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Abstract: In order to have a sustainable economic and social development, it is important to balance
economic growth and ecological environmental damage. In this article, we used the resampling
model under the triangular distribution to evaluate energy efficiency, because the input/output value
may have measurement errors, time lag factors, arbitrariness, and other problems, causing their own
DMU to change. After these factors were taken into consideration, the resampled input/output was
estimated because a super-SBM efficiency value was placed in the confidence interval. From the
past-present data, for the estimated data change, the time weight was provided according to the Lucas
series, and the super-SBM was time-weighted. We applied this model to a dataset of G20 economies
from 2010 to 2014. To the best of our knowledge, very few studies have applied the DEA method with
resampling to analyze energy efficiency. Thus, our study contributes to the methodologies for energy
efficiency evaluation. We found that the overall average energy efficiency is 0.653, with substantial
differences between developed economies and developing economies. The most important finding is
that neither overestimation nor underestimation occurred when sampling was repeated one thousand
times using 95% and 80% confidence intervals, confirming the robustness of the super-SBM model.
The less energy-efficient economies should adjust their energy policies appropriately and develop
new clean energy technologies in the future.

Keywords: G20; triangular distribution; past-present model; energy efficiency; resample super-SBM

1. Introduction

Climate change has drawn considerable global concern as a growing threat to hu-
manity and ecosystems. According to a report by the Intergovernmental Panel on Climate
Change in 2018, if carbon emissions continue to increase at the current rate, the Earth’s
temperature will rise by more than 1.5 ◦C by 2030 to 2052, and, thus, the average sea level
will rise by 0.26 to 0.77 m relative to sea levels in 2005. Accumulating evidence has strongly
suggested that the global climate is changing as a result of human activities, particularly
those that cause the release of greenhouse gases from fossil fuels; and given the fact that
the world economy is still highly dependent on traditional energy sources, improving the
energy efficiency is therefore critical to alleviating global climate change.

In recent years, a great deal of studies have paid attention to energy efficiency [1–9].
As for the measurement of energy efficiency, the DEA approach has been widely used so
far [10–34]. DEA applies multiple inputs to yield multiple outputs in a given time period to
evaluate the relative efficiency of an individual DMU from the distance of each DMU to the
frontier [10]. This approach follows the model developed by Charnes, Cooper, and Rhodes
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and modified by Banker, Charnes, and Cooper (BCC) [11,12]. However, these models
cannot process undesirable outputs, and the best efficiency is equal to one in multiple
DMUs. As energy efficiency is related to environmental variables, it may be affected by
undesirable outputs, such as CO2. Thus, it is necessary to obtain real efficiency scores when
investigating energy policies [13]. As traditional DEA does not require special production
functions, it is difficult to draw numerical inferences from DEA scores. Some studies have
used bootstrap DEA to create confidence intervals [3], but this method does not provide
information regarding changes in the states of inputs and outputs.

The resampling DEA approach solves the problem of input and output scores being
subject to adjustments in measurement errors, hysteretic factors, and arbitrariness in
efficiency scores [14–16]. Simar and Wilson proposed a general bootstrapping methodology
for nonparametric frontier models [17] and then extended this method by allowing for
heterogeneity in the efficiency structure [18]. Tone first proposed a nonradial, nonoriented
efficiency estimation method for the SBM model and estimated efficiency scores between
zero and one [14]. Then, he systematically proposed three resampling models in his
work [19]. Subsequently, Fang et al. proposed a slack-based version of the super-SBM [20].
The resampling DEA method has been applied in various settings, such as the measurement
of airport efficiencies [22], the investigation of technical efficiency indexes of banks [23],
and the efficiency evaluation of the railway sector [29].

Although studies on the DEA measurement of energy efficiency are abundant, to
the best of our knowledge, studies have only infrequently applied the resampling DEA
approach to the assessment of energy use performance. To close this research gap, our
study utilized the resampling SBM DEA method and the past-present model with resam-
pling to evaluate the energy efficiencies of G20 economies. Our study contributes to the
methodologies for the energy efficiency evaluation.

Our study took the members of G20 as DMU because G20 relies on accumulated
experience to formulate effective measures to promote energy efficiency. According to the
G20 Energy Efficiency Leading Programme, in the past few decades, especially from 1990 to
2013, G20 economies’ GDP energy consumption dropped by 1.4% annually, saving a total
of 4.3 billion tons of oil consumption, equivalent to a reduction of 10.4 billion tons of CO2
emissions. As an important representative of the world economic system, G20 has taken
the investment in energy efficiency as an important task. The amount of its investment in
energy efficiency has increased year by year.

Considering that the CO2 emission rate of the European Union is very low, we ex-
cluded the European Union from this analysis and included the remaining 19 economies in
our sample. This study used the G20′s data from 2010 to 2014 as the research data. The
reason is that the G20 adopted the Energy Efficiency Action Plan (EEAP) in 2014. Therefore,
we used 2014 as the time demarcation point. In addition, the efficiency value changed in
development. Therefore, if there are data after the year 2014, we have to expand the past-
present with the resampling model to the present-future with the resampling model. First,
a triangular model, the super slacks-based measure (super-SBM) model, was employed
to evaluate the energy efficiencies of the G20 economies. Then, a past-present model with
resampling was applied, where resampling was performed one thousand times, to check
whether the efficiency value of each decision-making unit (DMU) was overestimated or
underestimated in different confidence intervals. Finally, we conclude and discuss the
governmental policy implications for the efficient use of energy to enhance sustainable
development.

The rest of the paper is structured as follows. Section 2 presents the literature review.
Section 2 shows the super-SBM model. Section 3 estimates the energy efficiency under the
super-SBM model. Section 4 uses the past-present model with resampling to modify the
efficiency values. Section 5 presents conclusions and policy suggestions.
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2. Super-SBM Model

The resampling method can take into account the characteristics of data between
countries, by using lower bounds, upper bounds, and basis rights to exclude extreme
values. Our study used the Triangular model in the resampling method and compared it
with the past-present model to estimate the efficiency values of developed countries and
developing countries in the G20. In the case of Tone (2013), the correlation between the
efficiency value predicted by the trend analysis method and the actual value was highest;
therefore, our study also used the past-present trend analysis method in the present model
to estimate the input and output values of the G20 economies and the efficiency values of
the confidence intervals of each economy from 2010 to 2014.

The input and output data in multiple periods take on a triangular distribution
simulation according to the following steps. (I) Super-SBM DEA is used to obtain the
efficiency score of each DMU. (II) Processes (i) and (ii) are repeated for the selected number
of times, as follows: (i) the data generation manner is used to generate a set of input and
output data, and (ii) the super efficiency score of each DMU is obtained and recorded 1000
times with resampling. (III) Confidence intervals (i.e., 97.5%, 90%, 80%, 75%, 60%, 50%,
40%, 25%, 20%, 10%, and 2.5% confidence intervals) are obtained for each DMU.

2.1. The Triangular Distribution

In this section, we assume that the data are limited to the constraints of the upper
bound (b) and lower bound (a), with a single model (c), i.e., the observed input and output
numerical representation model). We use a triangle distribution as the sample distribution.

We use p to represent the error rate of a, and we use q to represent the error rate of b.

a = (1− p) ∗ c (0 ≤ p ≤ 1)

b = (1− q) ∗ c (q ≥ 0) (1)

Although the error rate, (p, q), is given exogenously, the input and output variables
are common to all DMUs.

2.2. Data Processing

The triangular distribution has the following distribution function:

P(x) =
(x− a)2

(c− a)(b− c)
(a ≤ x ≤ c) = 1− (b− x)2

(b− a)(b− c)
(c ≤ x ≤ b) (2)

Therefore, using the uniform random numbers s, (0 ≤ s ≤ 1), we can obtain the z value
of the input or output as follows:

If s ≤ c− a
b− a

, then z = a +
√

s ∗ (b− a) ∗ (c− a)

If s >
c− a
b− a

, then z = b−
√
(1− s) ∗ (b− a) ∗ (b− c) (3)

2.3. How to Determine Error Rate of p and q

If historical data are useful, we can apply the following procedure:

(1) Let zt
k(t = 1, 2, . . . , T; k = 1, 2, . . . , n) be the past t periods data for a certain input or

output, where T is the current (latest) period;
(2) Compare zt

k with zT
k ;

(3) Evaluate error variation rates of the lower (upper) bond pt
i (q

t
i ) for the period t.
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From the distribution of {pt
i} and {qt

i} for all DMUK, we can decide their median or
average as pi and qi,

pt
k
(
or qt

K ) =
zt−1

k − zt
k

zt
k

(4)

2.4. Estimating through Historical Data

In this section, we use historical data for re-sampling.
Historical data and weights:
Let the historical set of input matrixes be Xt = (
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(8)

𝜌 = min
[∑ (∑ ∑ )][∑ (∑ ∑ )]ℓ   (9)

1t,
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kt represent the good and bad output variables of DMUK in the
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𝜌 = min
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bad
kt ∈ Ru are, respectively, the input and output vectors of DMUK

k = 1, 2, . . . , n; t = 1, 2, . . . , T; i = 1, 2, . . . , m; j = 1, 2, . . . , o; r = 1, 2,.., f ; u = 1, 2, . . . , g.

2.5. Lucas Weight

Assuming that the time weight wt and the weight will increase with t,
Lucas number series: (δ1,δ2, . . . ,δT) setting as follows:

δt+2 = δt+1+δt (t = 1, 2, . . . , T − 2, δ1 = 1, δ2 = 2) (5)

Let the sum be ϕ = ∑T
t=1 δt, and we define weight wt by

wt =
δt

ϕ
, (t = 1, 2, . . . , T) (6)

As, in this paper, T = 5, we have w1 = 0.0526, w2 = 0.1053, w3 = 0.1579, w4 = 0.2631,
and w5 = 0.4211. Over time, the influence of the past period gradually weakens.

2.6. Super-SBM Model

Let us define a production possibility set B:

B\(Xiht, erht, yjht
good, yuht

bad) =



(
X, e, ygood, ybad

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑n
k=1
k 6=h

wt
k ∗ Xikt ≤ X, (i = 1, 2, . . . , m)

∑n
k=1
k 6=h

wt
kyjkt

good ≥ ygood(j = 1, 2, . . . , o,)

, ygood ≥ 0,

∑n
k=1
k 6=h

wt
k = 1

∑n
k=1
k 6=h

wt
kerkt ≤ e; r = 1, 2, . . . , f ;

t = 1, 2, . . . , T; k = 1, 2, . . . , n; k 6= h

∑n
k=1
k 6=h

wt
kyukt

bad ≤ ybad



(7)

Notation: \.The symbol represents the exclusion of the h-th DMU’s inputs (Xiht, erht)
and outputs (yjht

good, yuht
bad).

Further, we define a subset B\(Xih, erh, yjh
good, yuh

bad) of B\(Xih, erh, yjh
good, yuh

bad) as

B\(Xiht, erht, yjht
good, yuht

bad)

= B\(Xiht, erht, yjht
good, yuht

bad)
⋂{

X ≥ Xiht , e ≥ erht, ygood ≤ yjht
good , ybad ≥ yuht

bad
} (8)
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ρ= min
1

m+ f [∑
T
t=1 wt(∑m

i=1
X

Xiht
+ ∑

f
r=1

e
erht

)]

1
o+g [∑

T
t=1 wt(∑o

j=1
ygood

yjht
good + ∑

q
l=1

ybad

yuht
bad )]

(9)

S.t
∑n

k=1
k 6=h

wt
kXikt ≤ X, i = 1, 2, . . . , m

∑n
k=1
k 6=h

wt
kyjkt

good ≥ ygood, j = 1, 2, . . . , o

∑n
k=1
k 6=h

wt
kerkt ≤ e,r = 1, 2, . . . , f

∑n
k=1
k 6=h

wt
kyukt

bad ≤ ybad, u = 1, 2, . . . , g

X ≥ Xih, e ≥ erh

x: inputs of labor (i = 1, 2, . . . , m)
e: inputs of energy (r = 1, 2, . . . , f )
ygood: outputs of GDP (j = 1, 2, . . . , o)
ybad: outputs of CO2 (u = 1, 2, . . . , g)
Super-efficiency scores of (XT ,YT):

(a) We first calculate the super-SBM efficiency value in the last period’s DMUh

ρt
h=

[ 1
m+ f (∑

m
i=1

X
Xiht

+ ∑
f
r=1

e
erht

)]

[ 1
o+g (∑

o
j=1

ygood

yjht
good + ∑

q
l=1

ybad

yuht
bad )]

, t = T(last period) (10)

(b) Then, we build the confidence interval through the iteration of historical data

(Xt,et, Ygood
t , Ybad

t )

ρt
h=

1
m+ f [∑

T−1
t=1 wt(∑m

i=1
X

Xiht
+ ∑

f
r=1

e
erht

)]

1
o+g [∑

T−1
t=1 wt(∑o

j=1
ygood

yjht
good + ∑

q
l=1

ybad

yuht
bad )]

, t = 1, 2, . . . , T − 1(past period) (11)

Based on the undesirable output model of Fare, Grosskopf, Lovell, and Pasurka
developed in 1989 [35], Seiford and Zhu used DEA output-oriented BCC models as the
basis for considering the problems of desirable (good) and undesirable outputs (bad) in
2002 [36]. DEA classification invariance was used to transform the data adjustments and
maintain linearity and geometric convexity. Seiford and Zhu decomposed the outputs
as follows [36], where Yg is the desirable output, representing good output; Yb is the
undesirable output, representing the bad output; and the gross output is Y = Yg + Yb.

[
X
−X

]
=

 Yg

Yb

−X

 (12)

In traditional DEA models, it is assumed that a larger Y value
(

Yg + Yb
)

represents
higher efficiency, where an increase in the undesirable output reduces efficiency. All
previous studies related to undesirable output scores have used Seiford and Zhu’s data
translation adjustment mode for processing; after the maximum value of an undesirable
output is adjusted to a small value of 1 or 0.01, the scores of all DMUs are translated, and
their efficiency performances are then measured [36]. Thus, the suggested adjustment
of the difference variables for undesirable outputs is less significant, and it is difficult
to propose proper improvement suggestions through empirical analyses; the suggested
adjustment range for measuring efficiency and the difference variables of undesirable
outputs is therefore relatively limited. Hence, to address this limitation, in this study,
a translation adjustment was adopted for the value of the undesirable output Yb such
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that, within DMUs, the maximum value of Yb is adjusted to the minimum value and the
minimum value of Yb is adjusted to the maximum value. In this way, this study makes
more appropriate suggestions for the adjustment range of the undesirable output scores,
which has little effect on the efficiency scores of all DMUs. This innovative adjustment
mode provides an objective and reasonable description of the undesirable output and
efficiency scores, which helps in analyzing the result. Thus, the undesirable output variable

is adjusted as Yb
J =

(
W −Yb

J

)
+ 2minYb

j > 0, where W =
(

maxYb
J −minYb

J

)
.

3. Estimation of Energy Efficiency: Super-SBM Model

Before calculating the energy efficiencies of G20 economies, we provide a descriptive
statistical analysis of the various indicators. The results are presented in Table 1 and
Figure 1. Table 1 shows that the means of all indicators except for energy consumption
increased from 2010 to 2014. The standard deviations of all indicators except for energy
consumption also continued to increase over the five years, which illustrates that national
differences in these indicators were expanding over this period. During these five years,
China remained first in energy consumption and CO2 emissions, which is closely related to
its long-standing coal-dominant energy system and its large population.

The empirical results for energy efficiency are presented in Table 2 and Figures 2 and 3.
The average energy efficiency of the G20 economies over the five years was 0.653. The
energy efficiency of the G20 decreased annually from 0.6995 in 2010 to 0.5996 in 2014. The
energy efficiency significantly differed across developed and developing economies in the
G20. The five-year average efficiency of the nine developed economies in the G20 was
1.020, whereas the five-year average efficiency of the ten developing economies was only
0.323. The energy efficiency also varied significantly among the economies during the
study period. Specifically, the economies with energy efficiencies above the average value
of 0.653 were Argentina, Australia, Canada, France, Germany, Italy, the UK, and the USA,
whereas the economies with efficiencies below the average value were Brazil, China, India,
Indonesia, Japan, South Korea, Mexico, Russia, South Africa, Saudi Arabia, and Turkey.
Among them, the economies with the top three five-year average efficiencies were the UK
(1.701), the USA (1.606), and Australia (1.368), whereas the three economies with the lowest
average efficiencies were China (0.006), India (0.061), and Indonesia (0.081).

Table 1. Descriptive statistical analysis of various indicators.

Year Indicator
Capital Stock

Labor
Energy

Consumption
CO2 GDP

(Million Dollars) (Kilotons) (Million Dollars)

2010

Mean 149,478,189 108,316,017 3692.56 7,646,724.5 2,660,091
Standard deviation 505,038,661 186,929,215 3607.73 2,094,422.84 3,294,967

Maximum 2,256,935,300 779,956,733 13,931.6 8,776,040.4 14,964,372
Minimum 247,717 9,834,264 285 187,919.08 375,298

2011

Mean 169,230,754 108,814,101 3410.5254 8,543,152.14 2,955,362
Standard deviation 577,458,420 187,495,914 3335.3605 2,265,896.44 3,473,192

Maximum 2,583,242,604 783,018,630 12,419.9829 9,733,538.12 15,517,926
Minimum 254,402 10,487,696 231 191,633.753 416,878

2012

Mean 192,298,266 109,598,429 3216.8684 8,811,079.76 3,032,865
Standard deviation 673,764,086 187,953,077 3075.9077 2,308,862.99 3,660,775

Maximum 3,021,664,869 785,504,321 10,907.5 10,028,573.9 16,155,255
Minimum 265,549 11,202,506 249 192,356.152 396,333

2013

Mean 203,087,907 110,539,620 2,958 9,034,164.41 3,106,234
Standard deviation 719,496,298 189,008,990 3396.7 2,360,714.98 3,803,718

Maximum 3,229,586,653 787,010,207 11,948 10,258,007.1 16,691,517
Minimum 272,062 11,845,700 182 189,851.591 366,810

2014

Mean 227,358,805 111,457,383 2828.4632 9,071,316.71 3,190,252
Standard deviation 814,347,761 190,020,711 3534.57 2,378,675.01 4,010,851

Maximum 3,657,154,385 788,179,264 12,403 10,291,926.9 17,393,103
Minimum 276,246 12,339,232 246 204,024.546 351,119

Source: Compiled by public data of the World Bank (https://data.worldbank.org.cn/, and https://cdiac.ess-dive.
lbl.gov/trends/emis/top2014.tot (accessed on 29 June 2021)), United Nations database (UNDATA).

https://data.worldbank.org.cn/
https://cdiac.ess-dive.lbl.gov/trends/emis/top2014.tot
https://cdiac.ess-dive.lbl.gov/trends/emis/top2014.tot
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Figure 1. Descriptive statistics of input and output from 2010 to 2014.

Table 2. Energy efficiencies of G20 economies.

Economies 2010 2011 2012 2013 2014 Time_AVE

Australia 1.3596 1.3315 1.3476 1.3559 1.443 1.368
Canada 0.7836 0.7447 0.6979 0.6957 0.6689 0.718
France 1.0148 1.0108 0.9997 0.9997 0.9997 1.005

Germany 0.9992 1.0173 0.7451 0.9995 0.6701 0.886
Italy 0.822 0.7545 0.9996 1.0405 1.0641 0.936

Japan 0.9999 0.9999 0.9999 0.3254 0.285 0.722
South Korea 0.2125 0.2139 0.2294 0.2688 0.2843 0.242

UK 1.4052 1.6203 1.8975 1.8763 1.7056 1.701
USA 1.6008 1.5784 1.598 1.6246 1.6263 1.606

Developed country Cross AVE 1.022 1.030 1.057 1.021 0.972 1.020
Argentina 1.1697 1.6128 1.2784 1.3183 1.0865 1.293

Brazil 0.2844 0.2504 0.211 0.2001 0.1922 0.228
China 0.0059 0.0065 0.0082 0.005 0.0053 0.006
India 0.1127 0.0813 0.039 0.0314 0.0411 0.061

Indonesia 0.0841 0.0833 0.0818 0.0775 0.0772 0.081
Mexico 0.2396 0.2239 0.1758 0.2129 0.2255 0.216
Russia 0.1822 0.191 0.1674 0.1667 0.1517 0.172

South Africa 0.4139 0.2977 0.2116 0.1795 0.1575 0.252
Saudi Arabia 0.3119 0.3128 0.311 0.3047 0.3034 0.309

Turkey 1.2894 0.4726 0.442 0.4437 0.4044 0.610
Developing country Cross AVE 0.409 0.353 0.293 0.294 0.265 0.323

Cross_AVE 0.700 0.674 0.655 0.638 0.600 0.653
Notes: The economies in this table are developed countries (Australia, Canada, France, Germany, Italy, Japan,
South Korea, UK, USA) outlined in yellow, and developing countries (Argentina, Brazil, China, India, Indonesia,
Mexico, Russia, South Africa, Saudi Arabia, Turkey) outlined in blue.
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Among the top three economies, the UK’s efficiency increased between 2010 and
2012 and began to decline in 2013. Both the USA and Australia remained relatively stable
between 2010 and 2014, with efficiency values around 1.606 and 1.368, respectively. As for
the bottom three economies, China performed poorly, with no significant improvement
over the five years and a five-year average of only 0.006. The average efficiency of India
between 2010 and 2014 was 0.061, with a continuous decreasing trend over the five years.
Indonesia also performed poorly, with a five-year average of 0.081.

Then, we further analyzed which input variables and output variables have a signifi-
cant impact on efficiency. Figure 4 shows that capital and labor have a negative impact on
efficiency at the 1% confidence interval. At the 5% confidence interval, energy input has
a negative impact on efficiency, and GDP has a positive impact on efficiency. According
to the relationship between the above variables and the efficiency value, we can draw a
conclusion that these four variables have a significant impact on the efficiency ranking.

Figure 2. Comparison of CROSS AVE between developed countries and developing countries.
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Figure 3. Five-year average energy efficiencies.

Figure 4. Correlation coefficient between input, output, and efficiency.
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4. Further Estimates of Energy Efficiency: Past-Present Model with Resampling

In the previous section, we used a triangular distribution to simulate the measurement
error assuming that each DMU has an upper and a lower error rate. In this section, we used
historical data for resampling purposes. The past-present model can improve the accuracy
of estimates compared with the triangular model. The assumption of the past-present
model is that the data variances differ across DMUs, and, thus, the estimation can be
conducted using the historical data of each DMU.

Mehrotra and Sharma applied this method to assess the performance of multiple
variables in a changing climate and proposed that changes in the dependence attributes can
be ascertained by resampling the historical ranks into their potential future outcomes [37].
Their approach is not limited in terms of the number of variables, the number of grid points
in space, and the time scale considered. In this study, we follow a similar methodology for
all pairs of inputs, outputs, and inputs versus outputs in resampling, where inappropriate
samples with unbalanced inputs and outputs are excluded from the resampling super-SBM
DEA. This approach uses historical data to determine downside and upside error rates and
utilizes the optimal weights of multiple periods of historical data to evaluate efficiency. The
input and output variables are subject to change for several reasons, such as measurement
error, hysteretic factors, and arbitrariness, under the DEA approach. Thus, DEA efficiency
scores need to be examined by considering these factors. A resampling approach based on
these variations is necessary to estimate the confidence intervals of the DEA scores. We
also set the downside and upside error rate percentages to identify the reasons for poor
efficiency across periods for all input and output data; this process is a very important
contribution of this study. These results provide valuable references for the G20 economies
in formulating policies for future energy use. This approach is suitable for researching
energy use performance that may be affected by different periods.

The resulting 95% and 80% confidence intervals with resampling 1000 times are shown
in Tables 3 and 4. With 95% confidence intervals, no overestimated or underestimated cases
arose. The average energy efficiency of the G20 was 0.8365, and the corrected efficiency
value was 0.7834. The economies with efficiency values above the average value of 0.8365
were Argentina, Australia, France, Italy, the UK, and the USA, and the economies with
efficiency values below the average value were Brazil, Canada, China, Germany, Indonesia,
Japan, South Korea, Mexico, Russia, South Africa, and Turkey. The average efficiency of
the nine developed economies in the G20 was 1.507 above the average value of 0.8365,
whereas the average efficiency of the ten developing economies was only 0.233 below the
average value. The corrected efficiency value of the nine developed economies in the G20
was 1.283 above the average value of 0.7834, whereas the corrected efficiency value of the
ten developing economies was only 0.334 below the average value. Similarly, with 80%
confidence intervals, no overestimated or underestimated cases arose. The average energy
efficiency of the G20 was 0.8365, and the corrected efficiency value was 0.7834.
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Table 3. Efficiency values and 95% confidence intervals for G20 economies.

DMU Efficiency
Value

Corrected
Efficiency

Value
Deviation

Lower
Bound
(2.5%)

Upper
Bound
(97.5%)

Australia 1.3959 1.4105 −0.0146 1.2956 1.5265
Canada 0.6589 0.7792 −0.1203 0.5960 1.0515
France 0.9996 0.8707 0.1289 0.5011 1.1120

Germany 0.6393 0.8573 −0.2180 0.5484 1.0711
Italy 1.1235 1.0556 0.0679 0.5986 1.1687

Japan 0.2543 0.4064 −0.1521 0.2488 0.9999
South Korea 0.3327 0.3635 −0.0308 0.1959 0.9997

UK 6.4996 4.1660 2.3336 1.1959 11.0024
USA 1.6593 1.6374 0.0219 1.5623 1.7072

Developed country Cross AVE 1.507 1.283 0.224 0.749 2.293
Argentina 1.0740 1.1669 −0.0929 0.3359 1.6533

Brazil 0.1711 0.2576 −0.0865 0.1584 0.9996
China 0.0044 0.0055 −0.0011 0.0027 0.0112
India 0.0099 0.0455 −0.0356 0.0092 0.1225

Indonesia 0.0653 0.0741 −0.0088 0.0600 0.0976
Mexico 0.1400 0.3776 −0.2376 0.1196 1.0700
Russia 0.1324 0.1516 −0.0192 0.1163 0.2058

South Africa 0.1271 0.3063 −0.1792 0.1270 0.9994
Saudi Arabia 0.3004 0.4752 −0.1748 0.2457 0.9999

Turkey 0.3050 0.4768 −0.1718 0.2022 0.9998
Developing country Cross AVE 0.233 0.334 −0.101 0.138 0.716

Cross_AVE 0.8365 0.7834 0.0531 0.4273 1.4631
Notes: The economies in this table are developed countries (Australia, Canada, France, Germany, Italy, Japan,
South Korea, UK, USA) outlined in yellow, and developing countries (Argentina, Brazil, China, India, Indonesia,
Mexico, Russia, South Africa, Saudi Arabia, Turkey) outlined in blue.

Table 4. Efficiency values and 80% confidence intervals for G20 economies.

DMU Efficiency
Value

Corrected
Efficiency

Value
Deviation

Lower
Bound
(10%)

Upper
Bound
(90%)

Australia 1.3959 1.4105 −0.0146 1.3333 1.4851
Canada 0.6589 0.7792 −0.1203 0.6262 1.0224
France 0.9996 0.8707 0.1289 0.542 1.0416

Germany 0.6393 0.8573 −0.218 0.5954 1.048
Italy 1.1235 1.0556 0.0679 0.9998 1.1337

Japan 0.2543 0.4064 −0.1521 0.2592 0.9995
South Korea 0.3327 0.3635 −0.0308 0.2271 0.4785

UK 6.4996 4.166 2.3336 1.3696 7.9619
USA 1.6593 1.6374 0.0219 1.5841 1.6914

Developed country Cross AVE 1.507 1.283 0.224 0.837 1.874
Argentina 1.074 1.1669 −0.0929 1.0366 1.3685

Brazil 0.1711 0.2576 −0.0865 0.1686 0.2969
China 0.0044 0.0055 −0.0011 0.0034 0.0086
India 0.0099 0.0455 −0.0356 0.0099 0.0833

Indonesia 0.0653 0.0741 −0.0088 0.0626 0.0873
Mexico 0.14 0.3776 −0.2376 0.1285 0.9998
Russia 0.1324 0.1516 −0.0192 0.1226 0.1841

South Africa 0.1271 0.3063 −0.1792 0.1395 0.9957
Saudi Arabia 0.3004 0.4752 −0.1748 0.2745 0.9996

Turkey 0.305 0.4768 −0.1718 0.231 0.9996
Developing country Cross AVE 0.233 0.334 −0.101 0.218 0.602

Cross_AVE 0.8365 0.7834 0.0531 0.5113 1.2045
Notes: The economies in this table are developed countries (Australia, Canada, France, Germany, Italy, Japan,
South Korea, UK, USA) outlined in yellow, and developing countries (Argentina, Brazil, China, India, Indonesia,
Mexico, Russia, South Africa, Saudi Arabia, Turkey) outlined in blue.
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From the above analysis, although the G20 economies’ fossil fuel energy consumption
continued to decrease between 2010 and 2014, GDP, the labor force, and capital stock
continued to increase. However, the undesirable output of CO2 emissions also continued
to increase, leading to a continuous decrease in energy efficiency (see Figures 2 and 4). It
seems that it will be difficult for the G20 economies to meet the CO2 reduction targets
required by the Paris Agreement.

5. Conclusions and Policy Implications

Due to its high correlation with several key dimensions, including the economic,
political, environmental, and social dimensions, energy governance has become one of
the most important agendas in the current global governance process. In this study, we
employed a triangular model to evaluate the energy efficiencies of the G20 economies from
2010 to 2014. Fossil fuel energy consumption, labor, and capital stock were taken as the input
variables, and CO2 emissions and GDP were taken as the output variables. Additionally, a
past-present model with resampling was used to measure whether the efficiency values of
DMUs deviate for different confidence intervals. To the best of our knowledge, very few
studies have applied the DEA method with resampling to analyze energy efficiency. Thus,
our study contributes to the methodologies for energy efficiency evaluation.

Our study indicates that, based on the triangular model, the overall average energy
efficiency of G20 economies from 2010 to 2014 was 0.653. The economies with the top three
five-year average efficiencies were the UK (1.701), the USA (1.606), and Australia (1.368),
whereas the three economies with the lowest average efficiencies were China (0.006), India
(0.061), and Indonesia (0.081). The panel average efficiency of the developed countries was
1.020, higher than the overall average efficiency 0.653, and the panel average efficiency of
the developing countries was 0.323, which is lower than the overall average efficiency 0.653.
Energy efficiency also significantly differed across economies.

Using the past-present model with resampling to explore the error conditions, we
found that the average energy efficiency of each DMU was 0.8365, the average adjustment
value was 0.7834, and the average error value was 0.0531. The average efficiency of the
nine developed economies in the G20 was 1.507, whereas the average efficiency of the
ten developing economies was only 0.233. The corrected efficiency value of the nine
developed economies in the G20 was 1.283 above the average value of 0.7834. whereas the
corrected efficiency value of the ten developing economies was only 0.334. Under repeated
sampling of the 95% and the 80% confidence intervals, we found no overestimation or
underestimation of the results. We therefore conclude that under the past-present model
with resampling, the acceptable error was 0.0531. Additionally, the top and bottom three
economies in terms of energy efficiency were the same as in the triangular model.

The efficiency values estimated both by the triangular model and the past-present
model with resampling showed that the developed countries performed better than the
developing countries. The first point may be that the developing countries have a large
population. In terms of transportation, construction, cooking, and industry, the demand
for petrochemical energy is greater than that of developed countries. Therefore, energy
consumption and CO2 emissions are far ahead of those of developed countries. The
second point is that the energy technology and equipment (for example, clean energy)
of developing countries are inferior to those of the developed countries. The third point
is that, for the developing countries, the push for economic growth has largely ignored
the environmental consequences. Our study proposed several recommendations. (1) To
maintain the energy investment balance, the problem of inefficiency can be solved by
correcting energy price distortions. (2) The habit of over-reliance on petrochemical energy
should be converted to the use of renewable energy to achieve the goal of sustainable
development. (3) The adoption of petrochemical energy subsidies by developing countries
has resulted in an increase in energy consumption and worsening of the air. Renewable
energy subsidies can be provided to developing countries through international green
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finance. In this way, the developing countries can improve energy efficiency and fulfill
their responsibility to protect the environment while ensuring a stable electricity supply.

Our study innovatively employed the DEA method with resampling to analyze the
energy efficiencies of G20 members. To confirm the reliability of our study’s results, further
research can collect energy data from different economies around the world. Further stud-
ies can also focus on data collection starting in 2015 because, in 2015, each G20 economy
submitted an expected proposal for future carbon reduction goals and strategies accord-
ing to its national conditions to the United Nations Framework Convention on Climate
Change. Thus, further studies should analyze whether each economy has achieved its
promised emission reductions targets and whether energy efficiency has been improved in
these economies.

In addition, although we use the resampling super-SBM DEA model to adjust the
energy efficiency errors of G20 countries, in fact, some countries and their industries may
cover the real results under the implementation of policies. In addition to the country’s
commitment to reduce carbon emissions, nongovernment private actions and targets can
also be conducive to achieving significant emissions reductions (Kuramochi et al., [38]; Lui
et al., [39]; Mi et al., [40]). The estimated efficiency value may be underestimated. Therefore,
the limitation of this study is that the participation of national policies will distort the
national energy efficiency.
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