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Abstract: Internet of Things (IoT) provides large-scale solutions for efficient resource monitoring
and management. As such, the technology has been heavily integrated into domains such as
manufacturing, healthcare, agriculture, and utilities, which led to the emergence of sustainable smart
cities. The success of smart cities depends on the availability of data, as well as the quality of the
data management infrastructure. IoT introduced numerous new software, hardware, and networking
technologies designed for efficient and low-cost data transport, storage, and processing. However,
proper selection and integration of the correct technologies is crucial to ensuring a positive return on
investment for such systems. This paper presents a novel end-to-end infrastructure for solar energy
analysis and prediction via edge-based analytics.
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1. Introduction

Internet of Things (IoT) technologies provides large-scale solutions for efficient re-
source monitoring and management [1]. These technologies have been heavily integrated
into various domains including manufacturing, healthcare, agriculture, and utilities. This
integration contributes significantly towards emergence of sustainable cities. A key chal-
lenge to the sustainability and growth of cities is conservation of vital energy resources
against overconsumption [2]. As a result, great efforts have been invested into increasing
the efficiency of green energy resources to eliminate dependence on finite energy resources
such as fossil fuels. One of the planet’s most abundant and freely available energy sources
is sunlight. Sunlight is also considered the only source capable of keeping up with global
energy demand, as the amount of sunlight the planet receives in one hour is more than
enough to power the planet for a whole year [3]. While solar energy penetration into pri-
mary grids remains relatively low compared to conventional fossil fuels, the last few years
have witnessed a steady increase in solar power utilization. The 2021 Renewable Capacity
Statistics Report by IRENA reported a global solar energy capacity of over 713 Giga Watts
(GW), accounting for over 25% of installed renewable energy capacity [4]. Furthermore,
the global solar energy capacity was expected to increase by 150 GW in the year 2022, with
the average annual addition capacity reaching almost 165 GW for the years 2023–2025 [5].

While such increases in utilization of solar energy are in the right direction, they also
pose new challenges when it comes to Operation and Maintenance (O&M) of solar farms.
One of the primary challenges to 100% solar energy grid penetration is the intermittency
of this energy source [6]. Environmental factors such as irradiance and soiling, as well
as operational conditions such as array configuration and tilt can cause short-term and
long-term energy fluctuations. If allowed to propagate through the grid, significant energy
fluctuations can cause service disruptions at best, and damage critical resources and infras-
tructure at worst. Avoiding fluctuations requires intelligent energy reserve planning which
can be accomplished by utilizing technology to not only monitor solar resources, but to also
use data along with artificial intelligence (AI) to generate trend reports and forecasts [7].
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The success of the latter depends on the availability of data, as well as the quality of the
data management infrastructure [8]. Internet of Things (IoT) introduced numerous new
software, hardware, and networking technologies designed for efficient and low-cost data
transport, storage, and processing [9]. However, appropriate selection and integration of
the correct technologies is crucial to ensuring a positive return on investment for such
systems. This paper presents a novel end-to-end infrastructure for solar energy analytics
and prediction via edge-based analytics for large-scale solar farms.

This primary contributions of this paper are as follows:

• The paper presents an analysis of AI applications in solar energy
• Derives key functional and non-functional requirements based on a survey of smart

energy systems, IoT systems, and smart grids
• Proposes and evaluates a design for a low-cost data collection and streaming from

distributed solar installations
• Proposes a design for a middleware services software architecture which makes use of

scalable data streaming, processing, storage, and analytics technologies
• Offers examples of microservices which can be deployed using such as system, as well

as detailed use cases for remote and distributed solar installations

2. Artificial Intelligence and IoT in Solar Energy

The output of a solar module is highly dependent on its context [6]. Natural phenom-
ena such as global horizontal irradiance (GHI) [10,11], ambient temperature [12,13], and
aerosol particle concentration [14,15] play a large part in influencing the amount of energy a
module can yield. Furthermore, once operational as part of an array or a grid, the output of
a solar module can also be influence by its operational elements such as array location, array
configuration and tilt [16]. Such factors can influence the Current-Voltage (IV) curve [17]
for a module. Furthermore, both natural and operational context can decrease the output
of a module overtime. This happens by either blocking sunlight from reaching its surface
such as with soiling [18,19], or causing damage to the module’s surface or circuitry such as
the case with surface degradation, and the development of hotspots [20]. Context varies
not only from region to another, but within the same region and even within the same
farm [21,22]. As a result, generating an accurate model of an individual module, string, or
array requires highly-granulated data collection to avoid making generalized assumptions
about individual situations [23]. This requires a new type of data monitoring and analytics
infrastructure that is equipped to make sense of large masses of heterogenous data and
generate models, predictions, and reactions within a relatively short amount of time.

3. System Requirements

The functional and non-functional system requirements for a large-scale solar moni-
toring and analytics infrastructure are shown in Table 1. The requirements were selected
based on a survey of smart energy systems as well as IoT systems in order to match the
needs of a hybrid IoT-based energy system [24]. In addition, to account for the amount
of data expected to flow through the system, and to overcome challenges that come with
the transportation, processing and storage of such data, incorporating Big Data Systems
has been included as one key requirement [25]. The requirements not only cover matters
related to the deployment, operation, and maintenance of such system, but the longevity,
long-term cost, and return-on-investment are also considered.
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Table 1. System functional and non-functional requirements.

Requirement Definition

Functional Requirements

Resource discovery The process used by a device to locate and access a resource
within the network

Resource management Delegation of tasks between similar resources to ensure no single
resource is overwhelmed

Data management Appropriate handling of data regardless of its volume, frequency,
variety, or errors

Event management Appropriate, timely reaction to events or new information
Software management Appropriate planning of software maintenance and updates

Context awareness The system’s ability to provide information relevant to the
device’s self or context in order to enhance decision making

Autonomy The ability to seamlessly deploy new actors, services, or users in
the system without human interference

Interoperability Seamless flow of data and services across heterogeneous regions
in the system

Non-Functional Requirements

Scalability The ability to meet the same quality of services levels as the
system increases in scale

Timeliness Ensuring time delays based on the criticality of information and
requirements of the domain

Security Protection of information and infrastructure and mitigation of
security attacks

Ease of deployment The ability to replicate and deploy segments of the system by
persons with minimum technical knowledge

Multiplicity Decentralization and redundancy of critical resources to maintain
continuous operation and quality of service against system faults

Adaptability The system’s ability to seamlessly evolve with minimal
disruptions to operation

Resource conservation Optimizing operation and maintenance in order to reduce
resource consumption and maximize net profit

4. Infrastructure for City-Wide Energy Intelligence
4.1. Edge Infrastructure

The hardware and network infrastructure of the edge layer are shown in Figure 1.
Located at the solar farm are edge nodes responsible for monitoring, analysis, and control
of the solar modules. The nodes consist of low-cost microcontrollers such as ESP32 board
equipped with sensors capable of capturing the solar module’s state as well as its envi-
ronmental context. A typical ESP board uses a single or dual-Core 32-bit microprocessor
with typical clock frequency of up to 240 MHz, and about 520 KB of SRAM, 448 KB of
ROM and 16 KB of RTC SRAM. These boards support 802.11 b/g/n Wi-Fi connectivity
with speeds up to 150 Mbps. Data can be captured at three different levels: module, string,
and region or facility. The latter refers to data describing the environmental context of the
solar panels. Depending on the scale of the facility, the area may be divided into multiple
regions in order to capture the variations in context across the whole facility. Table 2 shows
the various types of readings that can be captured at each level. Other devices may be
added which may be responsible for control such bypassing a module or dynamically
reconfiguring the array [26,27].
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Table 2. Examples of data captured at module, string, and region level.

Level Data Captured

Module Module surface temperature, dust level, module current and voltage
String String current and voltage, battery current and voltage, battery temperature

Region/facility Solar irradiance, wind speed, ambient temperature, humidity, air pressure,
aerosol particle concentration

Edge devices such as the ESP32 are required to use a low-power, long-range com-
munication module to transmit the sensor data across a city. The proposed architecture
uses low-power long-range communication network as the primary network protocol
to transport data from remote farms to datacenters to reduce the cost of deploying and
operating a long-range network when compared to conventional long-range networks
such as 5G. There are several alternative lower-power, long-range communication technolo-
gies currently available on the market including LoRaWAN, Sigfox, NB-IoT, and LTE-M.
Comparative analyses and performance evaluations of the technologies have so far have
found LoRaWAN and NB-IoT have an edge above the rest in terms of power consumption,
payload size, and range [28,29]. Given that LoRaWAN uses unlicensed frequency spectrum,
the cost of deploying a LoRaWAN infrastructure is be significantly less than deploying
NB-IoT which piggybacks on existing cellular frequency spectrums. Consequently, the
work here assumes a LoRaWAN infrastructure for remote communication.

In addition to an ESP board, the edge device includes a LoRaWAN [30] module that
forwards the data to a remote LoRaWAN gateway. Figure 2a shows an ESP32 equipped
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with an on-board LoRaWAN chip [31] that enables the board to function as a LoRaWAN
edge device. In this implementation, the ESP32 + LoRaWAN board was used as an edge
device, while the Gateway consisted of a Raspberry Pi (RPi) equipped with a RAK Wireless
LoRaWAN multi-channel shield [32] (shown in Figure 2b. Edge devices communicate with
the gateway over the 868MHz frequency band. In addition to forwarding data from the
LoRaWAN network over the internet, the gateway hosts the Chirpstack LoRaWAN server
stack which performs device identification and management. The Chirpstack interfaces is
shown in Figure 3.
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The LoRaWAN gateway, forwards the information received over the LoRaWAN
network using the Message Queuing Telemetry Transport (MQTT) [33] over wireless (e.g.,
WiFi, 4G, 3G) or wired connection (e.g., Fiber) to the datacenter.

Solar module and battery current and voltage information typically captured by
proprietary monitoring devices provided by electrical equipment vendors can also be
integrated into the proposed architecture. Such devices are represented by the “Industrial
Monitoring Unit” in Figure 1. Most modern electrical equipment such as Maximum Power
Point Tracking (MPPT) controllers and Battery Management System (BMS) are equipped
with a wired or wireless interfaces used to relay real-time information. This information
is often communicated over open standard communication protocols such as MQTT and
Modbus-TCP/IP [34]. Messages from such devices are routed through a local gateway which
forwards data over LoRaWAN.to be integrated into the LoRaWAN infrastructure. An analysis
of the cost and resources required to operate such a design has been presented in [35].

4.2. Core Infrastructure

Data from edge monitoring devices is transported through a hybrid wireless network
infrastructure all the way to the datacenter, or the “core”. The core infrastructure, shown in
Figure 4, provides interfaces and services for end-to-end data communication, processing,
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storage, and visualization. At the application level, data communicated from edge devices
at remote solar farms is aggregated through an MQTT-Kafka distributed data streaming
network. While MQTT provides low-cost event-based communication for edge devices [9],
Kafka [36] offers real-time streaming of massive information from remote edge devices
to the backend infrastructure [37]. Distributed clusters of MQTT brokers and Kafka bro-
kers make for an efficient communication network that is lightweight at the edge where
resources are limited, and robust and scalable at the core where heavy data streaming
is required. MQTT-Kafka streaming architectures have been previously proposed and
evaluated in the context of smart medical applications [38], cooperative and intelligent
transportation systems [39], and real-time data stream analytics [40].
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Once data is at the Kafka broker, a connectors from Kafka to Spark make it possible to
stream it in real-time to stakeholders, apply artificial intelligence algorithms to produce
real-time analytics, or store the information in Hadoop Distributed File System (HDFS) [41].
At the backend, an orchestra of Celery [42] workers and Spark [43] jobs are deployed to
offer microservices such as resource management, data management, data processing, and
many others. Communication between Celery’s microservice workers takes place over
message-oriented middleware based on AMQP [44]. The core also includes a MongoDB [45]
database which keeps records of all edge stations operating in the remote facilities. This
data is used for device management as well as processing data, where each device has a
profile that describes its location, the type of resources it offers, as well as miscellaneous
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O&M information. A sample of an edge device profile is shown in Figure 5, while a packet
generated by that edge devices is shown in Figure 6.
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4.3. Front-End

The front-end consists of a web application that allows stakeholders to monitor the
performance of solar facilities in real-time. Stakeholders also have access to information
regarding monthly power output and earnings, individual facility contribution, and earn-
ings forecasts for the upcoming months. The web application also allows stakeholders
to view detailed information per facility, as well as modify system properties such as
data granularity and publishing frequency. Furthermore, data analytics such as forecasts,
anomaly classifications, and system diagnostics are readily available. Samples of the ad-
min dashboard are shown in Figures 7 and 8, while a sample of system property control,
specifically device frequency control, is shown in Figure 9.
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5. Microservices

The system utilizes microservices-based architecture to provide administrative and
operational capabilities to stakeholders. A microservices architecture is an architectural
style that consists of loosely coupled services which function within the same framework
but can be deployed, tested, and maintained independently. Microservice architectures
are especially useful to Internet of Things systems because they allow for the seamless
integration of new services and continuous upgrade of existing ones without disturbing
the rest of the ecosystem. By decoupling the service, it is possible to implement each
service using the most suitable technology, resulting in a heterogenous system of resources
and services which communicate seamlessly using common interfaces and standardized
communication protocols.

Figure 10 shows the microservices architecture. The services required in a solar power
monitoring system can be roughly categorized into three types: real-time monitoring, intel-
ligent analytics, and Operation and Maintenance (O&M). In each type of service, several
workers are implemented to provide different microservices which collaborate on various
tasks and continuously exchange data between them as well as the rest of the system.



Energies 2022, 15, 440 9 of 19Energies 2022, 15, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 10. Microservices architecture. 

5.1. Real-Time Monitoring 
Real-time monitoring microservices are concerned with delivering observations de-

scribing the performance of the solar panels as well as their environment from remote 
solar farms to stakeholders. For example, the microservices can be implemented so that: 
• One worker initiates and maintains a Spark job which routes Kafka streams into 

MQTT topics. 
• One worker handles MQTT clients and delegates real-time data to the Web User In-

terface (UI). 
• One worker hosts the Web UI. 

5.2. Data Analytics 
Data analytics microservices provide stakeholders with summarized and detailed re-

ports about the performance of remote solar farms at varying granularity levels. Moreo-
ver, this category hosts microservices cable of performing intelligent analytics including 
running machine learning and deep learning algorithms. Such algorithms are used to gen-
erate virtual models of solar farms which can then be used to generate customized fore-
casts, predict output, and plan accordingly. For example, a stakeholder might be inter-
ested in viewing the output forecast for multiple distributed facilities. Such report is 
needed for power planning in major grids in order to plan power distribution and access 
to power reserve [46,47]. Models are also used to perform preventative and reactive 
maintenance in order to prevent short-term and long-term disturbances in solar energy 
production from propagating through the grid. Using data acquired from operating facil-
ities, individual models can be constructed for the system on the facility, string, and mod-
ule level. The models run in parallel with the facility and are used to detect anomalies or 
deviation from expected performance, or schedule maintenance activities[48,49]. The in-
crease in granularity consequently increases the accuracy of predictions by factoring the 
unique and individual conditions of each module, which can be affected by the geograph-
ical and electrical context of a module. 

5.3. Operation and Maintenance (O&M) Management 
Operation and Maintenance (O&M) Management processes play a key role in ensur-

ing the continuous and reliable operation of the solar farm as well as the data transmission 
and processing infrastructure. O&M use a mix of real-time data and data diagnostics in 

Figure 10. Microservices architecture.

5.1. Real-Time Monitoring

Real-time monitoring microservices are concerned with delivering observations de-
scribing the performance of the solar panels as well as their environment from remote solar
farms to stakeholders. For example, the microservices can be implemented so that:

• One worker initiates and maintains a Spark job which routes Kafka streams into
MQTT topics.

• One worker handles MQTT clients and delegates real-time data to the Web User
Interface (UI).

• One worker hosts the Web UI.

5.2. Data Analytics

Data analytics microservices provide stakeholders with summarized and detailed
reports about the performance of remote solar farms at varying granularity levels. Moreover,
this category hosts microservices cable of performing intelligent analytics including running
machine learning and deep learning algorithms. Such algorithms are used to generate
virtual models of solar farms which can then be used to generate customized forecasts,
predict output, and plan accordingly. For example, a stakeholder might be interested in
viewing the output forecast for multiple distributed facilities. Such report is needed for
power planning in major grids in order to plan power distribution and access to power
reserve [46,47]. Models are also used to perform preventative and reactive maintenance in
order to prevent short-term and long-term disturbances in solar energy production from
propagating through the grid. Using data acquired from operating facilities, individual
models can be constructed for the system on the facility, string, and module level. The
models run in parallel with the facility and are used to detect anomalies or deviation
from expected performance, or schedule maintenance activities [48,49]. The increase in
granularity consequently increases the accuracy of predictions by factoring the unique
and individual conditions of each module, which can be affected by the geographical and
electrical context of a module.

5.3. Operation and Maintenance (O&M) Management

Operation and Maintenance (O&M) Management processes play a key role in ensuring
the continuous and reliable operation of the solar farm as well as the data transmission and
processing infrastructure. O&M use a mix of real-time data and data diagnostics in order
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to identify system anomalies and recommend the most appropriate course of action, for
both preventative as well as reactive maintenance [50].

By implementing the backend as a modular microservice-based system, it is possible
to update, modify, add, or remove any of the workers without causing any obstructions to
the system as long as workers abide by communication standards and format. Furthermore,
it is possible to scale the system in order to support higher volumes of data by duplicating
the workers to provide means of load balancing.

5.4. Use Cases

Possible use cases the system is expected to provide include the general needs of any
monitoring and analytics system, as well as installation-specific services relating to the
kind of study, analysis, or service the farm is expected to provide. Below are four possible
use cases and they can be implemented using the proposed infrastructure.

5.4.1. Use Case 1: Add a New Module Edge Device to the System

A regularly expected event is the addition of a new edge node to the system. This can
include a module monitoring device, a battery monitoring device, a weather station, or any
type of device expected to operate at the farm and provide information about the state or
context of the farm. For the node to start operation, the system needs to not only update its
registry of devices, but also update all context-related registers such as the string, array,
and farm the devices is to be deployed in. Other actors in the system should also be made
aware of the addition of the devices and the type of data resource it offers, and whether
the device offers unique new information or has been added to reduce the load on other
devices provided similar data resource.

The following steps should take place:

1. Add a new LoRaWAN device to The Things Network (TTN) (Figure 4).
2. Register the LoRaWAN device to the application (TTN) along with its location (Figure 11)
3. Send the edge device metadata to Celery (Figure 12). The device can be a panel, a

battery, a string, or a site
4. A Celery worker add/update the device’s profile in the database (Figure 13) by:

a. If the site ID already exists, it will add/update the string profile.
b. If the String ID already exists, it will add the ID of the edge device to the string.

Else, it creates a new string.
c. If device ID already exists, it will update its metadata. Else, it creates a new profile.
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5.4.2. Use Case 2: Change Behavior of a String Monitoring Device to Report Data Every
2 Min Instead of Its Old Reporting Behavior

Another regularly occurring event is the need to remotely change the behavior of a
monitoring device, whether it is the frequency of reporting, or the type of data reported. For
example, an administrator notices the behavior of solar modules in a specific location has
been fluctuating at a high frequency. In order to capture their behavior, the administrator
might decide to temporarily increase the reporting frequency from once every hour to once
every two minutes. Such operation would be carried out as follows:

1. User selects string from interfaces and updates information as required (Figure 5)
2. Message is sent to the edge device through Kafka-MQTT-LoRa downlink
3. Device updates its sending frequency
4. Device’s profile is updated with new expected sending frequency

The process is divided into individual tasks which are distributed across several Celery
workers, where each worker specializes in handling a specific segment of the process. For
example, Figure 14 shows the worker code for updating the entry for the string in the
database, as well the worker which publishes the update to all devices in the string so that
they start reporting at the selected frequency.
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5.4.3. Use Case 3: Request New Type of Power Forecasts for a Specific Farm

Changes in the behavior of modules might raise the need to predict the output of
a specific segment in the system or the system as a whole. For example, solar modules
are more susceptible to soiling due to decreased humidity and increased sandstorms.
Solar modules also suffer from higher overheating during summer due to high ambient
temperatures and irradiance. Soiling behavior requires a different type of data collection
and analytics models than that of overheating. Since administrators can be interested in
studying different behaviors at different points of time, it is important that the system offers
the flexibility to update its models as well as generate new models based on the needs of a
given context.

1. User selects site and requests power output for the next week.
2. Device orchestration worker creates a list of relevant modules, strings, and

weather devices.
3. Data retrieval worker prepares a table with all relevant data points.
4. Analytics manager builds models.
5. The result is displayed on the web application.

5.4.4. Use Case 4: Respond to an Error

Anomalies are an expected part of energy generation. As discussed before, solar
energy systems deal with a wide array of natural and man-made short-term and long-term
anomalies. As a result, the system should be equipped with the intelligence and capabilities
to appropriately diagnose and respond to anomalies within strict time constraints. For
example, a module monitoring device reporting a current of 0 amps would trigger the
following tasks:

1. Device sends an error message over LoRaWAN which gets forwarded over MQTT
to the server at the core. The message includes the source of the error, the criticality
level, code, timestamp, and whether or not action is required (Figure 15).

2. A Celery worker logs the error message into MongoDB.
3. Diagnoses worker grabs real-time panel reading records, last day readings, and

maintenance history.
4. Based on the criticality and type of error, diagnoses worker sends all information to

analytics worker.
5. Analytics worker sends back result to diagnoses worker.
6. Diagnoses worker sends alert and analysis to automate O&M.
7. If an automatic response is needed (e.g., bypass module), a control command is sent

to on-location bypass switch. This is done over MQTT which gets forwarded via the
gateway to the LoRaWAN downlink towards the device responsible for performing
the action.
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6. Evaluation

A preliminary evaluation of a similar architecture was carried out in [35]. A more
comprehensive evaluation is presented below. The evaluation aims to estimate the cost of
operating such a system in a real-life large-scale solar facility. Thus, calculations are based
on the actual capacity of eleven of the largest solar facilities in the world which included
the five largest solar farms in China [51], Noor Abu Dhabi Solar Power Plant [52], and five
phases of Mohammed bin Rashed (MBR) Al Maktoum Solar Park [53]. The capacity of each
installation is shown in Table 3. The architecture was evaluated in terms of bandwidth
requirements, power consumption, response time, security, and cost.

Table 3. Solar capacity of the eleven solar installations considered.

Facility Solar Capacity (Giga Watt)

MBR P1 0.013
MBR P2 0.213
China 5 0.850
China 4 1.000
MBR P3 1.013
China 3 1.100

Noor Abu Dhabi 1.200
China 2 1.550
MBR P4 1.930
China 1 2.200
MBR P5 2.830

6.1. Scalability

Scalability here refers to the system’s ability to reliably manage the amount of data
generated by the system. Reports are generated at three levels: module level, string level,
and region/facility level. While the first two can be estimated, the “region level” refers
to reports of readings that represent a region of the facility or the full facility such as
solar irradiance, ambient temperature, and humidity. The amount of data generated by
irradiance reports depends on how much environmental elements vary in a given facility.
While ambient temperature can be considered consistent across the whole facility, shading
may vary. For the purpose of this evaluation, environmental conditions are assumed
to be reported per string. The size of packets generated at each level was calculated
based on an existing remote solar monitoring system discussed in [54]. Table 4 shows
a breakdown of the estimated data mass generated per reporting period. For example,
for MBR P1, 19.93 MB of data is required to report sensor data from all the edge devices.
If this were to be reported once every second, then this would require a bandwidth of
19.93 MB/Second.
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Table 4. Breakdown of amount of estimated data per reporting period transmitted per category for
each facility.

Facility Strings Panels String
(MB)

Module
(MB)

Environmental
Conditions (MB)

Total
(MB)

MBR P1 2167 34,667 2.17 17.33 0.43 19.93
MBR P2 35,500 568,000 35.50 284.00 7.10 326.60
China 5 141,667 2,266,667 141.67 1133.33 28.33 1303.33
China 4 166,667 2,666,667 166.67 1333.33 33.33 1533.33
MBR P3 168,833 2,701,334 168.83 1350.67 33.77 1553.27
China 3 183,333 2,933,334 183.33 1466.67 36.67 1686.67
Noor AD 200,000 3,200,000 200.00 1600.00 40.00 1840.00
China 2 258,333 4,133,334 258.33 2066.67 51.67 2376.67
MBR P4 321,667 5,146,667 321.67 2573.33 64.33 2959.33
China 1 366,667 5,866,667 366.67 2933.33 73.33 3373.33
MBR P5 471,667 7,546,667 471.67 3773.33 94.33 4339.33

Using the previous numbers, it is possible to estimate the amount of data generated
yearly based on the frequency of reporting. Figure 16 shows the estimated data generated
yearly per facility for reporting frequencies that vary from once every 5 min to once every
80 min.

Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

Table 4. Breakdown of amount of estimated data per reporting period transmitted per category for 
each facility. 

Facility Strings Panels String 
(MB) 

Module 
(MB) 

Environmental 
Conditions 
(MB) 

Total (MB) 

MBR P1 2167 34,667 2.17 17.33 0.43 19.93 
MBR P2 35,500 568,000 35.50 284.00 7.10 326.60 
China 5 141,667 2,266,667 141.67 1133.33 28.33 1303.33 
China 4 166,667 2,666,667 166.67 1333.33 33.33 1533.33 
MBR P3 168,833 2,701,334 168.83 1350.67 33.77 1553.27 
China 3 183,333 2,933,334 183.33 1466.67 36.67 1686.67 
Noor AD 200,000 3,200,000 200.00 1600.00 40.00 1840.00 
China 2 258,333 4,133,334 258.33 2066.67 51.67 2376.67 
MBR P4 321,667 5,146,667 321.67 2573.33 64.33 2959.33 
China 1 366,667 5,866,667 366.67 2933.33 73.33 3373.33 
MBR P5 471,667 7,546,667 471.67 3773.33 94.33 4339.33 

Using the previous numbers, it is possible to estimate the amount of data generated 
yearly based on the frequency of reporting. Figure 16 shows the estimated data generated 
yearly per facility for reporting frequencies that vary from once every 5 min to once every 
80 min.  

 
Figure 16. Estimated data generated by each facility per year for different reporting frequencies. 

Using the same data sizes, it is possible to estimate the bandwidth required by each 
facility in order to reliably transmit information back to the core. The bandwidth require-
ment per facility is shown in Figure 17. As the figure shows, a facility of the size of MBR 
P1 where observations are sent every 5 min would require a bandwidth of 0.53 Mbps. A 
facility of the size of MBR P5, however, would require a bandwidth of 115.7 Mbps. The 
maximum uplink data rate that can be handled by a LoRaWAN gateway is 50 kbps [55]. 
This means that even at highest publishing frequency, MBR P1 would require 11 gate-
ways, while MBR P5 requires 2320 gateway devices. Publishing at lower frequencies 
would significantly reduce the number of gateways required. 

Figure 16. Estimated data generated by each facility per year for different reporting frequencies.

Using the same data sizes, it is possible to estimate the bandwidth required by each fa-
cility in order to reliably transmit information back to the core. The bandwidth requirement
per facility is shown in Figure 17. As the figure shows, a facility of the size of MBR P1 where
observations are sent every 5 min would require a bandwidth of 0.53 Mbps. A facility of
the size of MBR P5, however, would require a bandwidth of 115.7 Mbps. The maximum
uplink data rate that can be handled by a LoRaWAN gateway is 50 kbps [55]. This means
that even at highest publishing frequency, MBR P1 would require 11 gateways, while MBR
P5 requires 2320 gateway devices. Publishing at lower frequencies would significantly
reduce the number of gateways required.
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At the core, scalability is less concerned with physical resources and more with the
core’s ability to handle the large amounts of data being streamed and processed. Most
existing solutions for solar energy monitoring focus instrumentation at the edge and the
usage of microcontrollers and sensors to generate data at a lower cost [56,57], with some
of the more recent works extending the study to consider LPWAN protocols such as
LoRaWAN for data transmission [58]. However, research into core infrastructure that
can handle mass amounts of real-time data in the context of solar monitoring remains
severely lacking. While MQTT is ideal for real-time data communicate near the edge, it
is not the most ideal choice for data streaming at the core where data from all distributed
segments of the facility sinks. Data moves from MQTT to Kafka which is designed to handle
high-velocity, high-volume real-time data [59,60], and is commonly used in real-time event
detection systems [61]. Once data is available, the microservices-based design plays a large
role in ensuring timely execution of various tasks [62,63]. By implementing processes as
individual tasks run by workers, it is possible to not only run processes in parallel, but also
distribute the load be deploying several workers that can perform the same tasks. This
approach serves to avoid bottlenecks as well as single points of failure. Data such as device
profiles and user profiles, which is considerably smaller in volume compared to real-time
streams, is stored on MongoDB for ease of access. However, conventional databases such
as MongoDB were not designed to handle large volumes of real-time data. High-volume,
high-velocity data storage and management is best handled by Big Data platforms such as
Hadoop [41], which implement concepts such as parallel processing, data partitioning, and
map-reduce in order to accelerate data storage and retrieval [64].

6.2. Operational Cost

Since the system is built using open-sources software, the cost of operating the software
is zero. The operating cost of LoRaWAN is also low since the protocol uses the free
frequency spectrum. The only significant operational cost comes from the energy required
to power the system and hardware maintenance. For the system operation to be cost-
effective, the design should minimize the solar energy lost while operating the edge devices.
This is done by carefully selecting the appropriate components and protocols which enable
reliable operation at reduced power consumption. A study comparing LPWAN protocols
for smart cities found that in outdoor conditions and depending on the size of the packet,
an average LoRaWAN device consume between 132 mW and 475 mW [65]. An ESP32
LoRaWAN module acting as an edge device draws around 70 mA at 5 V, which amounts
to 350 mW [31]. Each module node, weather node, and string node consists of an ESP32
equipped with few sensors. Assuming weather is relatively consistent across 4 strings,
Table 5 shows the estimated power consumption per device category as well as the overall
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facility power consumption percentage. As the table shows, operating the system consumes
about 0.1% of the total output generated by the facility.

Table 5. Estimated power consumption.

Facility Capacity
(MW) Strings Panels Module

Nodes (MW)
Weather
Nodes (MW)

String
Nodes (MW) Total percentage

MBR P1 13 2167 34,667 0.012 0.000 0.001 0.10%
MBR P2 213 35,500 568,000 0.199 0.004 0.018 0.10%
China 5 850 141,667 2,266,667 0.793 0.018 0.071 0.10%
China 4 1000 166,667 2,666,667 0.933 0.021 0.083 0.10%
MBR P3 1013 168,833 2,701,334 0.945 0.021 0.084 0.10%
China 3 1100 183,333 2,933,334 1.027 0.023 0.092 0.10%
Noor AD 1200 200,000 3,200,000 1.120 0.025 0.100 0.10%
China 2 1550 258,333 4,133,334 1.447 0.032 0.129 0.10%
MBR P4 1930 321667 5,146,667 1.801 0.040 0.161 0.10%
China 1 2200 366,667 5,866,667 2.053 0.046 0.183 0.10%
MBR P5 2830 471,667 7,546,667 2.641 0.059 0.236 0.10%

6.3. Security

Energy systems, mainly grids, are the target of 54% of cyber-attacks on critical in-
frastructure [66]. As more data flows in the system, the risk of compromising the privacy
and integrity of the data increases. Cyber-attacks on solar energy systems can lead to
privacy breaches and data loss. More importantly, data injection attacks can be used to steal
energy, redistribute load [67], and, in severe cases, cause significant damage to the infras-
tructure [68] resulting in power disruptions and financial losses [69]. While device security
is manageable through physical security, data is most vulnerable while being transmitted
from the edge to the core. Data is transmitted across the facility over LoRaWAN, then across
the internet over MQTT and then Kafka. Ensuring data security entails implementing
security measures, mainly encryption, at each step. In terms of encryption, LoRaWAN uses
128-bit keys for node-server authentication as well as payload encryption [55]. This not
only ensures data is protected during transmission, but also prevents false data injection
via malicious nodes. Once at the gateway, LoRa messages are forwarded as MQTT packets
over the internet. The packets are encrypted used Transport Layer Security (TLS) and
Secure Socket Layer (SSL). Brokers are authenticated using X509 certificates, while clints
authenticate using username and password [70]. Data transmitted from MQTT to Kafka
is protected using Kafka encryption. While security measures are optional in Kafka, the
protocol supports client authentication as well as authorization [36]. The three protocols
together offer end-to-end encryption and authentication which ensures data from the edge
arrives to the core untouched.

7. Conclusions

Solar energy has been widely adopted as one of the key sources of renewable energy
sources to power future smart cities. The past decade has witnessed a boom in the global
deployment of massive solar installations that can provide enough electrical capacities
to power major countries; power by developments in solar technologies as well as recent
global efforts to reduce dependance on fossil fuels as means to conserve natural resources
and minimize damage to the environment. Nonetheless, renewable energy penetration into
main grids remains low. One of the key issues that stand in the way of higher renewable
integration is the intermittency of the source. As an energy source that is a product of
its environment, fluctuations in temperature and solar irradiance, as well as contextual
factors such as shading, soiling, module degradation, and other electrical issues. Inter-
net of Things and big data analytics technologies can significantly contribute to reliable
renewable generation by providing tools and products to model solar installations, pre-
dict power output, detect anomalies, and enable preventative maintenance and energy
planning. The success of systems that make use of such technologies, however, depends
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on the intelligent selection and integration of tools and elements in order to provide a
scalable, secure, and reliable data transports and analytics infrastructure. While there
have been several works recommending the use of new technologies at the edge, few
have considered employing big data and analytics technologies at the core to enhance
the scalability and operation of such systems. This paper proposed a microservices-based
architecture that makes use of low-cost data streaming and transport technologies such as
ESP32, LoRaWAN, and MQTT at the edge, combined with middleware data management
technologies including Kafka, Spark, Hadoop, and Celery. The overall design ensures
appropriate management of devices, resources, and data based on requirements derived
from smart energy systems, IoT platforms, and smart grid. The choice of technologies
aims to provide scalability, reliability, security, and cost-effectiveness for large-scale so-
lar monitoring system implementations. While the system has not yet been evaluated,
similar solutions which have been proposed and evaluated in other domains including
smart medical applications and smart cities suggest the design would significantly enhance
the performance of energy monitoring and analysis systems while reducing the cost of
deployment, operation, and maintenance. Future work will focus on technical evalua-
tion of the system and how it adheres to functional and non-functional requirements in
the domain.
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