed as Figure 11b. One input group consists of one
dataset which is 120 speed data points. Only the last LSTM cell outputs prediction result.
The network consists of one input layer, one LSTM layer, and one output layer. The initial
learn rate, the learn rate drop period, and the training algorithm are the same as those in
the first structure.

When the training and testing datasets are arranged as mode 1 (described in Table 3),
the element numbers of LSTM layer, which are 3, 5, 10, 20, 40 and 80, have been tested. The
corresponding training and testing accuracies are drawn in Figure 12. It is thus clear that
when the training datasets are arranged as mode 1, 5 elements are enough for the network
training, and the corresponding training and testing accuracies are 99.23% and 99.20%.
Since the accuracies are very high, the datasets arranged in modes 2_a, 2_b, 2_c and 2_d
are tested and the results are shown in Figure 13. It can be seen that utilizing the training
datasets in a sparser manner, the acceptable performance can also be acquired. It seems
that with less training data, it will be easier to train a network that can achieve the accuracy
higher than 95%, such as the network trained in modes 2_b and 2_d.

5.2.3. The Third Network Structure

The third structure is designed as Figure 11c. One input layer consists of 20 elements
which correspond to the interval of one-cylinder working. The output of one LSTM
cell consists of two categories which are normal and misfire, and each LSTM cell has a
corresponding output. The output indicates whether the current powering cylinder is
fault-free. The initial learn rate, the learn rate drop period, and the training algorithm are
the same as those in the first method.

The training and testing datasets are arranged as Table 3. The training strategy is also
by changing the numbers of hidden layer elements, which are 3, 5, 10, 20, 40 and 80. The
training and testing results under mode 1 are summarized in Figure 14. The training and
testing results under modes 2_a, 2_b, 2_c, and 2_d are summarized in Figure 15. Since the
outputs are calculated for each cylinder, it is unable to compare the original results with
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other methods. Therefore, when we calculate the accuracy, the results for one cylinder are
converted to that for one cycle. The concrete method is to group every six consecutive
outputs from cylinder 1# and tag each group according to the fault cylinders. If three
or more fault cylinders are detected in one cycle, the result will be categorized as a fault
prediction. Compared with the second network structure, the third network structure has
higher accuracy with the same number of hidden layer elements. For most of the five data
division modes, 95% accuracy can be achieved with no more than 5 hidden layer elements.
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5.2.4. The Fourth Network Structure

The fourth structure is designed as Figure 11d. One input layer consists of 40 elements
which are the lowest 20 real and 20 imaginary parts of the frequency-domain results of the
speed signal. For the normalization of inputs, the 20 real parts and the 20 imaginary parts
are normalized, respectively. The frequency-domain results are acquired by transforming
the raw speed using Fourier synchrosqueezed transform algorithm [33]. As a type of
time-frequency analysis method, the Fourier synchrosqueezed transform algorithm could
acquire the instantaneous frequency-domain information more precisely than short-time
Fourier transform. This advantage is helpful for abstracting fault features from the speed
signal. Since there are 60 teeth of the flywheel, the sample rate is set as 60. The data length
of one cycle is 120, and the data length of 2’s power could achieve high computational
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speed; thus, the truncated data length is set as 128. A Kaiser window is utilized for reducing
spectral leakage. Considering that the output is in the manner of sequence which means
each LSTM cell has an output, the accuracy is calculated according to the last output of one
cycle. Figures 16 and 17 present the training and testing results using the fourth structure.
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Like the previous methods, the main variables are also the data division mode and the
number of hidden layer elements. The results show that it is easy to achieve high accuracies
which are more than 95% when the training data and testing data are arranged in mode 1.
However, when the data are arranged as modes 2_a, 2_b, 2_c and 2_d, 20 or more hidden
layer elements are needed for achieving 95% accuracy.
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5.2.5. Results Comparison

(a) Through the above analysis, it is known that it acceptable training and testing accura-
cies can be achieved by using LSTM RNN.

(b) Compared with other network structures, the first network structure cannot achieve a
satisfactory accuracy and is not studied further. The second, third and fourth network
structures can achieve an accuracy which is more than 95%.

(c) From the point of view of data division mode, under mode 1, the second, third and
fourth network structures can achieve accuracy more than 95%. The performance of
these three structures is good, since 10 hidden layer elements have made them meet
requirements and even 3 elements are enough for the third network. Under modes
2_a, 2_b, 2_c, and 2_d, the training and testing datasets are divided in the rule that
they have no intersection on engine speed and load conditions. Under these four
modes, even all the three methods could achieve accuracy more than 95%, to our
minds, the third method performed the best since it could reach 95% accuracy with
the least number of hidden layer elements.

(d) In addition, when we tested the third network on data division mode 2_d with 5
and 10 hidden layer elements, it was found that the testing accuracy was higher than
the training accuracy, as shown in Figure 15d. Taking the network structure with
10 hidden layer elements as an example, the confusion matrices are shown in Figure 18.
The main increase of testing accuracies is marked by red boxes. It can be seen that
many accuracies have increased to more than 95%. The increment may be caused by
the testing data that belongs to the same fault category with the training data, but
is sampled under different engine running speed or load. The network with 5 or
10 hidden layer elements just grasped the fault features of the training data unevenly.
Therefore, the increase of total accuracy can be seen as a random result. However, the
detection accuracy on the normal condition has decreased to 85%. Since the learning
ability of network is determined when the network structure is determined, if there
happened some excellent results on partial conditions, there must be some bad results
correspondingly. The difference between excellent and bad results may be big or
small, even the total accuracies are almost the same. In this case, the bad results
occurred on the normal conditions. The accuracy of 85% is unacceptable on one hand,
on the other hand, the misdiagnosis should be avoided on normal conditions since
the normal conditions are the most common conditions for a vehicle. The results also
indicate that both the total accuracy and the accuracy of each fault category should be
acceptable especially under the condition of large datasets.

(e) In industrial applications, the smaller training dataset would be better for reducing
workload for a calibration engineer. The best performance of the second, third and
fourth networks under modes 2_a, 2_b, 2_c, and 2_d are summarized in Table 5. These
accuracies are acquired with 40 or 80 hidden layer elements. By comparing the testing
accuracies, the third network performs the best. Nevertheless, the difference between
each network and each data division mode are not large. Both the training data
size and the testing accuracy are the factors we considered, thus the third networks
with data division mode 2_b and data division mode 2_c are recommended, and the
numbers of hidden layer elements are 80 both. For further analysis, the confusion
matrices of the training and testing results are drawn in Figures 19 and 20. Some
conclusions can be drawn as follows.

• It can be seen that the distribution of misdiagnosed results is scattered. The
number of most misdiagnosed results do not exceed 10.

• In Figure 19, the main misdiagnosis results occur on normal, cylinder 3# misfire,
cylinders 1# and 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6#
misfire conditions. In Figure 20, the main misdiagnosis results occur on normal,
cylinder 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6# misfire
conditions. The misdiagnosed results are related to the true results, for example,
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when misfire occurs in cylinder 3#, the predicted result is misfire in cylinders 3#
and 5#.

• The most common running condition for an engine is normal condition. By
observing the results in Figures 19 and 20, the worse misdiagnosed case is for
normal condition which is presented in Figure 19b. However, the detection
accuracy on this normal condition is 98.91% (8902 ÷ 9000 = 98.91%), which is a
relatively high detection accuracy. Meanwhile, since the network performs well
on the worst misdiagnosis case, it can be concluded that the detecting accuracy
for each type of fault is acceptable.

Energies 2022, 15, x FOR PEER REVIEW 18 of 25 
 

 

• It can be seen that the distribution of misdiagnosed results is scattered. The num-
ber of most misdiagnosed results do not exceed 10. 

• In Figure 19, the main misdiagnosis results occur on normal, cylinder 3# misfire, 
cylinders 1# and 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6# 
misfire conditions. In Figure 20, the main misdiagnosis results occur on normal, 
cylinder 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6# misfire 
conditions. The misdiagnosed results are related to the true results, for example, 
when misfire occurs in cylinder 3#, the predicted result is misfire in cylinders 3# 
and 5#. 

• The most common running condition for an engine is normal condition. By ob-
serving the results in Figures 19 and 20, the worse misdiagnosed case is for nor-
mal condition which is presented in Figure 19b. However, the detection accu-
racy on this normal condition is 98.91% (8902 ÷ 9000 = 98.91%), which is a rela-
tively high detection accuracy. Meanwhile, since the network performs well on 
the worst misdiagnosis case, it can be concluded that the detecting accuracy for 
each type of fault is acceptable. 

 
(a) 

Energies 2022, 15, x FOR PEER REVIEW 19 of 25 
 

 

 
(b) 

Figure 18. Training and testing results by using the third network and data division mode 2_d. (a) 
Training result. Total accuracy is 97.40%. (b) Testing result. Total accuracy is 98.12%. The red boxes 
mark the accuracies that increase more than 4%. The magenta boxes mark the accuracies that de-
crease more than 4%. 

 
(a) 

Figure 18. Training and testing results by using the third network and data division mode 2_d. (a)
Training result. Total accuracy is 97.40%. (b) Testing result. Total accuracy is 98.12%. The red boxes
mark the accuracies that increase more than 4%. The magenta boxes mark the accuracies that decrease
more than 4%.



Energies 2022, 15, 300 19 of 24

Table 5. The best accuracies for different networks under different data division modes.

Mode 2_a (%) Mode 2_b (%) Mode 2_c (%) Mode 2_d (%)

The second network 99.99 98.93 99.98 99.44 99.99 99.69 100 99.37
The third network 99.98 99.76 99.95 99.90 99.98 99.96 99.99 99.83
The fourth network 99.99 99.14 99.97 98.83 99.97 99.33 100 99.06

For each mode, the left column is training accuracy, the right column is testing accuracy.
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5.3. Comparison with Similar Research Efforts in the Literature

Table 6 provides a comparison of the results of this paper and some similar research
efforts in the literature. Considering different application demands, the researchers con-
ducted their studies on different types of engines. The main differences among these
research works are the selection of engine running speed, running load, misfire types and
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the fault detection algorithms. Although different research objects may lead to a different
performance of an algorithm, such as that the four-cylinder engine has more clear fault
features than the six-cylinder engine with the same displacement, the detection accuracy
will still prove the effectiveness of an algorithm. On the whole, the accuracies reported
in Table 6 are all relatively high, the comparison confirms the good performance of the
algorithm utilized in this paper. In addition, many misfire types have been tested in
this paper, which means more classification labels are needed for the algorithm, this also
proves the effectiveness of the LSTM RNN algorithm. From the point of view of machine
learning algorithm application, it is helpful for evaluating the network effectiveness if the
datasets for network training and testing are sampled under different engine speed or load
conditions. For example, if the network is trained on 1000 r/min and 1200 r/min, and it
performs well on 1100 r/min, it is reasonable to infer that the network will perform well on
1150 r/min; however, if both the network training and testing are conducted under
1000 r/min and 1200 r/min, it is hard to evaluate the network performance on 1100 r/min
or 1150 r/min. Compared with some research works in Table 6, the algorithm proposed
in this paper are tested on the engine running conditions that are different from those for
network training, which proves the feasibility of the algorithm.

Table 6. Comparison of our results with the similar works in the literature.

Similar Works Details

Qin et al. [1]

Engine type: four-cylinder diesel engine
Signal: vibration
Speed: 1300 r/min, 1800 r/min, 2200 r/min
Load (Nm): not mentioned
Misfire type: 1#, 2#, 3#, 4#, 1#2#, 2#3#, 2#4#
Methods: a deep twin convolutional neural network
Accuracy: >97.019%

Jafarian et al. [21]

Engine type: four-cylinder engine
Signal: vibration
Speed: 2000 r/min
Load (Nm): not mentioned
Misfire type: 1#, 2#, 1#2#
Methods: FFT for feature extraction; ANN, SVM, and kNN for
classification
Accuracy: >97%

Moosavian et al. [19]

Engine type: four-cylinder gasoline engine
Signal: vibration, sound
Speed: idle speed (867 r/min)
Load (Nm): no load
Misfire type: 1#, 2#
Methods: wavelet denoising, ANN, least square support vector machine,
Dempster–Shafer evidence
Accuracy: 98.56%

Jung et al. [16]

Engine type: six-cylinder engine
Signal: crank speed
Speed: 500–4500 r/min, (step is 500 r/min)
Load (Nm): not mentioned
Misfire type: 1#, 2#, 3#, 4#, 5#, 6#
Methods: model-based algorithm
Accuracy: no quantitative result. The algorithm performs well except low
load and speed conditions.
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Table 6. Cont.

Similar Works Details

Zheng et al. [5]

Engine type: four-cylinder gasoline engine
Signal: crank speed
Speed: 800–1150 r/min
Load: not mentioned
Misfire type: 1#, 2#, 3#, 4#, 1#3#, 2#4#, 1#4#, 2#3#
Methods: state observer for combustion torque estimation; ANN for
classification
Accuracy: >52/54 (96.30%)

Boudaghi et al. [34]

Engine type: four-cylinder gasoline engine
Signal: crank speed
Speed: 1250–4000 r/min
Load: 10–50%
Misfire type: 1#, 2#, 3#, 4#, 1#3#, 2#4#, 1#4#, 2#3#
Methods: extracting physics-based parameter
Accuracy: >94%

Shahida et al. [35]

Engine type: twelve-cylinder diesel engine
Signal: crank speed
Speed: 720 r/min
Load: 0–100%
Misfire type: A1#, A6#
Methods: one-dimensional convolutional neural network
Accuracy: >99.7%

This paper

Engine type: six-cylinder diesel engine
Signal: crank speed
Speed: 800–2200 r/min, (step is 100 r/min)
Load: no-load to 250 Nm
Misfire type: 1#, 2#, 3#, 4#, 5#, 6#,1#2#, 1#3#, 1#4#, 1#5#, 1#6#, 2#3#, 2#4#,
2#5#, 2#6#, 3#4#, 3#5#, 3#6#, 4#5#, 4#6#, 5#6#
Methods: LSTM RNN
Accuracy: >99.90%

6. Conclusions

In this paper, an LSTM RNN based approach for engine misfire detection is proposed.
The traditional misfire detection method has limitations on the high-speed and low-

load engine operating conditions. Hence, the traditional misfire detection method is
conducted on the datasets to verify its feasibility first; and the reason of the limitation,
that one threshold is insufficient to extract the fault feature when the background noise is
high, is concluded. In order to extract the fault features extensively and effectively, unlike
previous works, the LSTM RNN is a powerful technique on sequence signal processing is
utilized to detect misfire. In addition, for the sake of ensuring the feasibility of proposed
algorithm, two-cylinder misfire faults are tested beside one-cylinder faults, and a wide
range of engine working speed and load conditions which including the high-speed and
low-load conditions are tested.

The LSTM RNNs are designed according to the characteristic of speed signal. Four
kinds of input layer structures are designed. These inputs contain instantaneous raw speed
signal, a fixed segment of raw speed signal, and the extracted real and imaginary parts
of speed signal. Moreover, five data division modes are attempted to explore the optimal
training data size. These training datasets can be categorized into two parts: the training
data that has running condition intersection with the testing data, and the training data
that has no running condition intersection with the testing data. The testing results show
that the sequence-input-sequence-output LSTM RNN which utilizes raw speed data could
not achieve acceptable detecting accuracy. The second, third and fourth LSTM RNNs could
achieve accuracies more than 98%. The best performance is achieved by the third LSTM
RNN with data division mode 2_c, and the testing accuracy is 99.96%. Meanwhile, the
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third LSTM RNN with data division mode 2_b is also recommended, because it has the
relatively high testing accuracy 99.90% and small training data size as well.

In this study, misfire detection is conducted on complete misfire conditions. It is
also significant that misfire fault could be detected when it is not severe. Therefore, in
further research, the slight misfire fault including partial misfire will be utilized to im-
prove the detection sensitivity of the proposed algorithm. In addition, future work will
include developing hardware for misfire detection of this engine as well. The LSTM
RNN models developed in this study will then be written into the hardware to provide
misfire information.
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