
����������
�������

Citation: Moreno-Armendáriz, M.A.;

Ibarra-Ontiveros, E.; Calvo, H.;

Duchanoy, C.A. Integrated Surrogate

Optimization of a Vertical Axis Wind

Turbine. Energies 2022, 15, 233.

https://doi.org/10.3390/en15010233

Academic Editors: Yutaka Hara and

Yoshifumi Jodai

Received: 3 November 2021

Accepted: 27 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Integrated Surrogate Optimization of a Vertical Axis
Wind Turbine

Marco A. Moreno-Armendáriz 1 , Eddy Ibarra-Ontiveros 1 , Hiram Calvo 1,* and Carlos A. Duchanoy 2

1 Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n,
Ciudad de Mexico 07738, Mexico; mam_armendariz@cic.ipn.mx (M.A.M.-A.);
gabriel040595@gmail.com (E.I.-O.)

2 Gus Chat, Av. Paseo de la Reforma 26-Piso 19, Ciudad de Mexico 06600, Mexico; carlos.duchanoy@gus.chat
* Correspondence: hcalvo@cic.ipn.mx

Abstract: In this work, a 3D computational model based on computational fluid dynamics (CFD)
is built to simulate the aerodynamic behavior of a Savonius-type vertical axis wind turbine with a
semi-elliptical profile. This computational model is used to evaluate the performance of the wind
turbine in terms of its power coefficient (Cp). Subsequently, a full factorial design of experiments
(DOE) is defined to obtain a representative sample of the search space on the geometry of the wind
turbine. A dataset is built on the performance of each geometry proposed in the DOE. This process is
carried out in an automated way through a scheme of integrated computational platforms. Later,
a surrogate model of the wind turbine is fitted to estimate its performance using machine learning
algorithms. Finally, a process of optimization of the geometry of the wind turbine is carried out
employing metaheuristic optimization algorithms to maximize its Cp; the final optimized designs are
evaluated using the computational model for validating their performance.

Keywords: vertical axis wind turbine; CAE model; computational fluid dynamics; machine learning;
surrogate model; optimization; evolutionary algorithms

1. Introduction

The issue of renewable energy is a topic that has gained relevance in recent years,
mainly due to the depletion of traditional energy sources and the environmental impact.
Consequently, more and more countries are interested in developing a sustainable energy
industry based on renewable energy sources, such as solar, hydro, or wind energy.

The conventional way of harnessing the energy of the wind is through wind turbines.
According to the orientation of its axis of rotation to the direction of the wind flow, two
types are distinguished: the so-called Horizontal Axis Wind Turbine (HAWT) and those of
Vertical Axis Wind Turbine (VAWT).

VAWT represents a good option for implementation in small-scale applications for
self-consumption purposes, in areas with limited space and changing wind conditions,
such as urban and rural environments [1]. In particular, the Savonius VAWT has a simple
design that allows it to operate regardless of wind direction and at relatively low wind
speeds. In addition, it has the advantage of having high capacity for self-starting [2] and
low cost of construction and maintenance. However, the main disadvantage of this wind
turbine resides in its low efficiency in the use of the energy available in the wind, being the
design with the lowest theoretical efficiency of all [3–5].

Despite the inherent advantages of the Savonius VAWT for its implementation in
small-scale power generation applications, its low efficiency makes it an unprofitable
option for its practical implementation. Therefore, its use in practical applications is not
widely spread.

A possible solution with which to solve this problem is the optimization of the design
of the Savonius wind turbine, seeking to maximize its efficiency. In recent years, there has
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been growing interest in the design and optimization of vertical axis wind turbines [6,7].
For instance, in [8] the authors performed a study focused on finding the optimal values of
the design parameters of Darrieus VAWT blade airfoil. The authors also studied the effect
of varying the number of blades on the rotor, concluding that a four-blade configuration has
better efficiency than a three-blade configuration. Such an optimization study was carried
out by using the QBlade simulation software for wind turbine blade design. Similarly,
in [9], the authors performed an optimization process on the blade profile of a Savonius
wind turbine. The authors built a 2D computational model for the Savonius wind turbine
by employing the software Ansys Fluent, and later they surrogated the computational
model by means of a Kriging model. Finally, the authors employed the surrogate model
along with a PSO algorithm to optimize the Savonius blade profile, claiming to reach
a maximum Cp of 0.262 with the optimized design. On the other hand, in [10] a fluid-
structure interaction analysis was carried out to study the stresses occurring on the blade of
a small horizontal axis wind turbine designed to operate urban areas. This study employed
a 2D computational model built on Ansys Fluent, which was validated with wind tunnel
tests, showing that the computational model tends to underestimate the wind turbine
performance but has an acceptable level of matching between simulation and experimental
results. Another interesting example is found in [11], where the authors study the effect
of varying the helix angle of blades for a Darrieus VAWT, analyzing its influence on the
aerodynamic performance of the wind turbine. The authors employ a 3D computational
model to simulate the wind turbine’s performance and find the optimal helix angle from a
small set of helix angles. In [12], a review of the rotor parameters on the performance of
Savonius wind turbine is presented. The review focuses on analyzing a series of works
concerning the design parameters modifications of Savonius wind turbines and their effect
on the wind turbine’s performance. The authors highlight some interesting remarks about
the Savonius wind turbine configurations, for instance, better performance is expected from
turbines with two blades rather than turbines with three blades, operating at low wind
speeds. Besides, it is suggested to employ end plates to cover the turbine blades in order to
increase the air volume acting on the advancing blade. Moreover, the existence of an overlap
region between the turbine blades has shown to have a positive effect on the Savonius
wind turbine performance. Finally, it is remarked that the use of curtains or wind deflectors
to guide the airflow to the advancing blade is a promisingly alternative to significantly
improve the Savonius wind turbine performance. A more detailed review about different
proposals of wind deflectors is presented in [13], where the authors analyze different kinds
of wind deflectors designed for a variety of VAWT’s, including some Savonius and Darrieus
wind turbines. It is highlighted that flat wind deflectors are more suitable for Savonius
type wind turbines with two blades; meanwhile, aerodynamic deflector profiles are more
suitable for Darrieus-type wind turbines, even having the possibility of using one single
wind deflector on arrangements of at least two vertical axis wind turbines. Finally, in [14]
the authors present a proposal to improve the performance of VAWT, based on the design
and implementation of an improved wind duct to increase the wind speed. The optimum
parameters of the wind duct are found by means of numerical simulations and a surrogate
model based on DOE and the Kriging method. The authors simulate the behavior of an
H-Darrieus VAWT placed at the inside of the improved wind duct, and the results show
that the VAWT power coefficient can be enhanced up to 2.9 times.

In this work, we propose optimizing the design of a vertical wind turbine type Savo-
nius to maximize its efficiency in terms of its energy conversion capacity through meta-
heuristic algorithms and using a surrogate model of the Savonius wind turbine obtained
through techniques of machine learning.

By performing the optimization process using a surrogate model of the wind turbine,
it intended to reduce the computational cost of the optimization process and, therefore,
reduce the time spent in the design and optimization process of the Savonius wind turbine.
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2. State of the Art
2.1. Design and Optimization Based on Experimental Tests

The design methodology based on experimental tests in controlled environments
is one of the classic approaches most used by researchers due to the fidelity of the data
collected concerning the physical phenomenon being studied. The most used technique in
this type of test consists of wind tunnels to carry out the different experiments associated
with the design and optimization process [15–22].

For example, in [23] a series of experimental tests was carried out to design a new
blade profile for the Savonius wind turbine based on progressive modifications on the
Bach and Benesh blade profiles (2013–2015). During this process, the authors sought to
achieve an optimal design for the geometry of the wind turbine blades to maximize the
power coefficient of the wind turbine as a function of the tip speed ratio or TSR. Roy and
Saha’s profile was tested using a prototype with a frontal area of 0.0529 m2 in an open
section wind tunnel. Several other profiles reported in the literature show an increase in
the power coefficient of up to 34.8% compared to the classic semicircular profile, reaching
a maximum Cp of up to 0.31 at a TSR of 0.82 with a Reynolds number of 1.2× 105 and a
wind speed of 6 m/s. The work reported by the authors also considers a correction factor
for their experimental data due to the blocking effect produced by the construction of the
wind tunnel. In these works, the authors carried out the optimization process by trial and
error. The number of prototypes analyzed was small, and therefore the authors explored
a limited search space during the optimization process. The sample was small due to the
time and cost required for construction and experimentation with the prototypes.

On the other hand, work in [23] tests small prototypes, with a frontal area of only
0.0377 to 0.0529 m2, obtaining a meager amount of total energy available in the wind.
Furthermore, the efficiency values achieved with designs in this order of dimension are not
necessarily maintained when scaling up to larger prototypes since these tend to decrease as
the dimension of the wind turbines increases.

2.2. Design and Optimization Based on Computational Models

An alternative methodology to experimental tests in controlled environments is that
which makes use of computational models. This methodology has become quite popular
in recent years because it allows for the modeling of many physical phenomena through
computational tools with relatively high precision, thus reducing the costs and times
associated with the design and optimization process. It reduces the number of experimental
tests required for this process. The most widely used technique in this field is computational
fluid dynamics or CFD, which solves the complex equations that describe the behavior of
fluids using finite element or finite volume methods [24–28].

In 2016, Alom et al. [29] used a CFD model of a Savonius wind turbine with a semi-
elliptical profile and a frontal area of 0.286 m2 to optimize this wind turbine’s geometry. For
this, dynamic simulations are carried out in a 2D space following the sliding mesh method
to simulate the rotation of the wind turbine. The study analyzed the torque and power
coefficients of the wind turbine as a function of the TSR, while the angle Theta varied. They
evaluated four different cut angles. As a result, they obtained an optimal cutting angle of
47.5◦, reaching a maximum power coefficient of up to 0.33 at TSR = 0.80, considering a
wind speed of 6.2 m/s. Subsequently, steady-state simulations were performed in 3D space
to evaluate the wind speed and pressure contours on the wind turbine blades. Finally,
in [30], the authors validated their optimized design through dynamic simulations in a
3D space and experimental tests in a wind tunnel, using a prototype with a frontal area of
0.046 m2 and keeping the wind speed constant at 6.2 m/s, which resulted in significantly
lower performance values than previously estimated in 2D studies and reported in [29,30].
Through 3D simulations, a maximum Cp of 0.1288 was estimated at a TSR = 0.80, while
through experimental wind tunnel tests, a Cp maximum of 0.134 at a TSR = 0.49; this
indicates that the 2D computational model can overestimate the maximum value of Cp by a
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factor of up to 2.4 times, while the 3D model estimated values were closer to those obtained
through experimental tests.

They also highlight the differences between the power coefficient values estimated
by the computational models and the values obtained through experimental tests, where
the 2D computational models can overestimate up to a factor of up to 2.4 times the value
of the maximum Cp [29,30]. In contrast, the 3D models show a better correspondence
with the experimental data [30]. This improvement is because neglecting the rotor height
phenomenon leaves out a crucial factor in the design of the Savonius wind turbine, which
directly affects the precision of the estimates made by such 2D models.

2.3. Design and Optimization Based on Surrogate Models

The use of surrogate models in the Savonius wind turbine design and optimization
processes has begun to gain popularity among researchers in recent years [31–33]. This
interest is mainly because these models offer the possibility of modeling complex sys-
tems at a low computational cost and without the need to thoroughly understand the
intrinsic relationships between the inputs and the outputs of the system. In addition,
they have the particularity of being built from data collected from experimental tests and
computer simulations.

In 2018, in Mohammadi et al. [33], the experimental data on the performance of
a Savonius wind turbine reported in 2009 in [34] were taken as a basis. They built a
computational model using CFD software to emulate the experimental results reported
in [34], where wind tunnel tests are carried out with Savonius wind turbine prototypes
with a twisted semicircular profile and frontal areas of around 0.062 m2. The computational
model contemplates a 3D space and uses the sliding mesh method to simulate the rotation
of the wind turbine. Such a model shows an acceptable correspondence with the data
reported in [34]. Subsequently, they built a surrogate model based on artificial neural
networks (ANN) to replace the computational model of the wind turbine, having as input
the geometric parameters of the wind turbine and the characteristic speed and as output the
power coefficient of the wind turbine. This surrogate model was a multilayer perceptron or
MLP and showed an excellent correspondence with the data collected through simulations
using the computational model. Next, an optimization process was carried out through
genetic algorithms using the surrogate model of the computational model. This process
evaluated 100 possible designs for the wind turbine in each generation of the genetic
algorithm, which would demand a high computational cost for the 3D computational
model. However, using the surrogate model during the optimization process makes it
possible to evaluate a more significant number of possible designs for the wind turbine with
a significantly lower computational cost. Finally, the authors assessed the optimized design
of the Savonius wind turbine using the original computational model. This model showed
good correspondence with the performance estimate produced by the surrogate model and
obtained a significant improvement with the base design reported in [34], reaching a Cp
maximum up to 0.222 with a wind speed of 8.75 m/s.

From the works presented in this section, the advantage of substituting computational
models or experimental schemes in wind tunnels with surrogate models stands out; these
allow one to carry out the optimization process in a considerably shorter period, without
losing precision or generality with the results obtained by the original models.

3. Methodology

This work uses the following proposed methodology to optimize the design of a Savo-
nius wind turbine, using a surrogate model based on data collected through simulations
of a wind turbine’s computational model and metaheuristic optimization algorithms to
maximize the power coefficient of the wind turbine.

Figure 1 shows the flow diagram of the methodology to be followed in this work to
optimize the Savonius wind turbine that includes five stages. Each one is detailed later.
However, in general, they consist of the following:
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• (A) Geometric model of the wind turbine: a blade profile is chosen for the wind turbine.
Using computer-aided design software (CAD), a 3D model of the wind turbine is built.
The design parameters and their respective limits and restrictions are defined.

• (B) A computational model of the wind turbine: through the use of computer-aided
engineering (CAE) software, a computational model of the wind turbine capable of
simulating the rotor’s interaction with the wind flow is built, allowing one to calculate
its performance.

• (C) Design of experiments: a set of experiments to simulate a representative sample of
the solution space corresponding to the wind turbine design is designed. The necessary
data are collected to form a representative data set on the wind turbine phenomenon.

• (D) Surrogate model of the wind turbine: using the data set collected in the previous
stage, a surrogate model of the wind turbine is built using machine learning algorithms.

• (E) Wind turbine optimization: the optimization process for the wind turbine design
using the surrogate model and metaheuristic optimization algorithms is executed.

Build a CAD model for
the VAWT

No

Yes

Start

Define design
parameters and

restrictions

Build a CAE model for
the VAWT

Define a DOE to
sample the search

space

Simulate the VAWT's 
performance through

the CAE model

Add the VAWT's 
 performance to a

dataset

   The whole  
DOE has been  

simulated?

Fit a surrogate model
for the VAWT's
performance

Optimize VAWT's
design

Assess the optimized
design through the CAE

model

Can the surrogate  
model accurately represent

the performance of the
optimized design? 

End

Yes

No
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B

C

D

E

General stages of the process: 
 

A) Geometric model of the VAWT
B) Computational model of the VAWT
C) Design of experiments
D) Surrogate model of the VAWT
E) VAWT's optimization 

Has the VAWT's
performance been

improved?

Yes

No

Figure 1. Proposed methodology.

3.1. Geometry

As shown in [8], there are several VAWT configurations and geometries, which include
Darrieus VAWT and different Savonius blade profiles. In order to have a better guidance
on the choice of VAWT type and blade profile, in Table 1 advantages and disadvantages for
some VAWT types and blade profiles are summarized. From such Table 1, it is clear that
Savonius VAWT type is more suitable for self-consumption applications in urban and rural
areas, where normally the wind flow speed is lower and the power demand is not higher
than 1 kW. Moreover, Savonius VAWT with semi circular blade profiles represent one of
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the simplest geometry designs, which, however, still have the potential to improve their
capabilities with modifications on their geometric parameters that lead to more promising
designs, such as the semi-elliptical blade profile.

Table 1. Comparison of different VAWT Types.

VAWT Type Advantages Disadvantages

Darrieus type

• Independence of wind
flow direction

• Higher rated power coefficient
• Tolerance to turbulence wind flow
• Scalable to higher dimensions
• Suitable to medium scale

power generation

• Higher cut-in speed
• Higher rated wind speed
• Poor self-starting

capability
• Complex geometry

and construction

Savonius
Semi-circular and
semi-elliptical
blade profiles

• High self starting capability
• Independence of wind

flow direction
• Low cut-in speed
• Lower rated wind speed
• Tolerance to turbulent wind flow
• Simple geometry and construction
• Suitable for small scale

power generation

• Lower rated
power coefficient

• Not suitable for
larger-scale
power generation

Savonius twisted
blade profiles

• High self-starting capability
• Independence of wind

flow direction
• Low cut-in speed
• Lower rated wind speed
• Tolerance to turbulent wind flow
• Suitable for small scale

power generation

• Lower rated
power coefficient

• More complex geometry
and construction

• Not suitable for larger
scale power generation

The profile of the wind turbine blade proposed in this work is semi-elliptical and is
obtained by taking the upper section of the sectional cut made on an ellipse, as shown in
Figure 2a. The geometric parameters that define the semi-elliptical profile are the largest
radius of the ellipse (OA), a minor radius of an ellipse (OB), distance to cut point (OM),
and cut angle (theta).

The rotor configuration of the wind turbine proposed in this work includes two blades
with an overlap between them, without a central axis, and an upper cover and a lower
cover for the rotor. Figure 2b shows the parameters that define the geometry of the wind
turbine rotor and correspond to the overlap distance between blades (e), the length of the
blade chord (d), the rotor height (H), the diameter (D), and the diameter of the rotor caps
(Do). Additionally, Equation (1) defines the dimensionless parameter known as the overlap
ratio (Or).

Or =
e
d

(1)

The design parameters selected in this work and their respective restrictions for the
optimization process are in Table 2. On the other hand, the geometric parameters that
remain constant are in Table 3.
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(a) (b)

Figure 2. Geometric aspects of the Savonius wind turbine, (a) Sectional cut of an ellipse, (b) Savonius
rotor geometry.

Table 2. Design parameters of the Savonius wind turbine.

Design Parameter Restriction Units

Cutting angle 40 ≤ θ ≤ 90 ◦

Overlap ratio 0.1 ≤ Or ≤ 0.3 –
Major radius of the ellipse 140 ≤ OA ≤ 200 mm

Table 3. Constant parameters of the geometry of the Savonius wind turbine.

Parameter Value Units

Rotor height (H) 500 mm
Rotor diameter (D) 500 mm
Caps diameter (Do) 1.1× D mm

Distance to cut-off point (OM) 0.54×OA mm

3.2. Computational Model of the Wind Turbine

The study of the aerodynamic characteristics of the Savonius wind turbine is carried
out following the CFD approach and making use of the finite element analysis method to
solve the transport equations that describe the interaction of the wind turbine with a wind
flow at a constant speed. A computational model of the Savonius wind turbine using the
CAE multiphysics simulation software Comsol Multiphysics is built.

3.2.1. Definition of Parameters

A set of global parameters is defined to drive the computational model, shown
in Table 4.
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Table 4. Global parameters of the computational model in Comsol Multiphysics.

Name Value Unit Description

V 6 m/s Wind speed
TSR [0.1:0.1:0.8] - Characteristic speed

R 0.25 m Rotor radius
N (TSR ∗V)/R rad/s Rotor angular velocity

Cutting angle θ ° Cutting angle
Overlap Or - Overlap relationship

Major radius OA mm Major radius of the ellipse

3.2.2. Geometry Construction

The simulation space has two computational domains: a rectangular prismatic domain
to limit the total domain of the air within, called the stationary domain, and a cylindrical
domain that surrounds the geometry of the Savonius wind turbine, called the rotating
domain. Figure 3 illustrates the dimensions corresponding to these domains as a function
of the rotor diameter and the respective contours intended for the inlet and outlet of the
airflow. The simulation is set for the wind to flow from the inlet contour at constant
speed and interacting with the Savonius VAWT on its way to the outlet contour, while the
symmetry contours are set simply as symmetric side walls dedicated to contain the airflow
within the stationary domain. It is worth mentioning that the height of both domains
corresponds to four times the height of the rotor.

Figure 3. 2D view of the computational domain of the CAE model of the Savonius VAWT.

3.2.3. Physics Configuration

The selected physical interface corresponds to a single-phase and laminar flow without
considering any turbulence model. This interface is applied to both the stationary and
rotating domains, adding an inlet boundary condition to set the airflow inlet constant
V velocity.

3.2.4. Sliding Mesh

We use the moving mesh method to simulate the rotation of the wind turbine at a
constant angular speed N. At the same time, it is exposed to airflow at a constant speed
V; this configuration is applied on the rotary domain. The angular speed is −N/(2.pi)
revolutions per second, where N is the angular velocity in rad/s.

3.2.5. Study Configuration

Two study steps are set up: a stationary step called a frozen rotor, and a temporary
step. The function of the frozen rotor study is to approximate the solution to the dynamic
problem of wind turbine rotation through a stationary study, to later use this approximate
solution as initial conditions for the temporary study.
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3.2.6. Definition of Study Variables

The total torque τ exerted on the Savonius wind turbine is defined as the difference in
forces exerted between the forward blade and the return blade, as shown in Equation (2).

τ = τav − τret (2)

where τav is the torque exerted by the forward blade and τret is the torque exerted by the
return blade.

To calculate this magnitude in Comsol Multiphysics, firstly, a series of integration
operators are defined: the surface of the concave face of the advance blade (intop1), the sur-
face of the convex face of the advance blade (intop2), the surface of the concave face of
the return blade (intop3), and the surface of the convex face of the return blade (intop4).
Subsequently, the variables in Equations (3) and (4) are defined in Comsol Multiphysics:

F1 = x ∗ (Stressy)− y ∗ (Stressx) (3)

F2 = y ∗ (Stressx)− x ∗ (Stressy) (4)

where x and y denote the position of a point within the Comsol coordinate frame. Stressx
and Stressy refer to the total stresses, which include the contributions of the pressure force
and the viscous force exerted on a point on axes x and y, respectively. In both cases, these
variables are created automatically in the Comsol simulation environment.

Finally, in Equation (5), a variable for the total torque is defined.

Torque = intop1(F1)− intop2(F2)− intop3(F2) + intop4(F1). (5)

3.3. Design of Experiments: Full Factorial

A full factorial design of experiments is designed with three design parameters and
three levels for each one (see Table 5), and the total number of experiments required
is defined as Nexp = 33, which gives a total of 27 experiments that correspond to the
27 combinations of the levels of the design parameters.

Table 5. Design parameter levels.

Design Parameter Level 1 Level 2 Level 3 Units

Cutting angle (θ) 40 65 90 ◦

Overlap ratio (Or) 0.1 0.2 0.3 –
Major radius of the ellipse (OA) 140 170 200 mm

Performance Metrics for the Design of Experiments

The performance of each Savonouis geometry is measured in terms of the power
coefficient and TSR as defined in Equations (6) and (7).

Cp =
Pr

Pv
(6)

TSR =
N · R

V
(7)

Furthermore, Pr and Pv are the rotor and total wind power, respectively, defined in
Equations (8) and (9).

Pr = T · N (8)

Pv =
1
2

ρ · A ·V3 (9)
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where T is the average torque of the wind turbine in a time interval, ρ is the density of the
wind, and A is the frontal area of the wind turbine (defined as A = D · H).

Using the computational model of the wind turbine, we obtain Equation (10), which
corresponds to the total torque exerted on the wind turbine rotor during the time interval
from t0 to t f , where t f is the total simulation time. With this, the dynamic behavior of the
total torque over time is computed.

Now, the average torque (T) is obtained by integrating the total torque obtained
from (5) in the period t1 to t2, which is the time interval of the last complete rotation of the
rotor, as shown in Equation (10).

T =

∫ t2
t1

Torque dt

t2 − t1
(10)

Thus, the rotor power is obtained using (10) in (8), and the total wind power is
obtained using ρ = 1.225 in (9). Finally, the value of Cp is obtained by substituting (8) and
(9) in (6). This calculation is repeated for all the TSR values indicated in the parametric
sweep defined in Comsol Multiphysics. We obtained the behavior of the Cp as a function
of the TSR.

3.4. Integration of Computing Platforms

The process of evaluating the performance of the different geometries of the Savonius
wind turbine is carried out automatically through the integration of the different computa-
tional platforms used for the construction and execution of the computational model of the
wind turbine.

For this, a client-server type link is established between Matlab and Comsol Mul-
tiphysics and a direct link between Comsol Multiphysics and SolidWorks; in this way,
the three platforms are perfectly integrated, with Matlab being the base platform from
which the others are driven. Figure 4 shows a diagram of the interaction between the
different integrated computing platforms.

Figure 4. Integration of computing platforms.

3.5. Surrogate Model of the Wind Turbine

The dataset of the Savonius wind turbine obtained through the DOE is made up of
216 values, with the input vector X = [θ, Or, OA, TSR] and as a target Y = Cp, see Figure 5.
This data set is separated into 80% data for the training stage and 20% for the testing stage,
during the surrogate model fitting process.

The aim is to fit a surrogate model that receives the input data X (design parameters
of the wind turbine) and estimates the output Y (power coefficient of the wind turbine).
Figure 1 shows the diagram that illustrates this process. For this purpose, machine learning
algorithms are used for regression, following the supervised learning approach.

The algorithms that are selected to build the surrogate model are the following:

• Support vector machine (SVM);
• Random forest (RFR);
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• Bayesian ridge regression (BR);
• Multilayer perceptron (MLP);

The hyperparameters of each of these algorithms are adjusted by means of a grid
search, using the cross-validation method. The metric used during this process is the root
mean square error (MSE), see Equation (11).

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (11)

where n is the total number of data, yi is the correct label, and ȳi corresponds to the
estimated label.

In Table 6, the selected values of the hyperparameters of each algorithm and its
performance are shown.

Table 6. Selected hyperparameters for each machine learning algorithm.

Algorithm Selected Hyperparameters Performance (MSE)

SVM kernel = linear; C = 0.01; gamma = 1 9.40× 10−4

RFR
max_depth = None; max_features = log2;
min_samples_leaf = 1; min_samples_split = 2,
n_estimators = 1000

9.95× 10−5

BR alpha_1 = 0.0001; alpha_2 = 1× 10−7; lambda_1
= 1× 10−7; lambda_2 = 0.0001 7.55× 10−4

MLP activation = tanh; hidden_layer_sizes = (30, 30) 6.82× 10−4

Surrogate
Model

q

Or

OA

TSR

Cp

Figure 5. Surrogate model diagram.

3.6. Wind Turbine Optimization

The wind turbine optimization problem is approached as a single objective optimiza-
tion problem in which the objective function to be maximized is the power coefficient of
the wind turbine, while the design parameters to be optimized are the cut angle (theta),
the overlap ratio (Or), and the ellipse’s largest radius (OA), and the TSR. So, the problem
is stated in Equation (12)

fob(X) = Cp, (12)

where Cp ∈ R, X ∈ R1×4, X = [θ, Or, OA, TSR], and it seeks to maximize the value of fob.
Finally, the restrictions of each design parameter are shown in Table 2. Additionally,

we establish that 0.595 ≤ TSR ≤ 0.605.
The optimization process uses metaheuristic algorithms, specifically population algo-

rithms based on hive intelligence and evolutionary algorithms. The algorithms selected to
carry out this task are the following:

• Artificial Bee Colony (ABC);
• Genetic Algorithm (GA);
• Particle Swarm Optimization (PSO).
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Hyperparameters of Optimization Algorithms

The hyperparameters associated with each optimization algorithm are adjusted manually,
seeking to balance each algorithm’s exploration and exploitation capabilities. Tables 7–9 list
the hyperparameters selected for each algorithm during the wind turbine optimization process.

Table 7. Selected hyperparameters for the ABC algorithm

Hyperparameter Value

Number of employed bees 10
Number of Onlookers 10

Selection method Roulette
Number of steps 150
Number of cycles 100

Table 8. Selected hyperparameters for the GA algorithm

Hyperparameter Value

Number of individuals 10
Encoding method Binary
Selection method Tournament [2 Ind.]

Cross method Crosses at 3 points
Mutation method Binary [threshold = 0.01]

Number of iterations 50

Table 9. Selected hyperparameters for the PSO algorithm

Hyperparameter Value

Number of individuals 81
Cognitive constant 1.3

Social constant 0.7
Inertia range [0, 1.2]

Decay of inertia 0.95 every 10 Iter.
Number of iterations 40

4. Experiments and Results
4.1. Computational Model Validation

The CAE computational model is validated based on two criteria: with a mesh inde-
pendence study, where the model’s behavior is analyzed based on the number of mesh
elements, and through a direct comparison of the data on the performance of the Savonius
VAWT calculated with the model against experimental performance data reported in state of
the art to analyze the level of correspondence between the simulated and experimental data.

4.1.1. Mesh Convergence Study

The mesh convergence study is carried out through an iterative mesh refinement
process. This process consists of the following steps:

1. Build different models with increasingly finer mesh elements.
2. Analyze the variations in the output result of the model as a function of the number

of mesh elements used.
3. When no significant variations are observed, the model has reached convergence in

terms of the mesh density.
4. Finish the process since the precision of the model is already totally independent of

the number of mesh elements used, given that better results will not be achieved with
finer meshes.

Figure 6 shows a variation in the model’s output of less than 0.3% in terms of
Cp as the number of mesh elements increases considerably. Therefore, the model has
reached convergence.
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Figure 6. Output values of the CAE model as a function of the number of mesh elements.

4.1.2. Comparison with Experimental Data

Figure 7 shows a direct comparison between the experimental data reported by [30],
referring to the performance of a Savonius wind turbine with a semi-elliptical profile and
the data calculated by the CAE model proposed in this work for a Savonius wind turbine
with the same reported design at [30]. From this Figure, the good shape of the Cp − TSR
curve and good operating range of the wind turbine are observed. However, there is no
precise correspondence in the Cp since there is an average error of 0.0548; this indicates a
tendency for the CAE model to underestimate the value of Cp. However, since the CAE
model presents good convergence in terms of the mesh, the CAE model, although built
correctly, could be leaving out some physical phenomenon, such as the level of turbulence
present in the flow of wind, which could cause this tendency to underestimate the Cp.

Figure 7. Comparison between data calculated using the CAE model and data collected experimentally.

4.2. Validation of Surrogate Models

The coefficient of determination (R2) metric is used to test the performance of surro-
gate models previously adjusted using machine learning algorithms. The coefficient of
determination is a widely used metric to measure the performance of regression algorithms
and is defined in Equation (13), where SSR and SST are determined in (14) and (15).
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R2 = 1− SSR
SST

(13)

SSR =
n

∑
i=1

(yi − ȳi)
2 (14)

SST =
n

∑
i=1

(yi − µ)2 (15)

where n is the total number of data, yi is the target, ȳi is the estimated label, and µ is the
average of the data.

By applying this metric on the surrogate models adjusted with the hyperparameters
of Table 6, Table 10 is obtained. This Table shows that the surrogate model with the best
performance is the Random Forests algorithm, with a coefficient of determination of 0.97
and 0.98 in the training and testing stages, respectively.

Table 10. Performance of the surrogate models of the wind turbine based on the coefficient
of determination.

Algorithm R2 in Training R2 in Testing

SVM −4.19× 1030 0.0
RFR 0.973 0.981
BR −6.03 −6.73

MLP −9.61 −13.63

4.3. Savonius Wind Turbine Optimization

Table 11 groups the design parameters delivered by each optimization algorithm at
the end of this process. It is important to note that, although the TSR does not correspond
to a design parameter of the wind turbine geometry, it is relevant to indicate the maximum
performance point of a given design. However, the performance of each optimized design
must be evaluated over the entire operating range of the TSR (0.1 to 0.8). Figure 8 shows
the Cp vs. TSR curves corresponding to the optimized designs in Table 11, estimated by the
RFR surrogate model. It is observed that the performance of the three designs is practically
identical, as estimated by the surrogate model.
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Figure 8. Cp curves estimated by the RFR model.

Table 11. Design parameters delivered by each optimization algorithm at the end of the process.

Algorithm Design Parameters
[θ, Or , OA, TSR]

Estimated Maximum Value
of Cp

ABC [47.077, 0.135, 192.96, 0.6] 0.1216873
GA [43.72, 0.14, 185.87, 0.59] 0.121364
PSO [40.00005, 0.1000001, 199.999, 0.599] 0.1216873
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It is important to note that during the optimization process, around 8980 evaluations
were carried out. The three algorithms evaluated 8980 possible designs in total, which
consumed around one hour of computational time using the surrogate model. Consid-
ering that each evaluation requires between 1 to 1.5 h of computational time in the CAE
model, the optimization process would have required between 12.47 to 18.7 months to
complete. This meaningful amount of time highlights one of the significant advantages
of using the surrogate model regarding the computation time required to complete the
optimization process.

In Figure 9, the evolution of the population through generations of the GA is shown,
where each dot represents an individual or candidate solution and each color represents a
different generation of the algorithm execution. It is clear that during the first generations
the population is more spread; this happens because at the beginning the algorithm is
doing more exploration on the search space, and this is illustrated by the blue, red, and
pink dots on Figure 9, which are more separate from each other. However, from generation
20 onwards the individuals start concentrating at some local optima near the circled region
on Figure 9 (green, cyan, and dark red dots), where finally a global optima is found at the
last generation (yellow dots).

Figure 9. Evolution of population in genetic algorithm.

Optimized Design Validation

The CAE model evaluates the designs in Table 11 to re-estimate their performance
in terms of Cp, and then they are compared with the estimation of the surrogate model.
Figure 10 shows the comparison between the Cp curves estimated by the RFR surrogate
model and the curves calculated by the CAE model, corresponding to the optimized
designs in Table 11, where a good correspondence between the general shape of the curves
is observed. However, in all cases, the surrogate model underestimates the value of Cp for
all TSR points more significant than 0.1. Specifically, Table 12 shows a comparison between
the maximum Cp values estimated by the RFR model and those calculated by the CAE
model, and the difference or error between them. Finally, notice that the absolute error does
not exceed 0.008; considering that Cp is measured in a range from 0 to 100%, it is equivalent
to a margin of error of less than 1%.

Table 13 shows the MSE and R2 metrics to measure the performance of the RFR model
in the region of the optimized models. It is observed that the value of R2 remains in a
range between 0.80 and 0.95, which indicates that the regression model adjusted by the
RFR algorithm has a reasonably acceptable performance in the region of the search space
that corresponds to the optimal design. Since regression models tend to fail precisely at
critical points in the search space, such as where the optimal design is found, in our case,
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the RFR model’s acceptable performance in this region can be considered as a further test
of the generality of the fitted regression model.

Figure 10. Cp curves estimated by RFR and CAE.

Table 12. Maximum Cp values estimated by the RFR model and calculated by the CAE model for the
optimized designs with TSR = 0.6.

Optimized by Maximum Cp (RFR) Maximum Cp (CAE) Absolute Error in Cp

ABC 0.1216 0.1264 0.0048
GA 0.1216 0.1296 0.008
PSO 0.1216 0.1270 0.0054

Table 13. Error metrics for Cp values of optimized designs.

Optimized by MSE R2

ABC 0.000141 0.831
GA 0.000167 0.801
PSO 3.97× 10−5 0.952

From the same Figure 10 and Table 12, it is observed that the design with the best
overall performance in terms of Cp is the one corresponding to the design delivered by the
GA algorithm, which has a maximum Cp of 0.1296, while the design delivered by the ABC
algorithm reaches a maximum Cp of 0.1264 and the design delivered by the PSO algorithm
reaches a maximum Cp of 0.127, all at a TSR of 0.6, as calculated with the CAE model.

Finally, Figure 11 shows a comparison between the performance of the optimized
design using the GA algorithm and the design with the best performance found during
the DOE, which reached a maximum Cp of 0.1266 at a TSR of 0.6 with a design of θ = 40◦,
Or = 0.10, and OA = 200 mm. In this Figure, observe that the optimized design using
the GA algorithm has superior performance to the best design found during the DOE
throughout all the TSR points. In particular: (1) there is an increase in Cp of up to 9.49% at
a TSR of 0.5, (2) an increase of up to 21.78% at a TSR of 0.8, and (3) an increase of 2.36% in
the maximum Cp at a TSR of 0.6.
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Figure 11. Performance comparison between GA-optimized design and best performance achieved
during DOE.

5. Discussion
5.1. Optimized Geometry Analysis

The optimized geometry of the wind turbine blade, as can be seen in Figure 12a–d,
obtains the following results: 1. it favors the concentration of the airflow directly towards
the tips of the blades; 2. it increases the pressure that is exerted on the tips, which in turn
helps to increase the torque exerted on them; and 3. the pressure lines exerted on the blades
are shown in the instants of time when the torque is more outstanding.

(a) (b)

(c) (d)

Figure 12. Pressure lines (Pa) on the lower half of the geometry of the GA-optimized Savonius
wind turbine, (a) Instant pressure at t = 1.2217, (b) Instant pressure at t = 1.2305, (c) Instant pressure
at t = 1.239, (d) Instant pressure at t = 1.248.

In the same way: (1) The overlap between blades is kept at an intermediate value.
This value indicates that the redirection of flow from the forward blade to the return blade
through the overlap between blades is a vital characteristic to reduce the negative effect
of the return blade; (2) overlap should not be too wide so as not to cause air to escape
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freely through that space. This phenomenon is illustrated in Figure 13a–d, where it is
observed that the wind flows through the overlap between blades with a speed of up to
4 m/s and that same wind flow runs through the entire concave surface of the return blade,
providing it with an extra boost. We provide all necessary material to reproduce these
results (https://tinyurl.com/68sn3ftc (accessed on 26 December 2021)).

(a) (b)

(c) (d)

Figure 13. Wind speed (m/s) over the profile of the GA optimized Savonius wind turbine, (a) Instant
speed at t = 1.2217, (b) Instant speed at t = 1.2305, (c) Instant speed at t = 1.239, (d) Instant speed at
t = 1.248.

5.2. Comparison with the State of the Art

Due to the different approaches and methodologies followed by different studies over
the years on the study of Savonius VAWT, it is complicated to establish a direct comparison
between previous works and the present work. Specifically, such comparison is difficult
because of the variety of blade profiles present in the state of the art and the different
rotor dimensions considered for their prototypes, as well as the wind speeds considered
on their tests. All these factors have been shown to have a strong impact on the final
results, complicating the comparison task. Therefore, a fair comparison must consider
works with similar features on the Savonius blade profile, the rotor dimensions, and the
flow wind speed. The most suitable work complying with these characteristics is the one
developed by Alom et al. on [30], and a comparison between this work and the present work
is presented below.

The optimized design of this work reaches a maximum Cp of 0.1296 at TSR = 0.6; this
is a marginally better performance than observed in the state of the art [30]. Alom et al.,
through a trial-and-error optimization process, report a maximum Cp of 0.1288 at a
TSR = 0.8 for a Savonius wind turbine with a semi-elliptical profile, as estimated by
their 3D computational model for the wind turbine. However, the performance of the
design obtained in this work using metaheuristic optimization algorithms is below to
that obtained by [30] through experimental tests in a wind tunnel, where they report a
maximum Cp of 0.134 for their Savonius wind turbine with a semi-elliptical profile. How-
ever, it is essential to note the tendency of underestimating the Cp values concerning the
experimental measurements reported in [30] that involves the CAE 3D model built in this
work. Therefore, it is necessary to validate the results of this work through experimental

https://tinyurl.com/68sn3ftc
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tests to determine with certainty to what degree an improvement in the performance of
the wind turbine was achieved or not, concerning that reported in state of the art. This
experimental validation is proposed below, along with some other considerations only as
future work.

6. Conclusions and Future Work

The design of a Savonius wind turbine was optimized through a GA. This design
obtained improved performance in Cp, showing an increase of 21.78% with TSR = 0.8 and
up to 2.36% in the maximum Cp with TSR = 0.6. However, the optimal design resulting
from this work was not superior to that found in the state-of-the-art Savonius wind turbines
with the same profile.

From the optimized geometry analysis, it is concluded that Savonius VAWT has better
performance with blade profiles, which tend to concentrate the wind flow at the tips of
the blade, exerting more pressure and, therefore, generating more torque on the blades.
For this to be accomplished, the most relevant parameter is the cut angle, which must keep
values between 40◦ and 50◦ (see Figure 9). Another relevant feature of the optimized blades
is the overlap region between blades, which allow the wind to flow all along the concave
side of the returning blade and, therefore, reduce the negative torque exerted by such blade.
From Figure 9, it is observed that the overlap ratio should be kept at values between 0.14
and 0.15.

These results are valid for the operating conditions considered in this work, i.e, a wind
speed of 6 m/s; a tip speed ratio from 0.1 to 0.8; and a Savonius VAWT with the following
dimensions: diameter = 0.5 m and height = 0.5 m. Any change to these main conditions
may yield slightly different final results on Savonius VAWT performance.

As future work, we plan to: (1) incorporate a turbulence model into the computational
model of the wind turbine in order to capture the interactions of turbulent fluids inside the
wind turbine and thus improve the accuracy of the model, (2) design a more extensive DOE
to collect a more significant amount of data representing a more representative sample of
the problem search space, (3) fit a new surrogate model with the extended data set to obtain
a more accurate model and possibly free of local optimum, and (4) build and implement a
test bench to test the optimized Savonius wind turbine prototype to measure and practically
validate its performance.
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