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Abstract: This paper presents a method of inter-turn short-circuit identification in induction motors
during load current variations based on a hybrid analytic approach that combines the genetic algo-
rithm and simulated annealing. With this approach, the essence of the method relies on determining
the reference matrices and calculating the distance between the reference matric values and the
test matrix. As a whole, it is a novel approach to the process of identifying faults in induction
motors. Moreover, applying a discrete optimization algorithm to search for alternative solutions
makes it possible to obtain the true minimal values of the matrices in the identification process. The
effectiveness of the applied method in the monitoring and identification processes of the inter-turn
short-circuit in the early stage of its creation was confirmed in tests carried out for several significant
state variables describing physical magnitudes of the selected induction motor model. The need for
identification of a particular fault is related to a gradual increase in its magnitude in the process of the
induction motor’s exploitation. The occurrence of short-circuits complicates the dynamic properties
of the measured diagnostic signals of the system to a great extent.

Keywords: turn short-circuit; stator winding; induction motor; genetic algorithm; simulated annealing

1. Introduction

The basic issue in the exploitation of different types of devices, machines, or technical
systems is to provide continuous and failure-free operation. This reliability is the key
requirement in the growing industry 4.0 era. Technical diagnostics is a tool to provide
failure-free operation of technical objects. Diagnostics is a process in which the actual
condition of an object is evaluated and, based on the result, one decides about its further
exploitation or decides to subject it to a repair process. The process of technical condition
assessment of electric machines in industry or in transport or other application fields
includes the detection and identification unwanted operational states. The set of operational
states is a series of deliberate actions performed by the machine in a specified period. It
is required that the diagnostic system detects and identifies the occurrence of faults in
real time or in early stages of their creation [1]. Nowadays, these requirements can only
be satisfied for the systems built using high-tech technology, based on microprocessor
techniques and software that implements effective methods of electric machine diagnostics.
In complex electro-mechanical objects, the analysis and classification of diagnostic signals
in the time–frequency domain is performed using transformation methods [2]. In recent
years, it has been possible to observe an increase in neural network applications in technical
diagnostics. For a wide range of neural network applications in technical diagnostics, it
is worth pointing out their application in the modeling, identification, emergency state
decision making and detection of faults occurring in complex processes and objects. The
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application of neural networks in diagnostics is reasonable, especially due to their ability
to generalize the information stored in the network [1].

Among some recently published papers related to time–frequency analysis, neural
networks, genetic algorithms and image processing, there are several that significantly
contributed to development of fault detection during electro-mechanical energy conversion:

− An innovative inter-turn short-circuit detection method applied in induction motors
using the discrete wavelet transform approach performed on the Park vectors of
current signals [3];

− A presentation of the results of research concerning the application of axial flux in the
diagnostics of an induction motor’s stator winding, supplied from a frequency con-
verter during the motor’s operation in various conditions, registered in the LabVIEW
environment [4];

− Fault detection in an induction motor using a pattern recognition technique based on
empirical wavelet transform and a convolutional neural network model used in the
automatic extraction of relevant features from the image of a current signal presented
in greyscale [5];

− The application of a combination of a deep learning neural network with a complex
cluster model and a classifier based on the support vector machine (SVM) in the
detection of unknown electromechanical faults in industrial systems [6];

− An analysis of stator current and vibration in the fault detection of induction motors
using wavelet decomposition and the FCM data clustering method based on fuzzy
logic [7];

− The development of fault diagnosis methodology for a three-phase cage induction
machine resulting from the process of training and classification using artificial neural
networks applied in the processing of digital image data obtained from the calculation
of power spectrum density (PSD) [8];

− The presentation of a stator winding fault detection method in a three-phase in-
duction motor using a discrete wavelet transform-based method and a quadrature
discriminant-based method [9], and another method combining principal component
analysis (PCA) with the training of selected artificial neural networks representing a
multi-layer perceptron network and a network with radial base functions [10];

− The detection of cracked bars in an induction motor using the method of stator current
discrete wavelet transform coefficients, applied in the training of neural networks
used in the ANFIS adaptive neural fuzzy inference system [11];

− The design of a neutral network deep learning method and a special over-sampling
technique used for the high-accuracy classification of induction motor faults [12];

− The application of error-back-propagation-based training of a neutral network in
the analysis of current and voltage components performed to detect the inter-turn
short-circuit in induction motor stator winding [13];

− A proof of the usefulness of the investigation of stator current variation in the converter
drive of induction motors for the detection and classification of electrical faults using
the Kohonen neural network [14];

− The application of the genetic algorithm to the problem of the identification of pa-
rameters in the mathematical modelling of induction motors. The research was
concentrated on the selection of the genetic algorithm’s stop criterion considering the
convergence and accuracy of the analyzed process and the time required for numerical
analysis [15];

− The performance of tests of a control system applied to an induction machine using
the genetic algorithm with many objective function used to conduct the evaluation of
quality factors [16];

− An analysis of the impact of inbreeding in the genetic algorithm on the results of
parameter identification in the mathematical modelling of an induction motor [17];
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− The identification of inertia on the induction motor’s shaft from the analysis of wavelet
scalograms performed using a clustering method based on the k-mean harmonics
technique [18] or other methods described in the literature [19–27].

The paper introduces a new method for fault diagnosis based on the results of the cal-
culated differences between the values obtained from the identification algorithm and those
of the reference matrix values determined for a selected group of tests. The appropriate
values were obtained by means of the simulated annealing and genetic algorithm.

The applied genetic algorithm presents a new method of determining the length of the
binary chain of individuals in the population by means of calculations performed for the
obtained results representing the grouping appropriately normalized measurement data.

The developed method used in identifying interturn short-circuits makes it possible to
use the obtained results of computer simulations in order to carry out an accurate analysis
of the values of physical quantities recorded during the laboratory measurements of an
induction motor.

The use of technology based on AI supported by a discrete optimization algorithm in
the analyzes of the tested signals made a large contribution in terms of the obtaining of
correct results in the process of identifying interturn short-circuits.

The remaining part of this paper is organized in the following way: the second part
presents the development of the connection of the system’s elements during the perfor-
mance of simulation tests with various cases of inter-turn short circuits. The parameters
of the examined induction motor model include the physical magnitudes investigated in
the performed simulation tests and the variation of the factor of fault occurrence in the
performed simulation tests. The third part contains the description of the developed fault
identification algorithm, with a juxtaposition of the required parameters for the testing of
the selected diagnostic method and the method of calculation of the factor required for
fault assessment.

In the next section, laboratory tests and descriptions of the obtained results are pre-
sented. The conclusions are contained in the last part of this paper.

2. Materials and Theoretical Basis

Briefly, the detection of interturn-faults at an early stage is an important task in the
maintenance of electrical machinery in the power industry. This problem has not been fully
researched and resolved to this day. Therefore, it is still an interesting research issue.

In order to develop a more effective algorithm for the early detection of interturn
short-circuits, experimental tests were carried out during which the measurement data
were obtained for the development of an effective diagnostic algorithm.

Description of the Identification Process of the Inter-Turn Short-Circuit in the Induction
Motor Model

The object of interest was the Sg-112M-4 cage induction motor, with the following
parameters: Pn = 4.0 kW, Un = 380 V, In = 8.6 A and nn = 1435 rpm. The motor was
mechanically coupled to the PZM5545 DC generator by the clutch.

Figure 1 shows the DC generator with an autotransformer and a bridge rectifier used
for the induction motor’s load changing. The load of the DC generator comprised two
resistive heaters with an overall power of 4 kW. Load torque was measured with the Data
FLEX 22/50 torque meter. The torque meter also outputted a voltage signal that was
proportional to the measured rotational speed [19].
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Figure 1. Experimental test rig and setup: (a) test rig (b); block diagram of the system components
and their connections during the simulations.

The DC generator, which was used as a load for the tested motor, had the following
parameters: Pn = 4.5 kW, Un = 230 V, In = 19.6 A, nn = 1450 rpm and If = 0.86 A. Figure 2
shows a wiring diagram of the turns in one stator coil of the tested motor. The windings
were connected in wye configuration and supplied from a three-phase low-voltage network.
The winding number from which the turn was wired to the terminal on the terminal board
on the machine’s housing is marked with a proper number in the diagram. Short circuiting
of the selected turns occurred when the proper terminals were connected to a resistor and
an ammeter, which was used for current control.
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Figure 2. Test panel for the implementation of turn short-circuits: (a) wiring diagram of stator coil
terminals; (b) view of the terminal strip installed in the motor’s terminal box.

In order to decrease the current and provide long-term protection of the motor against
overheating, an additional resistor, of resistance equal to 5 ÷ 6 Ω, was used. The additional
resistor had no impact on the effects of faults that could be observed for different values of
components of the measured diagnostic signals [27]. Simulation tests were carried out in
five test groups with the following values of the load current Iload: 1 A, 2 A, 3 A, 4 A and 5 A.
Each test group contained eight different cases of inter-turn short-circuiting. Test results
for all physical magnitudes and for each case of short circuiting were stored in matrix
X1[8,500,000]. The elements of matrix X1 were defined for each value of load current Iload.
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The changes were saved in matrix K1 in the following order: K1 = [(short circuit
between turns 1 and 2), (short circuit between turns 1 and 3), (short circuit between turns 1
and 4), (short circuit between turns 1 and 5), (short circuit between turns 1 and 10), (short
circuit between turns 1 and 15), (short circuit between turns 1 and 20), (short circuit between
turns 1 and 25)].

In the proposed diagnostic method, simulation tests were run for the following physi-
cal magnitudes:

(a) Turn short-circuit current Iz;
(b) Electromagnetic torque of the examined induction motor mel;
(c) Voltage signal proportional to the rotational speed of the examined induction motor’s

rotor n1;
(d) Signal proportional to the axial flux φ1;
(e) Vibration signal—acceleration in X axis—dx;
(f) Vibration signal—acceleration in Y axis—dy;
(g) Acoustic pressure—ps;
(h) Phase voltage—u1, u2 and u3;
(i) Phase current—i1, i2 and i3;
(j) Neutral point voltage—u0.

3. Proposed Method of Inter-Turn Short-Circuit Identification in Induction Motor
Description of Diagnostic Algorithm Used in Physical Magnitude Signal Processing Using the
Genetic Algorithm of Simulated Annealing

In the identification tests performed for each case of inter-turn short-circuiting, the
matrix X3 values obtained from normalization of matrix X1 values were used, followed by
sorting of the elements of matrix X2 into the right order.

Simulations were run with 50 kHz sampling frequency, and the simulated period was
10 s.

Elements of matrix X3, obtained from sorting the elements of matrix X2 in descending
order for all examined physical magnitudes, were used in the diagnostic procedure.

This means that in the simulation tests, the values of matrix X3 were defined as follows:

X3(i)(j) =

{ [
X2(i)(1) ≥ X2(i)(2) . . . ≥ X2(i)(500,000)

]
;

i ∈ 〈1, 8〉; j = 1, 2 . . . 500
(1)

Moreover, two types of identification tests using normalization of the elements of
matrix X1 were applied:

− Tests performed for the assumed first four cases of inter-turn short-circuiting using
the parameters defined for acoustic pressure ps;

− Tests performed for the assumed last four cases of inter-turn short-circuiting using the
parameters defined for axial flux φ1.

The reference matrix elements values and the values of examined matrix calculated
by the genetic algorithm of simulated annealing were used in identification tests in the
diagnostic procedure.

The values of reference matrix were obtained after performing calculations in the
genetic algorithm using the values of matrix X2 defined in test group for load current
Iload = 3 A.

The values of matrix X2 elements were obtained by limiting the values of matrix X1
to the range [a3, a4] for all investigated physical magnitudes according to the following
formula:

X2((i)j) =


(

(X1(i)(j)−a1(i))

(a2(i)−a1(i))

)
∗ (a4(i) − a3(i)) + a3(i);

i ∈ 〈1, 8〉; j = 1, 2 . . . 500, 000
(2)

where:
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X1—values of the matrix elements;
a1—minimum value of the matrix X1 elements defined in the test;
a2—maximum value of the matrix X1 elements defined in the test;
a3—initial value of the range containing normalized values of matrix X1 calculated in

tests for acoustic pressure ps and axial flux φ1;
a4—end value of the range containing normalized values of matrix X1 calculated in

tests for acoustic pressure ps and axial flux φ1;
i—the number of the investigated cases of inter-turn short-circuits.
The values of variables a1, a2, a3 and a4 were calculated using the following formulas:

a1(i) = min
(

X1(i)(j)

)
; (3)

a2(i) = max
(

X1(i)(j)

)
; (4)

a4(i) = min
(

a5(i), a6(i)

)
; (5)

a4(i) = max
(

a5(i), a6(i)

)
; (6)

The variables a5 and a6 were used in the calculation of matrix X2. The values of these
variables were arithmetic means and standard deviations calculated in tests for acoustic
pressure ps and axial flux φ1 using the following formulas:

a5(i) =


500,000

∑
j=1

X1(i)(j)

500,000 ;
X1(i)(j) f or ps, φ1

(7)

a6(i) =


√√√√ 500,000

∑
j=1

(X1(i)(j)−a3(i))
2

499,999 ;

X1(i)(j) f or ps, φ1

(8)

The values of tested matrix were calculated by applying the genetic algorithm, which
used the matrix X2 values obtained in the test for a given load current Iload.

Calculation of the variables a5 and a6 was performed after the following conditions for
the selected physical magnitudes, such as acoustic pressure ps and axial flux φ1 for the load
current Iload = 3 A, were met:

a7 > a8; f or i ∈ 〈1, 4〉 (9)

a9 > a10; f or i ∈ 〈5, 8〉 (10)

where:
i—the number of the investigated inter-turn short-circuit case.
The variables a7, a8, a9 and a10 were calculated using the following formulas:

a7 = max
(

X4(i)

)
− a8; i ∈ 〈1, 4〉 (11)

a8 =
∣∣∣min

(
X4(i)

)∣∣∣; i ∈ 〈1, 4〉 (12)

a9 = max
(

X4(i)

)
− a10; i ∈ 〈5, 8〉 (13)

a10 =
∣∣∣min

(
X4(i)

)∣∣∣ i ∈ 〈5, 8〉 (14)

The values of matrix X4 were defined according to the formula given below:

X4(i) = max
(

X1(i)(j)

)
; i ∈ 〈1, 8〉; j = 1, 2 . . . 500, 000 (15)
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The genetic algorithm with simulated annealing was used for the proposed diagnos-
tic method.

The simulated annealing algorithm is an iterative method that searches the space
of alternative solutions to a problem in order to find an optimal solution. The solution
depends on the obtained difference in values between the old and the new solution and the
current temperature value. The temperature value is constantly lowered and it is possible
to adjust the selection of successive approximations of the solutions to the problem. The
probability of choosing the best solution increases with the decreasing of the temperature
value in subsequent iterations of the simulated annealing algorithm. Over time, the results
stabilize and the subsequent changes are not accepted.

In the applied genetic algorithm, normalization of individuals was performed using
the values of the matrix X6 elements.

The values of the matrix X6 elements were calculated by summing the consecutive
elements of matrix X5.

The values of matrix X3 were used in calculations of the sequence values stored in
matrix X5.

The values of matrix X6 were the results of calculations of five elements according to
the formula:

X6(i)(j) =
k

∑
j=1

X5(i)(j); i ∈ 〈1, 8〉; j = 1, 2 . . . 5; k = j (16)

where:
X5—the values of the matrix elements calculated in the test.
Matrix X6 contained the successively summed arithmetic means of the respective

values of the X3 matrix. This operation increased the range of changes for the values of the
matrix X3 elements for different cases of inter-turn short-circuiting. The values of matrix
X5 can be effectively used in identification process of investigated faults.

X5(i) =
[
m1(i), m2(1), m3(i), m4(1), m5(i)

]
; i ∈ 〈1, 8〉 (17)

The values of the arithmetic means m1, m2, m3, m4 and m5 were calculated as follows:

m1(i) =

100
∑

j=1
X3(i)

100
; i ∈ 〈1, 8〉 (18)

m2(i) =

200
∑

j=101
X3(i)

1000
; i ∈ 〈1, 8〉 (19)

m3(i) =

300
∑

j=201
X3(i)

100
; i ∈ 〈1, 8〉 (20)

m4(i) =

400
∑

j=301
X3(i)

100
; i ∈ 〈1, 8〉 (21)

m5(i) =

500
∑

j=401
X3(i)

100
; i ∈ 〈1, 8〉 (22)

Calculation of reference matrix elements values used in identification of inter-turn
short-circuits was a crucial step in the presented diagnostic method. The calculations in the
presented diagnostic procedure were performed according to the genetic algorithm with
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simulated annealing [14]. A block diagram containing the order of the calculations run in
the genetic algorithm is presented in Figure 3.Energies 2022, 15, x FOR PEER REVIEW 9 of 21 
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For the applied genetic algorithm, it was crucial to specify an objective function.
The choice of objective function was made using a series of simulation tests performed

for various objective functions.
The correct results of the proposed diagnostic procedure were observed for F6 Schaf-

fer’s function with two variables [14].
This function was chosen as an objective function for the applied genetic algorithm.

In this way, a representation of an individual in the population, for which each of the
two variables were encoded as a binary string of specified length, needed to satisfy the
requirements of accuracy [14].

The operation of the genetic algorithm with simulated annealing started with the
initialization of the population individuals.

The initial values of the individuals were obtained by randomizing binary strings
containing values of 0 or 1.

Binary strings created in this way for the first variable used in objective function
calculation were stored in matrix X7.

In the case of the second variable used in objective function calculation, the binary
strings were stored in matrix X8.

The overall length of binary string for a population individual was obtained from
summing the number of bits of each variable binary string used in objective function
calculation.

Based on the results obtained for a series of simulation tests, the population size used
in the identification tests performed using the genetic algorithm with simulated annealing
was set to 25 or 50.

When the stop criterion of the genetic algorithm was achieved, the processing of
population individuals in the next generations was stopped.

In each iteration (generation), a random selection of a binary string of one k-th individ-
ual and a new binary string l from the vicinity of the k-th individual out of all population
individuals was performed. For a randomly selected binary string of the l-th individual
from the vicinity of the k-th individual, one random bit was changed [14]. A block diagram
of the proposed GA-SA algorithm is presented in Figure 3.

In this proposed algorithm, the value of the objective function of the l-th individual
new binary string is greater than the value of objective function of the k-th individual,
then the binary string of the k-th individual is changed accordingly. Otherwise, a function
returning a random number in a range of [0,1] is called and one checks if the obtained value
is lower than the probability distribution of the new binary string of the l-th individual.

If the random number satisfies this condition, an appropriate exchange of k-th individ-
ual binary string occurs [14].

The end condition that is used in simulated annealing checks if the probability dis-
tribution of the newly selected string for the l-th individual is similar to the Boltzmann
distribution.

In this way, the so-called thermal equilibrium was defined. Temperature T is decreased
in each iteration of the genetic algorithm [14].

In order to lower the temperature, logarithmic cooling scheme is used [4,20]. For
varying values of the adapted parameter, this scheme improves the quality of the results of
inter-turn short-circuit identification.

In order to realize the above-described steps of the simulated annealing procedure,
the operations described below were performed.

For a new l-th individual, singular bits in binary strings used for objective function
calculation were randomly selected and created in the following way:

X7(l,j) =

{
1− X7(l,j);
i ∈ 〈1, 8〉; j = random < 1, s1(i) >; k 6= l; l = random〈1, n〉; n ∈< 25, 50 >

(23)
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X8(l,j) =

{
1− X8(l,j);
i ∈ 〈1, 8〉; j = random < 1, s2(i) >; k 6= l; l = random〈1, n〉; n ∈< 25, 50 >

(24)

where:
s1—the number of bits s1 calculated in the test;
s2—the number of bits s2 calculated in the test;
n—the number of population individuals.
The numbers of bits s1 and s2 used in the procedure were defined by two variables, a17

and a18. The values of these variables were obtained by increasing, with a certain accuracy,
the variables a11 and a12.

The values of variables a11 and a12 create a range of variation that is used in the
calculation of the length of bits for variables used in the objective function calculation.

The values of these variables were obtained by calculating the differences between
the maximum and minimum values of appropriate elements of the X6 matrix. In the
calculations, the following formulas were applied:

a11(i) =
(

a14(i)
2 − a13(i)

2
)

; i ∈ 〈1, 8〉 (25)

a12(i) =
(

a16(i)
2 − a15(i)

2
)

; i ∈ 〈1, 8〉 (26)

where:
a13, a15—the minimum values of the matrix X6 elements;
a14, a16—the maximum values of the matrix X6 elements.
The values of variables a13, a14, a15 and a16 were defined in the following way:

a13(i) = min
(

X6(i)(1), X6(i)(2)

)
; i ∈ 〈1, 8〉 (27)

a14(i) = max
(

X6(i)(1), X6(i)(2)

)
; i ∈ 〈1, 8〉 (28)

a15(i) = min
(

X6(i)(4), X6(i)(5)

)
; i ∈ 〈1, 8〉 (29)

a16(i) = max
(

X6(i)(4), X6(i)(5)

)
; i ∈ 〈1, 8〉 (30)

The calculated values of variables a11 and a12 defined a range of variation of variables
used in the calculation of the objective function performed in the following generations.

The first number of bits for a binary string of a population individual calculated
for each generation corresponded to a variable from the range [a13(i), a14(i)]. The second
number of bits for a binary string of a population individual calculated for each generation
corresponded to a variable from the range [a15(i), a16(i)].

The obtained variation ranges a11 and a12 were used with a specified accuracy equal to
105 in calculations of the variables a17 and a18 that are required when defining the number
of bits of applied binary strings according to the following formulas:

a17(i) = a11(i)·105; i ∈ 〈1, 8〉 (31)

a18(i) = a12(i)·105; i ∈ 〈1, 8〉 (32)

Using the calculated values of variables a17 and a18, one can define the number of bits
s1 and s2 using the following formulas:

2s1(i)−1 < a17(i) ≤ 2s1(i) ; i ∈ 〈1, 8〉; s1(i) ∈< 1, 25 > (33)

2s2(i)−1 < a18(i) ≤ 2s2(i) ; i ∈ 〈1, 8〉; s2(i) ∈< 1, 25 > (34)
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The values of binary strings of one k-th individual and one new l-th individual were
changed to values in the decimal system using the formulas given below:

a19(i) =


m
∑

j=1
X7(i)(k,j)·2(j−1);

i ∈ 〈1, 8〉; k = random〈1, n〉; k 6= l; m = s1(i); n ∈< 25, 50 >

 (35)

a20(i) =


m
∑

j=1
X8(i)(k,j)·2(j−1);

i ∈ 〈1, 8〉; k = random〈1, n〉; k 6= l; m = s2(i); n ∈< 25, 50 >

 (36)

a21(i) =


m
∑

j=1
X7(i)(l,j)·2(j−1);

i ∈ 〈1, 8〉; l = random〈1, n〉; k 6= l; m = s1(i); n ∈< 25, 50 >

 (37)

a22(i) =


m
∑

j=1
X8(i)(l,j)·2(j−1);

i ∈ 〈1, 8〉; l = random〈1, n〉; k 6= l; m = s2(i); n ∈< 25, 50 >

 (38)

An important step in the diagnostic procedure was the defining of the most advan-
tageous variations of values of the k-th and l-th individuals in the population, calculated
using the variables a13, a14, a15 and a16 using the formulas given below:

a23(i) = a13(i) + a19(i)·

(
a14(i) − a13(i)

)
(

s1(i) − 1
) ; i ∈ 〈1, 8〉 (39)

a24(i) = a15(i) + a20(i)·

(
a16(i) − a15(i)

)
(

s2(i) − 1
) ; i ∈ 〈1, 8〉 (40)

a25(i) = a13(i) + a21(i)·

(
a14(i) − a13(i)

)
(

s1(i) − 1
) ; i ∈ 〈1, 8〉 (41)

a26(i) = a15(i) + a22(i)·

(
a16(i) − a15(i)

)
(

s2(i) − 1
) ; i ∈ 〈1, 8〉 (42)

The obtained values of the variables a23, a24, a25 and a26 were used in the calculations
of objective function values.

The values of the objective function for the k-th and l-th individuals were calculated
using the formulas below:

a27(i) = 0.5 +
sin2

√
a23(i)

2 + a24(i)
2 − 0.5(

1.0 + 0.001·
(

a23(i) + a24(i)

))2 ; i ∈ 〈1, 8〉 (43)

a28(i) = 0.5 +
sin2

√
a25(i)

2 + a26(i)
2 − 0.5(

1.0 + 0.001·
(

a25(i) + a26(i)

))2 ; i ∈ 〈1, 8〉 (44)

where:
a27—the objective function value of the k-th individual;
a28—the objective function value of the l-th individual.
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The binary string of the k-th individual changed when one of the two conditions
presented below was satisfied:

a28(i) > a27(i); i ∈ 〈1, 8〉 (45)

b1(i)(m) < exp
(a27(i)−a28(i))

T(i)(m) ; a28(i) ≤ a27(i); i ∈ 〈1, 8〉 (46)

where:
b1—a random value from the range [0,1] defined in the test;
T—the temperature value for the current iteration of the genetic algorithm;
m—the number of the current iteration of the genetic algorithm.
The exchange of binary strings of one k-th individual was realized in the following

way:

X7(i)(k,j) =

{
X7(i)(l,j);
i ∈ 〈1, 8〉; j = 1, 2 . . . s1(i); k, l = random〈1, n〉; k 6= l; n ∈< 25, 50 >

(47)

X8(i)(k,j) =

{
X8(i)(l,j);
i ∈ 〈1, 8〉; j = 1, 2 . . . s2(i); k, l = random〈1, n〉; k 6= l; n ∈< 25, 50 >

(48)

The stop criterion of the genetic algorithm was defined as shown below:

T(i) ≤ a29(i); i ∈ 〈1, 8〉 (49)

where:
a29—the value of the variable required for the stopping of the genetic algorithm

(experimentally set in the test).
The value of temperature T in the following iterations m of simulated annealing

decreased according to the logarithmic cooling scheme, as shown in the formula below [4,20]:

T(i)(m+1) =
T(i)(m)(

1 + λ(i)(m)·T(i)(m)

) ; i ∈ 〈1, 8〉 (50)

where:
λ—the value of variable adapted for the logarithmic cooling scheme calculated in

the test.
In the following iterations m of simulated annealing, the value of the adapted variable

λ was calculated using the formula given below [4,20]:

λ(i)(m+1) =
ln
(

1 + δ(i)

)
3·σ(i)(m)

; i ∈ 〈1, 8〉 (51)

where:
δ—the parameter representing the accuracy of the equilibrium state for the logarithmic

cooling scheme defined in the range (0.1,10);
σ—the value of the standard deviation of the objective function for all individuals

generated at a given temperature and calculated in each iteration of simulated annealing m.
The standard deviation σ of objective function in each iteration m of simulated anneal-

ing was calculated in the following manner:

σ(i)(m) =

√
n
∑

j=1

(
F1(j)(m) −m6(i)(m)

)2

n
; i ∈ 〈1, 8〉; n ∈ 〈25, 50〉 (52)
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where:
F1—the value of the objective function for a specified population individual, calculated

in the test for each iteration m of the genetic algorithm;
m6—the arithmetic mean of the objective function of all individuals calculated for each

iteration m of the genetic algorithm.
The values of objective function F1 of all population individuals were calculated using

the formula presented below:

F1(i) = 0.5 +
sin2

√
F2(i)

2 + F3(i)
2 − 0.5(

1.0 + 0.001·
(

F2(i) + F3(i)

))2 ; i ∈ 〈1, 8〉 (53)

where:
F2—the values of the matrix elements being the values of the first variable for the

applied objective function,
F3—the values of the matrix elements being the values of the second variable for the

applied objective function.
Calculations of the elements’ values of matrices F2 and F3 were performed using the

following formulas:

F2(i)(j) =

 a13(i) + X9(i)(j)·
(a14(i)−a13(i))
(s1(i)−1)

;

i ∈ 〈1, 8〉; j = 1, 2 . . . n; n ∈ 〈25, 50〉
(54)

F3(i)(j) =

 a15(i) + X10(i)(j)·
(a16(i)−a15(i))
(s2(i)−1)

;

i ∈ 〈1, 8〉; j = 1, 2 . . . n; n ∈< 25, 50 >
(55)

where:
a13, a15—the minimum values of the matrix X6 elements defined by formulas (27)

and (29);
a14, a16—the maximum values of the matrix X6 elements defined by formulas (28)

and (30);
X9—the values of the matrix containing binary strings of population individuals in a

decimal system;
X10—the values of the matrix containing binary strings of population individuals in a

decimal system.
The values of the X9 and X10 matrices were calculated using the formulas shown

below:

X9(i)(a) =


m
∑

j=1
X7(i)(a,j)·2(j−1);

a = 1, 2 . . . n; i ∈ 〈1, 8〉; m = s1(i); n ∈ 〈25, 50〉
(56)

X10(i)(a) =


m
∑

j=1
X8(i)(a,j)·2(j−1);

a = 1, 2 . . . n; i ∈ 〈1, 8〉; m = s2(i); n ∈ 〈25, 50〉
(57)

Identification of different cases of inter-turn short-circuiting was performed using the
genetic algorithm according to the order defined in matrix K1.

For all examined physical magnitudes in the applied diagnostic procedure, reference
matrix calculation was performed for eight assumed cases of inter-turn short-circuiting.

In a test group for the load current Iload = 3 A, the values of the reference matrix were
calculated and stored in matrices N1 and N2 of size 8 × 3. Tested values were stored in
matrices N3 and N4 of size 1 × 3.
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Reference and tested matrices were derived from matrix X12 after the genetic algorithm
had finished its operation. This matrix contained the values obtained by sorting the
elements of matrix X11 in descending order.

The values of matrix X11 were obtained by changing the entire binary string of a
population individual that was transforming the binary strings X7 and X8 to the decimal
system. The calculations were performed according to the formula:

X11(i)(a) =


k
∑

j=1
X7(i)(a,j)·2(j−1) +

m
∑

j=k+1
X8(i)(a,j)·2(j−1);

a = 1, 2 . . . n; i ∈ 〈1, 8〉; k = s1(i); m = s2(i); n ∈ 〈25, 50〉
(58)

The values of X12 were defined as:

X12(i)(a) =

{ [
X11(i)(1) ≥ X11(i)(2) . . . . ≥ X11(i)(n)

]
;

a = 1, 2 . . . n; i ∈ 〈1, 8〉; n ∈ 〈25, 50〉

}
(59)

The values of the matrix X12 elements were stored in matrices containing the reference
values N1 and N2 and in matrices containing the test values N3 and N4 after the genetic
algorithm finished its operation. The values of matrices N1, N2, N3 and N4 were calculated
using the formulas below:

N1(i,j) = X12(i,j); i = 1 , 2 . . . 8; j = 1 , 2 . . . 3 (60)

N2(i,j) = X12(i,j); i = 1 , 2 . . . 4; j = 1 , 2 . . . 3 (61)

N3(j) = X12(j); j = 1 , 2 . . . 3 (62)

N4(j) = X12(j); j = 1 , 2 . . . 3 (63)

The results obtained from identification tests:

− Were stored in the reference matrix N1 and in the tested matrix N3 for the normaliza-
tion of matrix X1, which was performed using the parameters calculated for axial flux.

− Were stored in the reference matrix N2 and in the tested matrix N4 for the normaliza-
tion of matrix X1, which was performed using the parameters calculated for acoustic
pressure ps.

The calculation of the values of matrices H1 and H2 made it possible to perform the
correct identification of cases of inter-turn short circuiting for the calculated diagnostic
signals of the examined physical magnitudes at the specified load current Iload.

The calculations of the values of matrices H1 and H2 were performed using the
Manhattan metric as shown below:

H1(i) =
3

∑
j=1

∣∣∣N1(i,j) − N3(j)

∣∣∣ ; i = 1, 2 . . . 8 (64)

H2(i) =
3

∑
j=1

∣∣∣N2(i,j) − N4(j)

∣∣∣ ; i = 1, 2 . . . 8 (65)

In general, the calculations of matrix H1 are performed directly after the genetic
algorithm stops. After calculating the index nr3, it may be necessary to calculate the values
of matrix X2. The aim is to obtain the index nr3 ∈ < 1, 4 >; the calculated values of
matrix H1 might point to an incorrect number of inter-turn short-circuit case. Otherwise,
the index nr3 (for nr3 ∈ < 5, 8 >) defined in matrix H1 makes it possible to calculate the
column number in matrix K1 containing the right case of inter-turn short-circuiting for the
examined induction motor model.
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In this study, the index nr3 was defined using the minimum value of the matrix H1 as
shown below:

H1(nr3)
= min

(
H1(i)

)
; i ∈< 5, 8 > (66)

This means that column number i in matrix K1 corresponded to calculated index nr3
(i = nr3).

Generally, when obtaining index nr3 ∈ < 1, 4 >, the calculation of index nr4 in matrix
H2 is performed. This allows for the examined induction motor model to define the correct
case of inter-turn short circuiting out of four first assumed cases. The calculated index nr4
(i = nr4) corresponds to the column number of matrix K1.

Here, by defining the minimum value of matrix H2, index nr4 was defined.

H2(nr4)
= min

(
H2(i)

)
; i = 1, 2 . . . 4 (67)

4. Results of Research on Diagnostic Algorithm Application in the Identification of
Inter-Turn Short-Circuiting in Induction Motor Models

In Tables 1–4, several cases of the inter-turn short-circuits that were investigated in
the identification process are contained in the column labelled Test parameters and also the
correct results of the calculation of the matrices H1 and H2 obtained during the identification
process of inter-turn short-circuiting are marked in bold. In the performed identification
tests, the initial temperature of the genetic algorithm with simulated annealing was equal
to T = 100.

Table 1. Example results of H1 matrix for electromagnetic torque mel.

Test Parameters Results * 1011 Test Parameters Results * 1011

inter-turn
short-circuit

1_20,
load current

Iobc = 1 A,
population size = 25,

a29 = 9 * 10−5,
δ = 1.5,

iteration = 35

1.5165
1.5435
1.5238
1.5451
1.5096
1.4747
0.6304
2.4499

inter-turn
short-circuit

1_20,
load current

Iobc = 1 A,
population size = 50,

a29 = 9 * 10−5,
δ = 5.0,

iteration = 15

1.8195
1.8429
1.8197
1.8370
1.8056
1.6356
0.8436
2.1941

inter-turn
short-circuit

1_10,
load current

Iobc = 4 A,
population size = 25,

a29 = 9 * 10−5,
δ = 1.5,

iteration = 104

0.0085
0.0355
0.0157
0.0370
0.0016
0.0334
0.8777
3.9579

inter-turn
short-circuit

1_10,
load current

Iobc = 4 A,
population size = 50,

a29 = 9 * 10−5,
δ = 5.0,

iteration = 58

0.0141
0.0375
0.0144
0.0317
0.0003
0.1698
0.9617
3.9995

Table 2. Example results of H1 matrix tests for rotational speed nl.

Test Parameters Results * 1011 Test Parameters Results * 1011

inter-turn
short-circuit

1_15,
load current

Iobc = 2 A,
population size = 25,
condition = 9 * 10−5,

δ = 1.5,
iteration = 38

0.4331
0.4192
0.4339
0.4217
0.3756
0.0739
0.8653
6.1794

inter-turn
short-circuit

1_15,
load current

Iobc = 2 A,
population size = 50,
condition = 9 * 10−5,

δ = 5.0,
iteration = 17

0.4494
0.4454
0.4507
0.4426
0.4054
0.0029
1.5368
7.0391
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Table 2. Cont.

Test Parameters Results * 1011 Test Parameters Results * 1011

inter-turn
short-circuit

1_25,
load current

Iobc = 5 A,
population size = 25,
condition = 9 * 10−5,

δ = 1.5,
iteration = 34

7.3506
7.3494
7.3400
7.3432
7.2915
6.9687
5.7263
0.5185

inter-turn
short-circuit

1_25,
load current

Iobc = 5 A,
population size = 50,
condition = 9 * 10−5,

δ = 5.0,
iteration = 18

7.8657
7.8617
7.8670
7.8589
7.8217
7.4134
5.8795
0.4429

Table 3. Example results of H2 matrix tests for the signal proportional to axial flux φ1.

Test Parameters Results Test Parameters Results

inter-turn
short-circuit

1_3,
load current

Iobc = 1 A,
population size = 25,

a29 = 9 * 10−6,
δ = 1.5,

iteration = 31

24,522
2309

12,972
20,211

inter-turn
short-circuit

1_3,
load current

Iobc = 1 A,
population size = 50,

a29 = 9 * 10−6,
δ = 5.0,

iteration = 14

24,263
206

12,830
23,643

inter-turn
short-circuit

1_5,
load current

Iobc = 4 A,
population size = 25,

a29 = 9 * 10−6,
δ = 1.5,

iteration = 27

36,991
20,738
16,198
5219

inter-turn
short-circuit

1_5,
load current

Iobc = 4 A,
population size = 50,

a29 = 9 * 10−6,
δ = 5.0,

iteration = 15

45,858
23,825
21,433

902

Table 4. Example results of H2 tests for acceleration in d axis X—dx.

Test Parameters Results Test Parameters Results

inter-turn
short-circuit

1_4,
load current

Iobc = 2 A,
population size = 25,

a29 =9 * 10−6,
δ = 1.5,

iteration = 22

23,325
11,396

699
22,413

inter-turn
short-circuit

1_4,
load current

Iobc = 2 A,
population size = 50,

a29 =9 * 10−6,
δ = 5.0,

iteration = 12

23,947
12,261

235
24,266

inter-turn
short-circuit

1_2,
load current

Iobc = 5 A,
population size = 25,

a29 = 9 * 10−6,
δ = 1.5,

iteration = 20

0
11,929
23,588
45,738

inter-turn
short-circuit

1_2,
load current

Iobc = 5 A,
population size = 50,

a29 = 9 * 10−6,
δ = 5.0,

iteration = 10

0
11,686
23,964
48,213
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Based on the simulation results in Tables 1–4, one can see that for all investigated
physical magnitudes, it is possible to obtain correct results in the identification of short-
circuit cases when using appropriate values of the variable a29 and the accuracy parameter δ.

Using the variations of test parameters in inter-turn short-circuit identification process
allows for the obtaining of improvements in the calculation results for matrices H1 and H2.

In addition, it can be concluded on the basis of the results presented in Tables 1–4 that
increasing the population size and the precision parameter δ increases the scope of both
the search for solutions for the variable neighborhood of the individual k and the random
selection of binary chains of individuals from the neighborhood of the individual k. Thus,
the occurrence of the stochastic process during the operation of the simulated annealing
algorithm increases intensively, thus enabling the reduction in the number of iterations as
well as the calculated minimum value in the matrices H1 and H2, respectively.

In addition to this and based on the results in Tables 1–4, it can be stated that increasing
the population size and the accuracy parameter value leads to an augmenting of the solution
search range within a varied neighborhood as well as a random selection of binary chains
of individuals from within the neighborhood of the individual k. As a result, the probability
of a stochastic process occurring increases dramatically, thus decreasing the number of
iterations and the computed minimal values in the matrices H1 i H2, respectively.

Next, Figure 4 shows the impact of changes in the population size and the accuracy
parameter δ on the convergence of the proposed genetic algorithm.
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the matrices H1 and H2, respectively.

Figure 4 shows the calculated minimum values of the H1 matrix (see Tables 1 and 2)
and the calculated minimum values of the H2 matrix (see Tables 3 and 4).

Note that there were significant decreases in the minimum values calculated in the
matrices H1 and H2, respectively, for the same investigated cases of the interturn short
circuits, as well as in the obtained number of iterations occurring when there were large
increases in the population size and the accuracy parameter value δ.

5. Conclusions

Based on the results of this research, one can see that in the proposed diagnostic
method, the extraction of information from obtained time series for the investigated physi-
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cal magnitudes of induction motors leads to increased fault detection and identification
capabilities.

All variables used in the genetic algorithm provide information about fault occurrence
symptoms. The assumed order of simulated annealing operations for each examined
induction motor model makes it possible to efficiently solve the problem of inter-turn
short-circuit identification in the system using binary strings of population individuals.
The correct calculation of these values is achieved through the use of the genetic algorithm
with simulated annealing.

Proper functioning of diagnostic systems with effective selectivity of dynamic state
identification requires the use of reference matrices derived from repetitive analyses of the
examined induction motor models.

In the presented diagnostic algorithm, an effective identification of the dynamic
states of the examined induction motor model is possible when using the created refer-
ence matrices.

In addition, one may state that an effective solution by means of the proposed diag-
nostic method involves the determination of the length of the binary chain/sequence of
individuals in the population using math operations carried out based on the values of
the arithmetic means calculated for the elements of the appropriate matrices and obtained
as a result of the applied grouping and normalization of the values of the tested physical
quantities recorded during the performed measurements.

In comparison to the GA-based methods used in the early-stage diagnostics of short-
circuit faults in the stators of induction motors [5,9], the method that uses a hybrid GA-PSO
algorithm to determine the parameters of an induction motor (HGAPSO) [21], the DE
methods used for the estimation of the electrical and mechanical parameters of three-phase
induction motors [1] or the hybrid method based on the simulated annealing algorithm and
the evaporation rate of the water cycle (SA-ERWCA) used to estimate the parameters of the
reduced-order circuit of an induction machine [10], the presented algorithm, designed for
the identification of interturn short-circuits, makes it possible to:

− Obtain correct results when searching for a local optimal solution by calculating the
length of the binary sequence of individuals with the parameters obtained by means
of clustering in a fixed order and normalization of the data recorded via laboratory
measurements and the adopted Schaffer F6 objective function;

− Ensure the optimization of performance in terms of the quality of the results obtained
via the identification process upon applying changes within the appropriate range
of parameters of the genetic algorithm (population size, initial temperature value,
accuracy parameter and convergence criterion);

− Solve continuous and discrete optimization problems by ensuring a stochastic process
during the GA operation.
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