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Abstract: The article applies a three-stage Slacks-Based Measure-Data Envelopment Analysis (SBM-
DEA) pattern to examine the relationship between energy consumption and unfavorable CO2 emis-
sions on green sustainable development, for the 11 cities of the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA) during 2010–2016, by going through various violated factors and stochastic
disturbance. Labor, capital and energy resource are chosen as input variables, while GDP and CO2

emission as output variables. During the three phases consisting of the SBM-DEA model (first stage
and third stage) and SFA analysis (second stage), CO2 emission is considered as an unfavorable
outcome, while stochastic statistical disturbances and external environmental influences are identified.
The results show that the average efficiency of the GBA cities is 0.708, with only Shenzhen, Macao
SAR and Hong Kong SAR having an efficiency of 1 during the whole study period. Based on the
findings, suggestions are made for the GBA cities’ sustainable development aspects.

Keywords: Guangdong-Hong Kong-Macao Greater Bay Area (GBA); energy efficiency; slack-based
model (SBM); undesirable output; three-stage DEA; influencing factors

1. Introduction

The World Commission on Environment and Development defined sustainable de-
velopment as “development that meets current demands without jeopardizing future
generations’ ability to meet their needs” in 1987 [1]. In June 1992, in Rio de Janeiro, Brazil,
at the United Nations Conference on Environment and Development, Agenda 21 first
proposed sustainable development as the common development strategy of mankind to-
ward the 21st century, transforming sustainable development strategy from a concept to a
global scale of action and making sure that the most central part is economic sustainable
development. Liu (1997) defines economic sustainable development as, “What we call
sustainable development economy can be expressed as sustainable economic development,
which should be the economy with the lowest ecological cost and social cost of economic
development” [2]. Such economic sustainable development is economic development un-
der the interests of future generations and the protection of natural resources. In addition to
economic sustainability being at the core of sustainable development, energy consumption
and environmental protection are also major focus of sustainable development strategies.
Both show a one-way Granger causality and an inverted U-shaped relationship with sus-
tainable development, respectively. In the early days, labor and energy-intensive industries
were used for high economic development. But now, with sustainable development as a
core value, cities are improving their energy consumption efficiency and increasing invest-
ment in environmental protection. At the same time, it is expected that they would attain
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sustainable development in the future. Here, the Greater Bay Area (GBA) in China is used
as an example of sustainable development.

Figure 1 shows the total energy consumption, total CO2 emission and total GDP of the
GBA cities from 2010–2016. Although the total GDP kept on increasing since 2010, the total
energy consumed has not changed tremendously. The amount of total CO2 emission also
demonstrated a decline to some extent.

Figure 1. Total energy consumption, total CO2 emission and total GDP of the GBA cities from
2010–2016. (Data Source: International Energy Agency, 2021).

Improving energy efficiency and considering undesirable output concurrently is one
of the mainstreams in achieving the goal of sustainable development. However, most of
the existing research literature is divided by provincial level or only includes 9 cities in
Guangdong Province, China (Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaoqing,
Huizhou, Dongguan, and Zhongshan), and few studies include Hong Kong SAR and
Macau SAR, but GBA is a complete regional concept, so this study hopes to include data
from Hong Kong SAR and Macau SAR by using the three-stage SBM-DEA model to study
the complete DBA energy efficiency data for a total of 11 cities in GBA, the better usage of
energy consumption toward green sustainable development can be investigated and use
the data from these studies to provide better policy recommendations for those inefficient
GBA cities, and eventually build an efficient and green GBA.

The followings are the research’s main contributions: (1) This paper, with the best of
my knowledge, is the first three-stage SBM-DEA model to be applied to discuss energy
consumption and unfavorable CO2 emissions on sustainable development from the various
violated aspects, like industrial structure, energy structure etc. (2) When applying the
model, previous researches focus on provincial or industrial analysis, while this study
focuses on city-level evaluation, especially on GBA. (3) According to the UNEP Governing
Council’s definition of sustainable development, this research applies Hong Kong SAR
and Macao SAR as decision-making units (DMUs) and then compare with other mainland
cities. It is very important view of this research.

2. Literature Review

With the growing concern about adverse climate conditions and extreme weather
due to global warming, a lot of efforts have been made to maintain the environmental
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sustainability. The GBA is considered one of the most economically dynamic regions in
China since the reform and opening up. The development of GBA is of strategic importance
in the development of China. In the early stages of development, most cities in the GBA
achieved economic growth through labor- and energy-intensive industries, leading to over-
exploitation of resources and environmental pollution. However, with the introduction
of green and energy reforms in the Guangdong-Hong Kong-Macao Greater Bay Area in
recent years, especially since the area consists of the cities of Guangdong as well as Hong
Kong and Macao SARs, the study of the region has become representative. In February
2019, the state promulgated the Outline of the Development Plan of the Guangdong-Hong
Kong-Macao Greater Bay Area, which states that priority is given to resource conservation,
environmental protection, and natural restoration [3]. Therefore, how the government can
improve the ecological environment and protect existing natural resources through various
policies has become an important issue. Among them, controlling energy consumption is
one of the keys to sustainable development, and this paper hopes to improve the energy
efficiency of cities in the Guangdong-Hong Kong-Macao Greater Bay Area through policy
recommendations, so as to achieve green and low-carbon development in the Guangdong-
Hong Kong-Macao Greater Bay Area.

2.1. Sustainable Development

The IUCN initially established the notion of sustainable development in the World
Conservation Strategy in 1980. This document states, “Sustainable development empha-
sizes the human use of the biosphere to manage it in order to meet the maximum sustainable
interests of current generation while preserving its potential for the needs and desires of
future generations” [4]. In 1989, the Governing Council of the United Nations Environment
Program provided a more specific definition of sustainable development in its Statement
on Sustainable Development: “It is defined as development that meets current demands
without jeopardizing future generations’ ability to meet their own needs, and it does not
imply any violation of national sovereignty. According to the UNEP Governing Council,
achieving sustainable development involves both domestic and international cooperation,
include providing aid to developing nations in line with their national development pro-
grams’ aims and development objectives. Furthermore, sustainable development entails a
favorable international economic environment that promotes long-term economic growth
and development in all countries, particularly in developing countries, which is critical for
good environmental management. The maintenance, rational use, and enhancement of
the natural resource base that promotes ecological stress tolerance and economic growth
is also part of sustainable development. Furthermore, sustainable development refers to
the integration of environmental concerns and considerations into development plans and
policies, rather than a new kind of aid or development financing conditionality” [5].

In the above specific definition of sustainable development, it can be found that it
encompasses various elements such as natural resources, economic growth, and the environ-
ment, which can be summarized as ecological development, economic development, and
social development. Because of its central position in the sustainable development system,
economic sustainable development has its unique definition. The British economist Barbier
defines sustainable development from an economic perspective as “the maximization of
net economic benefits while preserving natural resource quality and service provision” [6].
The British economist Pierce defines it as “economic development on the premise that
natural capital remains unchanged, or that the use of resources today should not reduce
real income in the future” [7]. The difference between the two is whether economic devel-
opment is at the expense of resources and the environment. Barbier believes in maximizing
economic benefits while preserving natural resource quality and using the money gained
from environmental pollution and ecological damage as compensation for environmental
and ecological construction. Pierce, on the other hand, believes that economic develop-
ment should be done without destroying the world’s natural resource base, and should
not destroy before repairing. Yang (2002) defines sustainable economic development as
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“the continuous improvement of the economic welfare of the present generation on the
basis of certain resources and environment, while being able to ensure that the economic
welfare received by future generations is not less than the economic welfare enjoyed by the
present generation” [8]. In addition to emphasizing the protection of natural resources, this
definition also proposes another provision: emphasizing intergenerational equality.

The Greater Bay Area is an excellent object study for studying China’s sustainable
growth. The GBA includes the nine cities of Guangzhou, Shenzhen, Foshan, Zhuhai, Dong-
guan, Huizhou, Zhongshan, Jiangmen and Zhaoqing of the Guangdong Province, the Hong
Kong Special Administrative Region (Hong Kong SAR) and the Macao Special Adminis-
trative Region (Macao SAR). GBA is considered as one of the most economically vibrant
regions in China since the reformation. With a population of around 86 million, a total area
of 56,000 km2 and a GDP of USD 1669 billion in 2020 [9], the development of GBA has also
its strategic importance in the development of China. In the early stage of development,
most GBA cities achieved economic growth through labor and energy-intensive industries,
resulting in over-exploitation of resources and pollution of the environment. However,
with the introduction of green and energy reform in the GBA recently, especially with the
GBA comprising of Guangdong municipalities as well as the Macao SAR and the Hong
Kong SAR, the study on this area becomes representative. According to the February 2019
“Guangdong-Hong Kong-Macao Greater Bay Area Outline Development Plan” [3], priority
is given to resource conservation, environmental protection and restoration of nature. Thus,
efforts should be made to improve ecological and environmental quality, and then a greener
and low-carbon development of GBA can be achieved.

In China, which is in the middle of industrialization, the most important factors
hindering the implementation of sustainable development strategy are the significant
share of high-energy-consumption industries, the unbalanced industrial structure, the
backward technology and equipment, the large population base, the large number of
poor people, and the generally low living standard of the people. Increasing industrial
restructuring efforts, accelerating technology and equipment replacement, and actively
advocating energy-saving production and lifestyle are the primary solutions to promote
sustainable development in China.

Then, it is essential to do research on energy consumption efficiency for sustainable
development, for the 11 cities of the Guangdong-Hong Kong-Macao Greater Bay Area
(GBA) during 2010–2016, by going through various violated factors including investment,
human capital, and environmental protection. Especially, compared with the high economic
growth rate at the current stage, the low growth rate might lower the consumption of energy
resources and other environmental aspects of nature, which play a catalytic role in the
global process of sustainable development [10].

2.2. The Relationship between Energy Consumption, Environmental Protection, and
Sustainable Development

Early Western mainstream economists fully recognized the role of capital, technologi-
cal progress, labor, and institutions on economic growth, but did not pay attention to the
impact of natural resources and environmental factors on economic growth. During the oil
crisis in the 1970s, when economies suffered from economic growth difficulties of different
degrees due to the scarcity of energy resources, natural resources and environmental factors
began to be noticed by economists. The concept of sustainable development was introduced
in the 1980s, and natural resources and environmental factors became important indicators
for the analysis of sustainable development [11].

2.2.1. The Relationship between Sustainable Development and Energy Consumption

Energy is the material basis of social production and human survival, and is inex-
tricably linked to the development of a country’s economy. Sustainable development
emphasizes the integrated and coordinated development of economy, resources, environ-
ment and population. Therefore, sustainable development of the energy economy means
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that the use and development of energy meet the needs of economic development without
causing serious or irreversible damage to the ecosystem. It addresses the current gener-
ations’ energy needs without posing a danger to the future generations’ ability to satisfy
their demands.

The original concept of a sustainable energy economy dates back to 1972, when the
book Limits to Growth was published, which introduced the concept that social devel-
opment and economic growth cannot be supported without energy, causing a heated
controversy at that time [12]. Rashe and Tatom (1977) first introduced energy into the
Douglas production function, hoping to uncover a fundamental pattern between economic
growth and energy consumption [13]. Stem (1993) used a vector autoregressive (VAR)
pattern with four variants (capital, energy consumption, labor, and GDP) and applied
Granger multivariate causality tests to find a one-way Granger causality from energy
consumption to GDP in the United States for 1947–1990 [14]. Willem et al., (2010) presented
an explicit model of energy economic growth using a historical deductive approach in 2010,
concluding that the current socio-economic model is unsustainable and that energy security
is critical [15]. Zhang et al., (2011) examined the relationship between economic growth
and energy consumption using the error correction model, cointegration test, and Granger
causality test. They found that there is a significant one-way Granger causality of economic
growth on energy consumption and that the two are in a long-term equilibrium relation-
ship. [16]. Li et al., (2018) constructed a VAR model of the energy-economy-environment
in Henan Province based on the statistical data of total energy consumption, GDP and
industrial emissions from 2000–2014. Through impulse response function and variance
decomposition, a long-term stable cointegration relationship between energy consumption,
economic growth and environmental pollution in Henan Province is obtained, while energy
consumption plays a certain positive impact on economic growth [17]. He et al., (2018)
analyzed the relationship between energy consumption and economic growth in China
since the 1950s by means of the elastic decoupling index and the generalized LMDI method
and concluded that both total energy consumption and GDP growth exhibit an exponential
growth curve [18]. Zhang and Wang (2018) examined the spatial variation of total factor
energy efficiency in 30 provincial and municipal regions of China from 2006 to 2015 based
on the haze constraint and concluded that economic development has significantly con-
tributed to the improvement of energy efficiency [19]. Wang and Li (2019) studied Chinese
coal cities and found a significant positive correlation between coal resources and economic
growth in the sample cities [20]. Previous literature suggests a close relationship between
energy consumption and sustainable economic development.

2.2.2. The Relationship between Sustainable Development and Environmental Protection

Environmental protection is the general term for human actions to ensure sustainable
social and economic development and to solve real or potential environmental problems.
Environmental sustainability is the goal of sustainable development that satisfies future
generations’ demands by protecting the environment and reducing ecological burdens
through measures such as reducing pollutant emissions.

The most representative early study of the relationship between economic sustain-
ability and environmental protection was the empirical verification of the environmental
Kuznets curve by American economists Grossman and Kruger in 1990, which demon-
strated the relationship between environmental pollution and economic growth is inverted
U-shaped [21]. Subsequently, more studies demonstrated this curve. Shafik et al., (1992)
found that the water quality of rivers in cities was deteriorating because of the fast growth
of the economy; the concentration of suspended solids and sulfur dioxide in the atmosphere
in cities showed an inverted U-shaped relationship with per capita income level; and sulfur
dioxide emissions in cities increased with per capita income climbed [22]. Sherry and
David (2008) studied the inverted U-shaped relationship between environmental pollution
and economic growth from the perspective of theoretical analysis [23]. Salvador et al.,
(2010) used differential dynamics models to simulate the association between economic
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growth, CO2 emissions and population, etc. [24]. Liang, et al., (2011) calculated the ecologi-
cal environment index of 31 Chinese provinces and cities using entropy weight method
and fuzzy comprehensive evaluation method, and analyzed the ecological environment
status of different locations in the Yangtze River region, and carried out a study on the
ecological environment sustainability with the Yangtze River basin as an example [25].
Feng et al., (2018) established a VAR model to analyze qualitatively and quantitatively the
factors influencing carbon emissions in Beijing during 1996–2016, and the study found
that carbon emissions per capita showed a positive relationship with GDP per capita [26].
Wang et al., (2018) studied the relationship between carbon emissions and GDP per capita
in 27 provinces in China based on EKC theory. It was found that the relationship between
carbon dioxide emissions and economic development of the 27 provinces as a whole, or
geographically divided into eastern, central, and western provinces, met the inverted “U”
curve of the EKC hypothesis [27]. According to Xu et al., (2019), green development is an
expression of sustainable development, which is essentially a balanced relationship be-
tween the environment and the economy to promote economic development and ecological
protection, so that the two complement each other [28]. Previous literature shows a close
link between environmental protection and sustainable economic development, and it is
mostly presented in an inverted U-shape.

2.2.3. Other Impacts on Sustainable Development

In addition to energy consumption and environmental protection factors, there are
many external environmental factors that affect sustainable development, such as: indus-
trial structure, energy structure, government financial expenditure, etc.

Tian (2007) proposed that the restructuring of industry forms a structural consumption
of resources and thus leads to environmental changes, which largely affect the sustainable
development of the economy [29]. Based on data from Shanxi Province, Wang and Gao
(2018) used a double difference model to conclude that the increase in the degree of fiscal
decentralization is conducive to the upgrading of industrial structure and thus has a
positive impact on the ecological environment [30]. Yang (2000) analyzed the causal link
between consumption of various energy sources and GDP (electricity, natural gas, oil, and
coal) using the cointegration technique using sample data from 1954–1997 in Taiwan and
found that there is a two-way Granger causality between GDP and coal and electricity and
a one-way Granger causality from GDP to oil and natural gas to GDP [31]. Tian (2014)
found that the fiscal expenditure policy has an indirect effect through influencing the
economy and thus the ecological environment is significantly based on the analysis of fiscal
revenue and expenditure data of Chinese provinces from 2008 to 2011 [32]. Jiang (2018)
based on the analysis of data from 2007–2015 concluded that environmental spending
has both economic and environmental nature and has a significant positive correlation
with economic growth [33]. Hoff and Stiglitz (2001) argue that fiscal expenditure policies
should focus on the updating and application of pollution treatment technologies to reduce
pollution emission levels through technological innovation in order to enhance ecological
protection and promote economic development [34]. Shi (2002) in “Recommendations on
China’s energy consumption decreased” proposed that opening up to the outside world
has a significant role in improving the efficiency of energy use [35]. Xu (2004) selected
Shandong Province as a sample to analyze the supply and demand of human capital in
Shandong Province and made a qualitative and quantitative analysis study respectively
calculated that the support capacity of human capital to sustainable development reached
66.65% [36].

2.3. SBM-DEA Model

Data Envelopment Analysis (DEA) is a non-parametric approach applied to obtain the
efficiency of multiple Decision-Making Units (DMUs). It is like a peer group comparison
using a frontier to determine efficient and inefficient units relatively. DEA has been widely
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used as a method in DMUs’ efficiency analysis since the production function is not necessary
for evaluation.

DEA was first introduced by Charnes, Cooper and Rhodes in 1978, and numerous
researches have been done on methodological developments, practical applications, the
status of variables and data variation, etc [37]. Since the first issued paper on using DEA in
energy efficiency by Färe, Grosskopf and Logan (1983) on the relative efficiency of Illinois
electric utilities, there are more and more researches on energy efficiency evaluation using
DEA thereafter [38]. Bian and Yang (2010) used DEA models for estimating the aggregated
efficiency of resources and the environment of the 30 provinces in China [39]. Guo et al.,
(2017) studied the dynamic DEA model to evaluate efficiencies based on fossil-fuel CO2
emissions in OECD countries and China [40]. Iftikhar et al., (2018) applied the network
DEA model under the free disability assumption for all undesirable outputs in 19 major
economies to assess the energy and CO2 emissions efficiency [41]. Mardani et al., (2017)
also conducted an extensive review which indicated that DEA has shown to be a great
evaluation tool for future analysis on energy efficiency issues, indicating that DEA is a
common tool for energy and environmental efficiency researches [42].

Traditional DEA models include the CCR model and BBC model that deal with multi-
ple inputs and multiple outputs to calculate efficiency. However, with the consideration
of undesirable outputs such as atmospheric pollutants such as CO2 emission, traditional
DEA models do not perform well in increasing desirable outputs while decreasing unde-
sirable outputs at the same time. Thus, Tone (2001) proposed a non-radial, non-angled
slacks-based measure (SBM) model, which can improve radial models like the CCR model
and BBC model that do not consider the slacks of inputs and outputs [43]. Du et al.,
(2016) constructed an SBM-DEA model to evaluate the total factor energy efficiency of 29
provincial-administrative regions of China during 1997–2011 and the influential factors [44].
Huang and Wang (2017) studied the total-factor energy efficiency of 276 cities in China
during 2000–2012 by using a three-stage SBM model, with consideration of influential
factors and undesirable output [45]. Shang et al., (2020) conducted a study using the
SBM-DEA model to calculate the total factor energy efficiency including 30 provinces and
municipalities of China from 2005 to 2016 [46]. Through previous literature, it is shown that
SBM-DEA Model is a commonly used tool for assessing energy efficiency and can bring
effective calculations for the energy efficiency assessment of DBA in this paper.

3. Methodological Framework

Various methods can be used to examine the energy efficiency regarding sustainability.
One of the most direct ways is to evaluate the economic output in terms of energy input, i.e.,
GDP/energy consumption. In this study, however, a production possibility frontier theory
is chosen as the method to examine energy efficiency. Instead of using only one input and
one output to calculate efficiency, a nonparametric approach (DEA) is used, which has the
advantage of measuring the relative energy efficiency of DMUs with multiple inputs and
outputs. In addition, by application of a DEA method for efficiency analysis, the influences
of external factors and stochastic disturbances can be removed.

Charles, Cooper and Rhodes are famous scholars in operation research who have de-
veloped a new systematic analysis approach known as Data Envelopment Analysis (DEA).
During these years, different elaborations on DEA have been carried out by numerous
researchers to tackle different situations and scenarios.

In a DEA model, each decision-making unit (DMU) is assumed to contain inputs x ∈
Rn, yg ∈ RS1 desirable inputs and yb ∈ RS2 undesirable outputs. The production possibility
sets are thus defined as follows:

P =
{(

x, yg, yb
) ∣∣∣x ≥ Xλ, yg ≤ Ygλ, yb ≥ Ybλ, λ ≥ 0

}
(1)

which λ ∈ Rn is the vector of intensity.
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Based on the above production possibility set, a classic DEA model, known as a CCR
model, can be obtained as follows:

θ∗ = min
[

θ − ε

(
m
∑

i=1
S−i +

s
∑

r=1
S+

r

)]
s.t. ∑n

j=1 Xijλj + S−i = θXij , i = 1, 2, · · · , m
n
∑

j=1
Yrjλj − S+

r = Yrj , r = 1, 2, · · · , s

θ, λ, S−i , S+
r ≥ 0 ; j = 1, 2, · · · , n

(2)

where S−i is the excess variable and S+
r is the insufficient variable respectively, making

effective frontiers to expand horizontally or vertically to form the envelope. The variable θ
represents the efficiency of the DMU.

Besides CCR, BCC model is another classic DEA model and is described as follow:

minθ0

s.t.
n
∑

j=1
λjxrj ≤ θ0xi0, i = 1, 2, · · · , m

n
∑

j=1
λjyrj ≤ yrj, r = 1, 2, · · · , s

n
∑

j=1j

= 1 j ≥ 0, j = 1, 2, · · · , n

(3)

BBC model refers to pure technical efficiency, whereas CCR model refers to both scale
efficiency and technical efficiency.

In this research, a three-stage DEA method is proposed to calculate energy consump-
tion efficiency on sustainable development. The idea is to determine the comprehensive
energy efficiency in phase 1, then eliminate the influence of stochastic disturbances and
external environmental influences in the second stage, so as to enable the real efficiency
to be evaluated in the third stage. The three-stage DEA methodology framework for the
efficiency in the GBA cities is described in Figure 2.

3.1. The Initial Phase DEA: The Undesirable-SBM Pattern with Original Inputs

In comparison to CCR and BCC models, the undesirable-SBM model deals with input
excess and output shortfall, according to Tone (2001) [43]. The formula is written as:

ρ∗ = min
1− 1

m ∑m
i=1

S−i
si0

1 + 1
S1+S2

(
∑S1

r=1
Sg

r
yg

r0
+ ∑S2

r=1
Sb

r
yb

r0

) (4)

s.t.


x0 = Xλ + S−

yg
0 = Ygλ− Sg

yb
0 = Ybλ− Sb

λ ≥ 0, S− ≥ 0, Sg ≥ 0, Sb ≥ 0

(5)

From the above definitions, each DMU has m inputs, S1 desirable outputs and S2
undesirable outputs. The slacks of inputs, desirable outputs and undesirable outputs are
S−, Sg and Sb respectively. When a DMU is efficient, S− = 0, Sg = 0 and Sb = 0. If either S−,
Sg and Sb is not equal to 0, then the objective function ρ* is not 1, 0 ≤ ρ* <1, and this DMU
is described as inefficient.
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Figure 2. The three-stage DEA’s methodological framework.

3.2. The Second Phase: Frontier Analysis with a Random Component

DEA is an ideal way to assess efficiency without having to know the production
functions. However, as Fried et al., (2002) suggested, stochastic disturbances, environmental
impacts, and managerial efficiency can all affect the efficiency calculated by DEA [47]. In
order to deal with this disadvantage and to evaluate the real efficiency of each DMU, a
SFA model is established to decompose the slacks in the first stage due to measurement
errors in the input and output variables. To describe a SFA model, the environmental
variables can be used as explanatory variables and the relaxation values in the first stage as
interpreted variables:

Sni = f n(Zi; βn) + νni + µni n = 1, 2, · · ·N, i = 1, 2 · · · I (6)

In Equation (4), Sni stands for the relaxation value of the n-th input of the i-th DMU
and f n(Zi; βn) indicates the impact of the environmental variables on the relaxation value
of the input and Zi = (z1i, z2i, · · · zki), i = 1, 2, · · · I, and k are the external environmental
variables. βn is the coefficient of environmental variables. The term νni + µni is the mixed
error, in which νni is a random error term and νni ∼ N

(
0, σ2

ν

)
; µni is the management

efficiency and µni ∼ N+
(

0, σ2
µ

)
. The term νni and µni are independent and does not relate
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to each other. When γ =
σ2

µi

σ2
µi+σ2

νi
is close to 1, it means that the difference in efficiency is

affected by the managerial efficiency. However, when γ =
σ2

µi

σ2
µi+σ2

νi
is near to 0, it suggests

that efficiency remains primarily untouched by stochastic disruption.
The mixed error term can be further decomposed as follow [28]:

E[νik/νik + µik] = sik − fi(zk; βi)− E[µikik + µik]

Then, by applying the Dengyue’s approach, E[µik|νik + µik] can be solved as follow-
ing [48]:

E[µik/νik + µik] =
σλ

1 + λ2

 ϕ
(

εkλ
σ

)
∅
(

εkλ
σ

) +
εkλ

σ


with λ = σu

σv
, εk = νik + µik, σ2 = σ2

u + σ2
v , ϕ, ∅ are the standard normal distribution’s

density and distribution functions respectively.
In order to adjust the input variables for real efficiency calculation under the same

external environment, the SFA model is used to identify and exclude the associated envi-
ronmental variables and stochastic disturbances. The formula for adjusted input variables
X∗ni is then described as:

X∗ni = Xni +

⌊
max

i
{Ziβ

n} − Ziβ
n
⌋
+

⌊
max

i
{νni} − νni

⌋
(7)

where n = 1, 2, · · ·N i = 1, 2, · · · I; X∗ni denotes the adjusted input after the SFA model while

Xni indicates the initial input variable of the first phase;
⌊

max
i
{Ziβ

n} − Ziβ
n
⌋

describes the

external environmental variable adjustment and
⌊

max
i
{νni} − νni

⌋
represents the adjusted

stochastic disturbance value.

3.3. The Third Phase: The Undesirable-SBM Pattern with Adjusted Input Variables

During phase 3, the efficiency is once again evaluated using undesirable-SBM model
but replacing the original inputs with the adjusted input variables X∗ni instead. By com-
paring with the results of the first phase, the impact of stochastic disruption and external
environmental variables have been removed as the outcomes of the third phase, indicating
a real efficiency of the GBA cities.

4. Variables and Data Sources
The SBM-DEA Model’s Input and Output Variables

During the examination of energy efficiency by using the SBM-DEA model, production
assumptions are not necessary and multiple input and output variables can be handled at
the same time. This is beneficial in cases when examining energy efficiency when details
are uncertain. Table 1 shows a selection of input and output variables commonly used in
DEA models.

Based on previous studies, the input variables can be justified by the total number of
employees, the total investment in fixed assets and total energy consumption in this study.

Regarding output variables, both desirable output and undesirable output are in-
cluded, especially with the global agenda of low carbon development. Therefore, both
the environmental influence and the economic output should be considered. Hence, GDP
is chosen as the desired output, while the undesirable output is CO2 emissions based on
Table 1. Table 2 presents the input and output variables that are chosen, while Table 3
demonstrates the relevant statistical descriptions.
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Table 1. List of selected input and output variables commonly used in energy efficiency DEA models.

Author Title Input Output

Khalili-Damghani, K., Tavana, M., &
Haji-Saami, E. (2015)

A data envelopment analysis model with interval data and
undesirable output for combined cycle power plant

performance assessment
Fossil fuel Energy, CO2, SO2, SO3, NOx

Zha, Y., Zhao, L., & Bian, Y. (2016) Measuring regional efficiency of energy and carbon dioxide
emissions in China: A chance constrained DEA approach Labor, capital, coal, oil, natural gas GDP, CO2

Zhao, L., Zha, Y., Liang, N., &
Liang, L. (2016)

Data envelopment analysis for unified efficiency
evaluation: an assessment of regional industries in China

Capital input (Investment of fixed assets),
labor, energy

Industrial production value, waste gas,
wastewater

Chen, L., & Jia, G. (2017) Environmental efficiency analysis of China’s regional
industry: a DEA based approach

Total number of employees of industry,
total energy consumption, total

investment in fixed assets of industry

GDP, total emissions of SO2, industrial
solid waste

Guo, X., Lu, C., Lee, J., & Chiu, Y. (2017) Applying the dynamic DEA model to evaluate the energy
efficiency of OECD countries and China

Land area, population, and energy use,
carry-over variable, energy stock CO2 emission and GDP

Huang, J., Du, D., & Hao, Yu. (2017)
The driving forces of the change in China’s energy

intensity: An empirical research using DEA-Malmquist
and spatial panel estimations

Energy, capital stock, labor, economic
structure and GDP GDP

Sueyoshi, T., & Yuan, Y. (2017)

Social sustainability measured by intermediate approach
for DEA environmental assessment: Chinese regional

planning for economic development and pollution
prevention

Capital, labor and energy
Gross regional product, CO2, SO2, soot

(dust), wastewater, COD, ammonia
nitrogen

Sueyoshi, T., Yuan, Y., Li, A., &
Wang, D. (2017)

Methodological comparison among radial, non-radial and
intermediate approaches for DEA environmental

assessment
Capital, labor, energy

Gross Regional Product, CO2, SO2, Smoke
and dust, wastewater, COD, ammonia

nitrogen

Zhao, L., Zha, Y., Wei, K., &
Liang, L. (2017)

A target-based method for energy savings and carbon
emission reduction in China based on environmental data

envelopment analysis

Labor, capital stock, total energy
consumption GDP, CO2

Cayir Ervural, B., Zaim, S., &
Delen D. (2018)

A two-stage analytical approach to assess sustainable
energy efficiency

Total renewable energy potential, network
length, total installed power of renewable

energy, transformer capacity

Gross energy generation from renewable
sources, number of consumers, total

exports, GDP per capita, human
development index, total energy

production, population, area
Iftikhar, Y., Wang, Z., Zhang, B., &

Wang, B. (2018)
Energy and CO2 emissions efficiency of major economies:

A network DEA approach Labor, capital, energy, population CO2 emission, middle income class, high
income class, low income class

Khoshroo, A., Izadikhah, M., &
Emrouznejad, A. (2018)

Improving energy efficiency considering reduction of CO2
emission of turnip production: A novel data envelopment

analysis model with undesirable output approach

Amount of energy for labor, machinery,
diesel fuel, chemical fertilizers, seed

and water
Turnip yield, GHG
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Table 1. Cont.

Author Title Input Output

Nadimi, R., & Tokimatsu, K. (2019) Evaluation of the energy system through data envelopment
analysis: Assessment tool for Paris Agreement

Heat, FEC, oil products, IMR, LEB, MYS,
P_NRE, R_NRE, RE, IWA CO2, electricity, GDP, GNI per capita, QoL

Piao, S., Li, J., & Ting, C. (2019)
Assessing regional environmental efficiency in China with

distinguishing weak and strong disposability of
undesirable outputs

Labor (number of employees), water (total
domestic and industrial water

consumption), energy and capital

GDP, CO2 (previous research), SO2,
wastewater and waste

Wu, J., Li, M., Zhu, Q., Zhou, Z., &
Liang, L. (2019)

Energy and environmental efficiency measurement of
China’s industrial sectors: A DEA model with

non-homogeneous inputs and outputs
Capital, labor, coal, oil, natural gas

Gross industrial output value, volatile
hydroxyl-benzene, cyanide, COD,

petroleum, ammonia-nitrogen, demand,
petroleum, and ammonia-nitrogen

Yang, Z., & Wei, X. (2019)
The measurement and influences of China’s urban total
factor energy efficiency under environmental pollution:

Based on the game cross-efficiency DEA
Productive capital stock GDP, wastewater, SO2, smoke and dust,

pollutants (comprehensive index)

Zhao, H., Guo, S., & Zhao, H. (2019) Provincial energy efficiency of China quantified by
three-stage data envelopment analysis

Labor force (total amount of employees at
year end), capital (total investment on

fixed assets), energy consumption (total
energy consumption)

GDP divided by amount of SO2 emission

Zhou, Z., Xu, G., Wang, C., &
Wu, J. (2019)

Modeling undesirable outputs with a DEA approach based
on an exponential transformation: An application to
measure the energy efficiency of Chinese industry

Energy, total asset Total profit, industrial wastewater,
industrial waste gas

Table 2. The choice of input and output variables.

Variable Definition of Variables Units

Inputs
Total number of employees 10,000 people

Total investment in fixed assets 100 million yuan
Total energy consumption 10,000 tons of coal equivalent

Desirable output Gross domestic product (GDP) 100 million yuan
Undesirable output Carbon dioxide (CO2) emission million tons
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Table 3. The input and output variables, as well as the environmental elements, are statistically described.

Year Variables
No. of

Employees
(10,000 ppl)

Investment on
Fixed Assets (100

Million Yuan)

Energy
Consumption

(10,000 Tons of Coal
Equivalent)

GDP
(100 Million Yuan)

CO2 Emission
(Million Tons)

Secondary
Industry GDP
to Total GDP

Coal
Consumption to

Total Energy
Consumption

R&D
Investment

(10,000 Yuan) to
GDP

Local Fiscal
Expenditure

(10,000 Yuan) to
GDP

Import and
Export to GDP

2010 Average 359.17 1348.83 1641.30 4979.16 30.45 0.39 0.31 0.01 0.11 1.38
Variance 60,080.56 1,152,070.33 2,032,778.57 23,002,949.16 715.36 0.05 0.06 0.00 0.00 1.13

Maximum 758.14 3263.57 4775.60 14,928.92 99.32 0.63 0.76 0.03 0.17 3.60
Minimum 31.48 230.10 98.35 965.12 2.13 0.05 0.00 0.00 0.06 0.23

2011 Average 373.25 1499.22 1716.27 5691.86 32.85 0.38 0.36 0.02 0.11 1.33
Variance 68,132.36 1,390,138.24 2,205,935.34 28,291,300.48 774.88 0.05 0.07 0.00 0.00 1.13

Maximum 828.86 3826.45 5013.40 16,257.63 103.90 0.63 0.94 0.04 0.15 3.67
Minimum 32.76 297.09 98.00 1169.41 2.30 0.04 0.00 0.00 0.06 0.23

2012 Average 383.95 1700.31 1760.43 6223.67 32.67 0.37 0.35 0.02 0.11 1.26
Variance 75,512.84 1,698,756.09 2,312,417.06 33,425,972.92 697.18 0.05 0.07 0.00 0.00 1.05

Maximum 898.54 4348.50 5163.45 17,120.16 99.73 0.63 0.88 0.04 0.16 3.61
Minimum 34.32 380.63 105.03 1279.64 2.34 0.04 0.00 0.00 0.07 0.23

2013 Average 400.43 1892.62 1799.00 6806.96 33.02 0.42 0.36 0.02 0.11 1.23
Variance 88,584.02 1,900,441.68 2,425,523.24 38,804,566.21 700.95 0.04 0.09 0.00 0.00 1.04

Maximum 967.14 4454.55 5333.57 17,971.06 100.18 0.62 0.98 0.04 0.15 3.56
Minimum 36.10 448.20 98.11 1437.04 2.56 0.04 0.00 0.00 0.07 0.22

2014 Average 416.91 2062.03 1791.55 7317.69 30.41 0.42 0.35 0.02 0.12 1.17
Variance 101,984.85 2,096,958.27 2,452,465.96 44,691,526.73 359.55 0.04 0.08 0.00 0.00 0.92

Maximum 1034.58 4889.50 5496.46 18,993.87 66.02 0.63 0.83 0.04 0.16 3.49
Minimum 38.81 678.07 107.66 1580.50 2.71 0.05 0.00 0.00 0.07 0.23

2015 Average 431.51 2299.13 1887.08 7758.39 29.70 0.41 0.31 0.02 0.15 1.11
Variance 114,433.11 2,394,742.57 2,722,659.31 52,982,707.12 325.65 0.03 0.06 0.00 0.00 0.75

Maximum 1100.80 5405.95 5688.89 20,155.98 67.33 0.62 0.74 0.04 0.22 3.19
Minimum 39.65 726.85 117.57 1691.85 2.90 0.07 0.00 0.00 0.09 0.27

2016 Average 446.18 2496.35 1891.41 8378.46 30.22 0.40 0.31 0.02 0.14 0.97
Variance 128,117.70 2,761,952.37 2,839,642.31 60,900,156.05 312.08 0.03 0.06 0.00 0.00 0.68

Maximum 1165.73 5703.59 5852.60 20,930.51 65.55 0.61 0.68 0.04 0.23 3.05
Minimum 38.97 640.43 121.83 1810.67 3.11 0.07 0.00 0.00 0.08 0.23

Note: No. of employees, investment in fixed assets and energy consumption are input variables; GDP and CO2 emissions are output variables; the ratio of secondary industry GDP to
total GDP, the ratio of coal consumption to total energy consumption, the ratio of R&D investment to GDP, the ratio of local fiscal expenditure to GDP and the ratio of import and export
to GDP are environmental factors.
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For differentiation, if the chosen input and output variables are appropriate, the
Spearman’s Rank correlation coefficients are calculated to demonstrate the strength of the
link between inputs and outputs. The relevant outcomes in Table 4 show that the coefficients
between input and output variables possess a positive correlation with significant values
of 1% and 5%. Thus, the input and output variables have been chosen appropriately.

Table 4. Between input and output variables, the Spearman’s rank correlation coefficients.

Inputs
Labor Capital Energy

Outputs

GDP 0.782 ***
(0.004)

0.827 ***
(0.0001)

0.627 **
(0.04)

CO2 emission 0.873 ***
(0.0004)

0.927 ***
(0.00004)

0.709 ***
(0.01)

Note: The significance level of *** and ** are 1% and 5% respectively. The relevant p-value is indicated by numbers
in brackets.

External environmental variables do also exert influence on efficiency as mentioned
by Liu et al. [49]. In terms of selecting these environmental variables, based on existing lit-
eratures, five major factors are analyzed in this research, which include industrial structure,
energy structure, technology, government intervention and openness of economy [44,50,51].
In the SFA regression, Table 5 lists the factors chosen as explanatory variables.

Table 5. The selection of external environmental variables.

Factors Explanatory Variables

Industrial structure IS Ratio of secondary industry GDP to total GDP
Energy structure ES Ratio of coal consumption to the total energy consumption

Technology T Ratio of R&D investment to total GDP
Government intervention GI Ratio of local fiscal expenditure to total GDP

Openness of economy OE Ratio of import and export to total GDP

Secondary industries are known to be more energy intensive industries than tertiary
industries. Thus, the industrial composition of a city exerts huge difference in energy
demand and its energy efficiency. Besides, the types of energy resources used also affect
the performance of outputs too. Coal is known to be an inexpensive but unclean source of
energy. CO2 emission is one of the environmental concerns when coal is being combusted
tremendously during development. Thus, advancement in technology is necessary to
clean up air pollution or even to utilize clean energy as a replacement. In this regard, the
government can intervene with fiscal incentives to incur research and development in
technology. Besides, the frequency of import and export often remarks the openness of an
economy, hopefully with more technology transfer of goods and services taking place at
the same time.

The data used in this research is mainly comprised of variables of 11 cities, including 9
Guangdong cities (Guangzhou, Shenzhen, Foshan, Zhuhai, Dongguan, Huizhou, Zhong-
shan, Jiangmen and Zhaoqing), and 2 special administrative regions, namely the Hong
Kong Special Administrative Region (Hong Kong SAR) and Macao Special Administrative
Region (Macao SAR) from 2010 to 2016. In most of the previous literatures on sustainable
development of the cities of China, data of HK SAR and Macao SAR are often excluded
due to statistical caliber. Therefore, in order to fulfill the consistency of input and output
variables as well as for all cities in GBA, all data were derived from the official Statistical
Yearbook of each Guangdong municipality, the Census and Statistics Department of the
Hong Kong SAR and the Statistics and Census Service of the Macao SAR from 2010 to 2016.
Since there is no official CO2 emission data of the GBA cities available, relevant CO2 data
from 2010 to 2016 was directly obtained from research by Zhou et al. [52]. According to
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the study of Zhou et al., (2018), the total CO2 emissions is calculated based on territorial
emission accounting approach of the Intergovernmental Panel on Climate Change (IPCC),
with inventories consisting of 17 kinds of fossil fuels, 47 socio-economic sectors and 7
industrial processes.

5. Results and Discussion
5.1. Results
5.1.1. The First Phase Undesirable-SBM Model: The Comprehensive Efficiency Calculation
Results

During the first stage, with consideration of the undesirable output CO2 emission, the
undesirable-SBM pattern stated in article 3.1 was chosen to calculate the comprehensive
efficiency of the 11 GBA cities from 2010–2016. The calculation was done with MaxDEA
(Beijing Realword Software Company Ltd, Beijing, China) and the outcomes were displayed
in Table 6.

Table 6. Comprehensive efficiencies of the GBA cities from 2010 to 2016.

Cities 2010 2011 2012 2013 2014 2015 2016 Average

Guangzhou 0.393 0.438 0.478 0.439 0.425 0.405 0.396 0.425
Shenzhen 1 1 1 1 1 1 1 1

Zhuhai 0.307 0.302 0.309 0.300 0.348 0.333 0.294 0.313
Foshan 0.374 0.371 0.378 0.348 0.359 0.373 0.354 0.365

Jiangmen 0.194 0.207 0.228 0.228 0.288 0.269 0.223 0.234
Zhaoqing 0.265 0.264 0.269 0.259 0.315 0.300 0.276 0.278
Huizhao 0.150 0.159 0.168 0.168 0.204 0.206 0.194 0.178

Dongguan 0.318 0.356 0.359 0.322 0.376 0.452 0.422 0.372
Zhongshan 0.203 0.215 0.231 0.243 0.344 0.328 0.315 0.269

Hong Kong SAR 1 1 1 1 1 1 1 1
Macao SAR 1 1 1 1 1 1 1 1

Average 0.473 0.483 0.493 0.482 0.514 0.515 0.498 0.494

5.1.2. The Second Phase: The Analysis of Influence of External Environmental Factors
on Efficiency

During phase 2, the stochastic frontier analysis (SFA) approach is applied to analyze
the influence of exterior environmental elements on the relaxation variables of inputs,
namely the relaxations of the total number of employees, the slacks of total investment
of fixed assets and the slacks of the total energy consumption. External environmental
variables are elements that will affect energy efficiency, but not in a direct and controllable
way. Five factors include the ratio of secondary industry GDP to total GDP, the ratio of coal
consumption to the total energy consumption, the ratio of R&D investment to total GDP,
the ratio of local fiscal expenditure to total GDP and the ratio of import and export to total
GDP. The explanatory factors are these external environmental variables, while the slack
inputs are considered as explained variables. Frontier 4.1 software is being used to create
the SFA model. Table 7 shows the empirical findings.

After conducting the second stage SFA regression model, the input data in the first
stage is adjusted with the coefficient values as shown in Table 7. With this adjustment, the
effects from stochastic disturbances and external environmental elements can be eliminated.
Adjusted input and original output variables can be run by the undesirable SBM-model
once again to obtain the real energy efficiencies. The adjusted results of energy efficiency
are compared with that of the original shown in Figure 3.
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Table 7. SFA model parameters and estimation results in the second stage.

Slacks

Explanatory Variable Number of
Employees

Investment in
Fixed Assets

Energy
Consumption

Constant term 6.66
(42.56) ***

6.78
(3.72) ***

9.09
(24.11) ***

The ratio of secondary industry GDP
to total GDP

−0.07
(−0.90)

1.97
(2.99) ***

0.23
(1.48)

The ratio of coal consumption to
total energy consumption

−0.02
(−0.46)

−0.25
(−0.73)

0.05
(0.66)

The ratio of R&D investment to GDP 0.09
(2.24) **

0.25
(0.64)

0.15
(1.70) *

The ratio of local fiscal expenditure
to GDP

−0.04
(−0.69)

−1.12
(−1.66) *

−0.07
(−0.54)

Import and export to GDP −0.20
(−3.26) ***

−1.52
(−3.39) ***

−0.30
(−2.22) **

sigma-squared 12.08
(2.34) **

6.25
(2.12) **

18.32
(3.07) ***

gamma 0.99
(11414.37) ***

0.93
(26.08) ***

0.99
(4651.11) ***

LR test of the one-sided error 411.04 * 102.42 *** 359.24 ***
Note: The significance level of ***, ** and * are 1%, 5% and 10% respectively. The matching t-statistics of the
computed parameters are indicated by numbers in brackets 5.1.3. The third phase: the real energy efficiency
calculation results.

Figure 3. In the period 2010–2016, the average energy efficiency of the GBA cities’ first stage (original
inputs) and third stage (adjusted inputs) was compared.

5.2. Discussion

As seen in Table 5, Shenzhen, Macao SAR and Hong Kong SAR are operating at the
efficient frontier from 2010–2016, with energy efficiencies equal to 1. This implies that
Shenzhen, Macao SAR and Hong Kong SAR are efficient in terms of energy consumption.
However, other cities such as Guangzhou, Zhuhai, Foshan, Jiangmen, Zhaoqing, Huizhao,
Dongguan, and Zhongshan, their efficiencies are all below the average value of 0.494
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from 2010–2016. Among inefficient cities, only Guangzhou and Dongguan are close to
the average value, but still, the tendency of comprehensive efficiencies is not promising
and have not been increasing obviously from 2010–2016. On the contrary, the compre-
hensive efficiencies of Shenzhen, Hong Kong SAR and Macao SAR demonstrate better
performance in efficiencies and these cities have similar economic activities, industrial
structure, technology and market openness.

According to previous literature demonstrating that there is a clear one-way Granger
causality between sustainable economic development and energy consumption, the energy
efficiency of the eight cities Guangzhou, Zhuhai, Foshan, Jiangmen, Zhaoqing, Huizhou,
Dongguan and Zhongshan has been below the average from 2010–2016, and as the cities
develop year by year, the low energy efficiency will have an impact on future sustain-
able economic development, and an efficient and green Energy consumption policy is an
important issue at this stage to ensure sustainable development in the future.

From the SFA results, certain evaluated coefficients listed in Table 6 are significant
at the 1%, 5%, and 10% significance levels respectively, indicating that certain external
environmental conditions do have an impact on the GBA cities’ energy efficiency. Besides,
the correlation coefficients calculated in the SFA regression also represent the relationship
between input relaxations and external environmental conditions.

For the GDP of secondary industries as a percentage of overall GDP, it shows a positive
and 1% significant correlation with the slack of investment in fixed assets. An increase in the
ratio of secondary industry GDP to the total GDP will increase the slack of the investment in
fixed assets, which in turn bringing unfavorable impacts on energy efficiencies. Secondary
industry is known to be an energy intensive industrial category and an adjustment policy
in industrial structure to less energy intensive industry may have a positive effect on energy
efficiencies of the GBA cities.

Coal combustion in energy generation is the known source of CO2 emission. Thus, in
Table 6, it shows that when the ratio of coal depletion to overall energy consumption rises,
the slacks of energy consumption rise as well. However, the result is not significant.

R&D investment as a percentage of GDP shows positive and significant correlation
coefficients with the slacks of number of employees and energy consumption. This finding
is not similar to Zhao et al. [53], as investment of R&D usually encourages technology im-
provement and innovation that can contribute to efficiency in production process, causing
a decrease in labor and investment demand, as well as more energy saving technologies.
However, Liu (2020) mentioned that technological progress affects negatively on energy
efficiency in her research [54]. One of the possible reasons maybe due to rebound effect,
indicating that an increase in energy efficiency triggered by technology advancement is
being offset by the increase in energy consumption demand.

The ratio of local fiscal expenditure to total GDP is negatively but not significantly
correlated with the input slacks. An increase in government involvement in economic
activities may be interpreted as incentives or drivers in energy efficiency improvement
such as energy savings technology or implementation of relevant efficiency policies. The
significant relationship between the ratio of local fiscal expenditure to GDP and investment
in fixed assets signals the government’s part in driving energy efficiency performance.

For the empirical study, the intensity of import and export activities shows a negative
relationship with all the three input variables. Any increase in import and export as a
percentage of GDP will decrease the slacks of inputs. Among all other environmental
factors, import and export as a percentage of GDP appears to be the only factor that is
significant to all the input variables of the GBA cities. It is worthwhile to note that the
average import and export to GDP value of the GBA cities has been declining from 1.38 in
2010 to 0.97 in 2016 and the average energy efficiency has also dropped since 2010.

The average energy efficiency of the third stage during 2010–2016 has increased
from 0.494 to 0.708, compared with the first phase. This explains that the overall energy
efficiencies may have been underestimated in the first stage and are affected by the external
environmental factors and stochastic disturbances. During phase 3 calculation, the average
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energy efficiencies of the GBA cities range between 0.604 and 0.851 throughout the study
period from 2010–2016. From the first phase calculation shown in Figure 4, the values of
energy efficiencies have increased but the average energy efficiency of the GBA cities does
not improve during the period 2010–2016. In fact, the average energy efficiency had reached
a peak of 0.85 in 2011 and since then, it started to drop to 0.605 in 2016. By eliminating the
external environmental factors and stochastic disturbances after the third stage, a decrease
in energy efficiency implies a real decline in managerial efficiency of the GBA cities since
2011.

Figure 4. Energy efficiencies of the GBA cities in 2010–2016 (the first stage).

From Figure 5, it is shown that Shenzhen, Hong Kong SAR and Macao SAR are energy
efficient cities, with an energy efficiency value of 1. When stochastic disturbances and
external environmental elements are excluded after the SFA regression, the number of
energy efficient cities varied from 4 to 7 in the studied years, including Shenzhen, Zhuhai,
Zhaoqing, Zhongshan, Dongguan, Macao SAR and Hong Kong SAR. However, the number
of cities with an average energy efficiency of 1 both in the first and the third stage of the
SBM-DEA throughout 2010–2016 remain only 3, namely Shenzhen, Hong Kong SAR and
Macao SAR.
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Figure 5. Energy efficiencies of the GBA cities in 2010–2016 (the third stage).

6. Conclusions and Policy Recommendations
6.1. Conclusions

The following conclusion can be obtained using a three-stage SBM-DEA model to
determine energy efficiencies and investigate the influential elements of the GBA cities:

(1) Among the 11 GBA cities, only Shenzhen, Hong Kong SAR and Macao SAR have
an energy efficiency of 1 from 2010–2016, both in the initial phase as well as in the
third phase. This means that all these three cities operated at the efficient frontier
during the study period. Other cities such as Guangzhou, Zhuhai, Foshan, Jiangmen,
Zhaoqing, Huizhao, Dongguan, and Zhongshan, their energy efficiencies were all
below the average value of 0.494 (the first stage) from 2010–2016;

(2) By eliminating the external environmental factors and stochastic disturbances by the
stochastic frontier analysis during phase 2, the GBA cities’ average energy efficiency
during 2010–2016 has increased from 0.494 to 0.708 during phase 3 SBM-DEA model.
This explains that energy efficiency has been underestimated at the first stage. Besides,
Shenzhen, Hong Kong SAR and Macao SAR, Dongguan was the other GBA city that
had an average energy efficiency of 0.87, which is above the average of all GBA cities.
At the same time, a decreasing trend of energy efficiency after the third phase SBM-
DEA pattern since 2010 had been observed. This implies a real decline in managerial
energy efficiency of the GBA cities since 2010;

(3) Through the second stage stochastic frontier analysis, the influence of external envi-
ronmental factors is investigated and among all, the ratio of import and export to GDP
shows a negative and significant relationship to all three input variables, meaning
an increase in the ratio will cause a decline in the input slacks, which favors energy
efficiency.

6.2. Policy Recommendations

Based on the empirical analysis and conclusion, several policy recommendations are
proposed for energy efficiency and sustainable growth:
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(1) Acceleration of economic structure transformation. Instead of achieving the sole
target of GDP growth, more emphasis should be made on environmental protection
such as increasing the ratio of clean fuels and minimizing the emission of atmo-
spheric pollutants such as CO2 emission, especially under the agenda of sustainable
development.

(2) Financial support from the government. Government intervention is always an im-
portant driver in encouraging energy-efficient and low-carbon production, especially
during the initial stage in fixed assets investment. Government can also promote
public awareness and enforce tougher environmental protection standards.

(3) Promotion of imports and exports. When products are less energy-intensive and
environmentally friendly, an increase in imports and exports will not only facilitate a
higher GDP, but also indirectly boost technological innovation and living standards.

This study, however, has a few limitations. First, this is the first research of this kind
with the Guangdong-Hong Kong-Macao Bay Area cities as the DMUs and using the SBM-
DEA model for energy efficiency evaluation, as far as we know. Thus, it is recommended
that other DEA methods should be studied to examine the energy efficiency for comparison
of results. Second, the structure of statistical data of mainland China and that of HKSAR and
Macao SAR are quite different and may cause uncertainties in results. Further development
of a homogeneous GBA statistical data collection system would be helpful to minimize
the associated uncertainties. Last, different GBA cities exhibit different energy efficiency
performances and are affected by different influential factors. Investigation on other social
or economic influential factors for a wider aspect of policy formulation would be helpful.
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