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Abstract: This paper aims to develop an efficient pattern recognition method for engine fault end-to-
end detection based on the echo state network (ESN) and multi-verse optimizer (MVO). Bispectrum is
employed to transform the one-dimensional time-dependent vibration signal into a two-dimensional
matrix with more impact features. A sparse input weight-generating algorithm is designed for the
ESN. Furthermore, a deep ESN model is built by fusing fixed convolution kernels and an autoencoder
(AE). A novel traveling distance rate (TDR) and collapse mechanism are studied to optimize the
local search of the MVO and speed it up. The improved MVO is employed to optimize the hyper-
parameters of the deep ESN for the two-dimensional matrix recognition. The experiment result
shows that the proposed method can obtain a recognition rate of 93.10% in complex engine faults.
Compared with traditional deep belief networks (DBNs), convolutional neural networks (CNNs), the
long short-term memory (LSTM) network, and the gated recurrent unit (GRU), this novel method
displays superior performance and could benefit the fault end-to-end detection of rotating machinery.

Keywords: echo state networks (ESNs); multi-verse optimizer (MVO); fault detection; deep learning;
engine

1. Introduction

As regular power machinery, the diesel engine has superior output torque and fuel
economy, which secures its irreplaceable role in the industry, agriculture, and so on. Un-
der worsening energy and environmental crises, many countries are creating stringent
legislation for diesel engines [1]. This presents a challenge for researchers; on the other
hand, many technologies are developing rapidly as a result of this opportunity [2]. The
application of new technologies improves the performance of engines, but it also leads to
higher complexity, which results in more frequent failure [3].

Engine fault detection has developed from breakdown maintenance to regular main-
tenance and is gradually developing into predictive maintenance [4]. Traditional disas-
sembly fault diagnosis technology is evolving to non-disassembly fault diagnosis. The
non-disassembly predictive maintenance depends on collecting and analyzing state infor-
mation [5]. The vibration signal is a common choice because of its rich information, high
stability, and low cost. For example, Barszcz et al. [6] used vibration signals to detect the
bearing and gear faults of an engine. Benkedjouh et al. [7] designed a rotating machinery
fault prediction and health management method by vibration signals. Furthermore, vibra-
tion analysis does not invade the engine block and can detect multiple kinds of faults, so it
is currently considered to be one of the strongest potential methods [8]. The engine has
many excitation sources; hence, sensors are usually placed on the block and cylinder head
cover to collect vibration signals synthetically. However, the engine vibration signal usually
has strong nonlinearity and randomness, and the background noise easily covers the weak
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features caused by early faults. Therefore, appropriate algorithms should be researched to
recognize faults accurately [9].

The most frequently used method is to begin by processing vibration signals by
decomposition, denoising, feature extraction, and feature selection, and then recognizing
engine faults by a simple classifier. For example, Wang et al. [10] decomposed vibration
signals by variational mode decomposition (VMD) and selected the intrinsic mode function
(IMF) with the highest kurtosis as the sensitive component to extract features; finally, the
faults were detected by an extreme learning machine (ELM). The characteristic of this
step-by-step method is the low requirement for the classifier. In contrast, the algorithm in
every step should be controlled manually. Moreover, the recognition rate highly depends
on extracted features. Still, the features usually have strong pertinence, leading to their
needing to be adjusted according to specific applications with several attempts and having
inferior generalization.

End-to-end fault detection is another attractive method because of its high efficiency
and generalization capability. On the other hand, the high-performance classifier is re-
quired to analyze complex vibration signals, in which deep belief networks (DBNs) [11],
convolutional neural networks (CNNs) [12], and recurrent neural networks (RNNs) [13]
are frequently used artificial neural networks (ANNs). The DBN is stacked by several
restricted Boltzmann machines (RBMs) and can detect the correlation of high-order data in
visual layers by hidden layers. Ma et al. [14] used the DBN to detect signals compressed
by compressive sensing to realize end-to-end fault recognition. Jiang et al. [15] proposed a
DBN model optimized by the locality preserving projection (LPP), which could diagnose
bearing faults without manual feature extraction. The CNN could gradually extract lo-
cal features by convolutional layers, making it more suitable for high-dimensional data.
Azamfar et al. [16] proposed a 2-dimensional CNN model based on signals fused from
several sensors to detect gearbox faults end-to-end. The CNN could obtain better results in
complex conditions with the pretreated vibration signals; for example, Hasan et al. [17] em-
ployed the CNN to analyze the vibration signals pretreated by the bispectrum for bearing
fault detection in various working conditions. The bispectrum is a higher-order spectrum,
the discrete Fourier transform of the higher-order cumulant. It has no definite physical
significance but could magnify abnormal impact components for the pattern recognition
model. As representative RNNs, the long short-term memory (LSTM) and gated recurrent
unit (GRU) have advantages in time series analysis. Alrifaey et al. [18] combined the LSTM
with a stacked autoencoder (SAE) to analyze time-dependent vibration signals for electrical
gas generator fault detection. Yu et al. [19] used a stacked denoising autoencoder (SDAE)
and the GRU to detect planetary gear faults. However, the gradient descent algorithm
used in the DBN, the CNN, and the RNN may easily lead to low convergence speed and
local minima. They are also prone to over-fitting with small-size training data. Moreover,
the DBN and RNN cannot deal with spatial information because they generally require
one-dimensional data. The CNN is usually combined with them, such as the DBN stacked
by convolutional RBMs [20], convolutional LSTM [21], and multiscale CNN-GRU with
attention mechanism (MCNN-AGRU) [22], whereas their efficiency and accuracy still have
room for further improvement.

Jaeger et al. [23] proposed echo state networks (ESNs), whose basic principle is to take
a randomly generated reservoir, instead of hidden layer neurons, as the basic processing
unit to transform computing into linear regression. It shows excellent potential in pattern
recognition. For example, Long et al. [24] used the ESN to analyze 3-dimensional printer
faults, and Wootton et al. [25] designed a model by optimized ESN for static pattern recog-
nition. However, the ESN lacks the capability for mining deep spatial information from
time and frequency domains. Additionally, the hyper-parameters of the ESN are not clear
in the mechanism and must be selected according to prior knowledge [26]. Zhang et al. [27]
proposed a deep fuzzy ESN by combining fuzzy clustering, and Sun et al. [28] designed
a deep belief ESN model based on the DBN to extract deep features. Unfortunately, they
have shortcomings in dealing with high-dimensional samples. Although Ma et al. [29]
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proposed a convolutional multi-timescale ESN inspired by the CNN, it still needs larger
size training data. The particle swarm optimization (PSO) [30] and the binary grey wolf
optimizer (GWO) [31] are popular evolutionary metaheuristic algorithms to search for the
best result, but they are prone to the local optimum. Inspired by theories of the black hole,
the white hole, and the wormhole, Mirjalili et al. [32] proposed a multi-verse optimizer
(MVO). It has been widely used to optimize ANN hyper-parameters because of its better
global optimization capability and stability. Faris et al. [33] employed the MVO to optimize
the multi-layer perceptron (MLP) model and obtained the best result compared with several
traditional algorithms. Yang et al. [34] used the MVO for the probability neural network
(PNN) optimization to improve the recognition rate of power transformer faults. However,
the MVO pours significant computing resources into the global search to avoid the local
optimum, which results in insufficient local search and low convergence speed. It is worth
improving further for the global and local searches in the MVO to optimize the ESN.

In this paper, a deep ESN model for engine faults end-to-end detection is proposed,
and an improved MVO is researched to optimize hyper-parameters of the deep ESN. The
main contributions are as follows:

(1) A sparse input weight matrix is designed for the ESN. Optimized by fixed convolution
kernels and the autoencoder (AE), a deep ESN is proposed.

(2) A novel traveling distance rate (TDR) and universe collapse mechanism are proposed
for the MVO to improve the local search and speed it up.

(3) The bispectrum is employed to transform the one-dimensional time-dependent vibra-
tion signal into a two-dimensional matrix with more impact features. An engine fault
end-to-end detection model is then built based on the deep ESN, the improved MVO,
and the bispectrum.

This paper is organized as follows: the research background and significance are
introduced in Section 1. Fundamental theories of the ESN and the MVO are introduced in
Section 2. The deep ESN model and the improved MVO are proposed in Section 3. The
diesel engine bench test and data collection system are described in Section 4. Section 5
introduces the analytical method of vibration signal and the complete framework of engine
fault end-to-end detection model. The proposed method is also verified by experimental
data in this section. The conclusion and outlook are presented in Section 6.

2. Fundamental Theories

The ESN and the MVO are the two main algorithms researched in this paper. They
will be introduced in this section.

2.1. Echo State Networks

The significant characteristic of the ESN is that it takes a randomly generated reservoir
as the basic processing unit. The reservoir can be activated into complex internal states,
describing features of input signals by a simple linear combination [35]. Moreover, during
training of the ESN, the reservoir and input weights are fixed, and only output weights
are adjusted by linear regression, which could improve efficiency and avoid local minima,
vanishing gradient, and exploding gradient [23]. The basic structure of the ESN is shown
in Figure 1.

Suppose u = {u1, u2, · · · , un−1, un} is the input signal, x = {x1, x2, · · · , xN−1, xN} is
the internal state of reservoir, and y = {y1, y2, · · · , ym−1, ym} is the output signal. The
internal state updates with the time step t as:

x(t + 1) = f (Winu(t + 1) + Wx(t) + Wbacky(t)) (1)

where Win, W, and Wback are randomly generated input, internal, and feedback weights,
respectively, and f (•) is the activation function.
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Figure 1. Basic structure of the ESN.

The leaky integrate is taken as the neuron when the ESN is used for pattern recognition,
so Equation (1) is transformed as:

x(t + 1) = (1− αγ)x(t) + γ f (Winu(t + 1) + Wx(t) + Wbacky(t)) (2)

where α is the leaky rate and γ is the gain. In application, γ = 1 and Wback = 0 in
common [35]:

x(t + 1) = (1− α)x(t) + f (Winu(t + 1) + Wx(t)) (3)

The output of the ESN is:

y(t) = g(Wout[u(t); x(t)]) (4)

where Wout represents the output weight and g(•) is the activation function.
During the training of the ESN, only the Wout is updated. Its objective function L(·) is:

L(
_
Wout) =

∥∥∥g−1(y)−Wout[u; x]
∥∥∥2

2
(5)

where ‖•‖2 represents L2 norm and g−1(•) is the inverse function of g(•).
The estimated output weight

_
Wout is:

_
Wout = g−1(y)[u; x]† = g−1(y)([u; x]T[u; x])

−1
[u; x]T (6)

where the superscripts † and T represent the pseudo-inverse and the transpose of the
matrix, respectively.

2.2. Multi-Verse Optimizer

The MVO is an evolutionary metaheuristic algorithm inspired by multi-verse theory.
In this theory, several universes are expanding in space with specific inflation rates. The
wormhole is a hole that exchanges substances between different universes. The white
hole sheds substances into space during universe collision. On the contrary, the black hole
absorbs substances from space. Multiple universes could achieve balance through the
wormhole and white/black holes [32]. The MVO takes universes as candidate solutions
and inflation rate as fitness.

The search process of the MVO is divided into two phases: global search and local deep
search. During iteration, the candidate solution is chosen from a better universe selected by
the roulette wheel. It is also exchanged by white/black holes and wormholes to reach a
solution around the global optimum. Suppose d represents the number of variables, c is the
number of universes, and the candidate solution is U= [zj

i ], where i ∈ [1, c], j ∈ [1, d].

zj
i is the jth parameter in the ith universe selected by the roulette wheel selec-

tion mechanism:
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zj
i =

{
zj

k r1 < NI(Ui)

zj
i r1 ≥ NI(Ui)

(7)

where NI(Ui) represents the normalized inflation rate of the ith universe Ui and r1 is a
random number between [0, 1].

The lower the inflation rate, the higher the probability that a universe transfers sub-
stances by white/black holes. Moreover, the wormhole can transfer substances among
different universes without considering the inflation rate to provide local variations for
every universe. Supposing that the wormhole exists only between a universe and the
current best universe, the mathematical model is:

zj
i =


{

Zj+TDR×
((

ubj − lbj
)
× r4 + lbj

)
r3 < 0.5

Zj−TDR×
((

ubj − lbj
)
× r4 + lbj

)
r3 ≥ 0.5

r2 < WEP

zj
i r2 ≥WEP

(8)

where Zj represents the jth parameter of the current best universe. r2, r3, and r4 are
random numbers between [0, 1]. ub and lb represent upper and lower bounds of searched
parameters, respectively. WEP and TDR represent wormhole existence probability and
traveling distance rate, respectively.

The WEP increases linearly with the number of iterations:

WEP = min+l ×
(

max−min
L

)
(9)

where l is the current iteration and L is the maximum number of iterations. The min is 0.2
and the max is 1 in common [32].

The TDR can describe the distance rate of substances transferred by the white hole
around the current best universe:

TDR =1− l1/p

L1/p (10)

where p is the control parameters of the global and local searches. Generally, p = 6 [32].

3. Deep ESN and Improved MVO
3.1. Deep ESN
3.1.1. Fixed Convolution Kernel

The CNN is a frequently used model for mining deep information from high dimen-
sional data, but it should be trained by large data. Advantages of the CNN include its
convolutional and pooling layers. The convolutional layer is mainly used for gradually
extracting local features, and the pooling layer is down sampling. However, complex
convolutional layers require large training data. Considering that reservoir and input
weights of the ESN are fixed during training, fixed convolution kernels are employed to
extract features.

The engine fault will lead to an abnormal impact, characterized by energy concen-
tration in a certain region. Therefore, the primary aim of the fixed convolution kernel is
to detect the energy concentration region, and this could be realized by the edge detec-
tor. The Prewitt filter and the Sobel filter are classical edge detectors, which have simple
structures and adjustable sizes and are especially suitable for analyzing the single-channel
matrix. The Prewitt filter and the Sobel filter include horizontal and vertical operators,
respectively (recorded as Ph, Pv, Sh, and Sv). The four types of filters of 3 × 3 are shown
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as follows: Ph =

 1 1 1
0 0 0
−1 −1 −1

, Pv =

 1 0 −1
1 0 −1
1 0 −1

, Sh =

 1 2 1
0 0 0
−1 −2 −1

, and

Sv =

 1 0 −1
2 0 −2
1 0 −1

.

After edge detecting, characteristics should be integrated further. The Gaussian
lowpass filter could reduce the Gaussian noise and improve smoothness to integrate slight
features. Suppose G =

[
kij
]

d×d is a Gaussian lowpass filter:

kij = exp

(
− (2i− d− 1)2 + (2j− d− 1)2

8σ2

)
(11)

where σ represents the standard deviation.
The Gaussian lowpass filter should be set behind the other two filters in fixed convo-

lutional layers for accurate feature extraction.

3.1.2. Autoencoder (AE)

The fixed convolutional layers do not need large training data, but this results in low
generalization capability. An autoencoder (AE) is introduced behind the fixed convolutional
layers to provide generalization capability and further compress the features. The AE
includes two phases: encoder and decoder, as shown in Figure 2.

Figure 2. Basic structure of the AE.

Supposing the data analyzed by the fixed convolutional layer is C, the encoding
phase is:

u = f (CWen) (12)

The decoding phase is:
_
C = g(uWde) (13)

The Wen and Wde are encoder and decoder matrices, respectively, which are trained by
the gradient descent algorithm. The AE is incomplete when the dimension of the u is lower
than C’s, and the Wen could be used for dimensionality reduction and feature extraction. In
particular, the AE only has one hidden layer and is trained with one epoch in this study for
a low computational burden.
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3.1.3. Sparse Input Matrix of the ESN

As shown in Equation (3), the input matrix Win and reservoir matrix W have significant
influences on the internal state. When designing the W, Jaeger et al. [23] built a sparse
square matrix of N×N with the spectral radius:

W = ρWoriginal/λei (14)

where N is the reservoir size, Woriginal is the randomly generated matrix, λei is the maximum
eigenvalue of Woriginal , and ρ is the spectral radius.

The Win is a randomly generated dense matrix because it is a non-square matrix in
common that has no eigenvalues. The size of the Win relates to the dimension of the input
data, which is much higher than the reservoir size generally. This may result in over-fitting
and low generalization capability. A novel designing method of Win similar to the W is
proposed. Generating a sparse matrix:

Win
original =

[
wij
]

n×N (15)

where n is dimension of the input signal.
Next, computing the maximum singular value of Win

original : suppose unitary matrices

U and V and the diagonal matrix Σ= diag(λ1, λ2, · · · , λr) could make Win
original = UΣVT .

The maximum singular value of Win
original is λmax = max(λ1, λ2, · · · , λr), where r is the rank

of Win
original .
Finally, the input matrix is:

Win = Win
original/λmax =

[
wij/λmax

]
n×N (16)

3.1.4. Deep ESN Model

As a type of RNN, the ESN needs signals with more than one time-step to activate
internal states. After the AE, the processed signal is copied twice to obtain three time-steps,
that is, u(1) = u(2) = u(3) = u. Equation (3) could be unfolded as:

x(1) = f (Winu)
x(2) = (1− α)x(1) + f (Winu + Wx(1))
x(3) = (1− α)x(2) + f (Winu + Wx(2))

(17)

Based on that, a deep ESN model is built as Figure 3, and the details are as follows:
1© Design fixed convolutional layers based on the Prewitt filter, the Sobel filter, and the

Gaussian lowpass filter.
2© Process the input data by the designed convolutional and pooling layers.
3© Train the AE by processed data to obtain the encoder matrix Wen.
4© Compress features of the processed data further with Equation (12).
5© Build an ESN model with the sparse input matrix based on Equation (16).
6© Copy the data twice to obtain three time-steps to activate the internal state of the ESN

based on Equation (17).
7© Train the ESN based on Equation (6).
8© Predict the output labels based on 2©, 4©, 6©, and the trained model.

3.2. Optimization of MVO

The reservoir size N, spectral radius ρ, and leaky rate α greatly influence the ESN, but
there is no definitive method to select them [35]. Moreover, Verstraeten et al. [36] showed
that a spectral radius higher than one might achieve the best result, contrary to [35]. The
MVO is improved in this section to optimize the hyper-parameters.
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Figure 3. Model of deep ESN.

The TDR, as Equation (10), is an important parameter to control global and local
searches. Its value changing with the current number of iterations l is shown as the black
dotted line in Figure 4, where the maximum number of iterations is L = 500. A big TDR
value is beneficial for the global search, whereas a small one is beneficial for the local search.
Considering that the wormhole could also provide diversity for candidate solutions, the
original TDR, which changes slowly from a big value, consumes too many computational
resources in the global search, leading to disadvantages in the accuracy and efficiency of
the local search. Therefore, a novel TDR is employed:

TDR =ω1/eω2(l/L)2
(18)

where ω1 and ω2 are exponential adjustment factors.

Figure 4. Curves of the TDRs.

Supposing ω1 = 0.36 and ω2 = 20, the TDR value changing with the l is shown as the
solid red line in Figure 4. The curve approaches 0 quickly, which means the MVO would
centralize computational resources in the local search after a short global search period.
Meanwhile, the WEP rises linearly, as Equation (9), to maintain the diversity of candidate
solutions and avoid local optimum.

Inspired by the collapse of the universe in physics, an accelerated search mechanism
is also proposed. In this mechanism, the number of universes c is reducing while the
l is increasing:

cl =

{
cmax − l c > cmax/10
cmax/10 c ≤ cmax/10

(19)

where cmax is the maximum number of universes.
For comparison, the improved MVO and original MVO are tested by several unimodal

benchmark functions (f 1–f 7) and multi-modal benchmark functions (f 8–f 13) from [32], and
the results are listed in Table 1. The maximum number of iterations and the maximum
number of universes are both set at 500. The average value of 10 searches is taken as the
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final result for reliability. The f min is the searched minimum value of the function. The
smaller the f min, the better the algorithm.

Table 1. Comparison of improved MOV and original MVO.

Function Dim Bounds
f min

Original MVO Improved MVO

f1 =
n
∑

i=1
x2

i
10 [−100,100] 2.78 × 10−3 9.66 × 10−15

f2 =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 10 [−10,10] 2.78 × 10−2 2.42 × 10−8

f3 =
n
∑

i=1

(
i

∑
j=1

xj

)2
10 [−100,100] 7.26 × 10−3 2.09 × 10−14

f4 = max(|x1|, |x2|, · · · , |xn|) 10 [−100,100] 2.88 × 10−2 5.48 × 10−8

f5 =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

10 [−30,30] 1.25 × 102 1.06 × 102

f6 =
n
∑

i=1
(|xi + 0.5|)

2
10 [−100,100] 1.86 × 10−3 9.93 × 10−15

f7 =
n
∑

i=1

(
ix4

i
)
+ random(0, 1) 10 [−1.28,1.28] 7.58 × 10−4 1.72 × 10−3

f8 =
n
∑

i=1

[
−xi sin

(√
|xi|
)]

10 [−500,500] −3.11 × 103 −3.36 × 103

f9 =
n
∑

i=1

[
x2

i − cos(2πxi) + 10
] 10 [−5.12,5.12] 13.04 9.95

f10 = −20 exp

(
−0.2

√
n
∑

i=1
x2

i /n

)
− exp

(
n
∑

i=1
cos(2πxi)/n

)
+ 22.72

10 [−32,32] 0.18 3.92 × 10−8

f11 =
n
∑

i=1
x2

i /4000−
n
∏
i=1

cos
(

xi/
√

i
)
+ 1 10 [−600,600] 0.32 9.31 × 10−2

f12 = π/n{10 sin(πyi)+
n−1
∑

i=1
(yi − 1)2×[

1 + 10 sin2(πyi+1)
]
+(yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4)

10 [−50,50] 3.12 × 10−2 5.37 × 10−5

f13 = 0.1
{

sin2(3πx1) +
n−1
∑

i=1
(xi − 1)2

×
[
1 +

(
sin2(3πxi+1)

)]
+ (xn − 1)2×[

1 + sin2(2πxn)
]}

+
n
∑

i=1
u(xi, 5, 100, 4)

10 [−50,50] 2.50 × 10−4 1.27 × 10−16

where y = (x + 5)/4 and u(x, a, k, m) =

 k(x− a)m x > a
0 − a < x ≤ a
k(−x− a)m x ≤ −a

.

Except for f 7, results of the improved MVO are all smaller than the original one’s,
and the differences are by several orders of magnitude (the result of f 7 may be caused
by the stochastic term). Moreover, the number of total iterations in the improved MVO

is L×
L
∑

i=1
cl = 124805, and the number in the original MVO is L× cmax = 250000. The

computational load of the improved MVO is almost half of the original one because of the
acceleration search mechanism.

4. Experiment

A turbocharged inline 6-cylinder diesel engine designed for heavy-duty vehicles is
tested for a high reference value. The main technical parameters of the tested engine are
listed in Table 2.
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Table 2. Main technical parameters of testing diesel engine.

Items Parameters

Number of Cylinders 6
Arrangement Inline
Displacement 7.14 L

Air inlet model Turbocharged and intercooled
Firing order 1-5-3-6-2-4
Rated power 220 kW@2300 r/min

Maximum torque 1250 N•m@1200–1600 r/min

The diesel engine bench test is shown in Figure 5a. The support system is composed
of a horizontal platform and four air springs, whose natural frequency is below 2 Hz. The
engine is connected rigidly with the platform by steel braces. An electrical dynamometer
connects with the engine by a carbon-fiber driveshaft outside of the test bench room.
Sensors are ICP 621B40 piezoelectric accelerometers produced by PCB Piezotronics, and
the data acquisition system is SCM05 LMS Testlab produced by Siemens. An SPSR-115
photoelectric rotating-speed sensor produced by Monarch Electric Co. is placed near the
connecting shaft of the dynamometer to synchronize engine speeds and vibration signals.

Figure 5. Diesel engine test bench: (a) Testing bench; (b) Sensor arrangement.

According to [3], fuel injection and valve systems are the most frequent failure parts
(accounting for about 40%). The injection system fault is divided into three types: abnormal
fuel injection timing is selected for simulating the control system failure, abnormal injection
quantity for the injector failure, and abnormal rail pressure for the high-pressure common
rail failure. The valve clearance faults are selected to simulate wear and carbon deposits in
the valve system. In application, the faults should be detected at an early stage. Several
early faults are designed, whose details are listed in Table 3, where “+” and “−” represent
increasing and decreasing parameters from the normal condition, respectively, and CA is the
crankshaft angle. Testing speeds include 700 r/min, 1300 r/min, 1600 r/min, 2000 r/min,
and 2300 r/min, and testing loads include 100%, 75%, and 50%. Data in 15 s are collected
under various working conditions, respectively.

Considering that cylinder pressure acts on block and cylinder head directly, and that,
moreover, intake and exhaust valves are near cylinder head, six sensors are placed on the
Y-direction (the horizontal direction perpendicular to the crankshaft) of the cylinder head
cover near the 1st–6th cylinders. Five additional sensors are also placed on the Z-direction
(vertical direction) as reference and comparison. The eleven sensor placements are shown
in Figure 5b. The sampling frequency is set as 25.6 kHz based on the fault feature frequency
of the testing engine and the Nyquist theorem.
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Table 3. Main technical parameters of testing diesel engine.

Fault Type Adjusting Parameters

Abnormal injection quantity 75%
Advance injection timing −2 ◦CA
Delayed injection timing +2 ◦CA

Low rail pressure −200 bar
High rail pressure +200 bar

Small Valve clearance
Intake −0.05 mm

Outtake −0.05 mm

Big Valve clearance Intake +0.05 mm
Outtake +0.05 mm

5. Results and Analysis
5.1. Data Pre-Processing Method

A signal during one engine cycle of normal working condition collected from the
Y-direction near the third cylinder in 1600 r/min and 100% load is selected to analyze the
testing engine vibration feature, as shown in Figure 6a, where g = 9.8 m/s2.

Figure 6. Diesel engine test bench: (a) Original vibration signal; (b) WVD result of the signal; (c) STFT
result of the signal; (d) CWT result of the signal; (e) Bispectrum result of the signal; (f) Renyi entropies
of the four results.

The original vibration data is the time-dependent signal, whereas the frequency in-
formation is essential for fault detection, especially the rotating machinery with periodic
excitation sources. The signal should be analyzed simply to provide more frequency infor-
mation for the neural network model. Four kinds of common methods are analyzed. The
first one is Cohen’s class distribution. The Wigner–Ville distribution (WVD) is a representa-
tive algorithm that describes energy distribution in the time-frequency domain [37]. The
second method is the short-time Fourier transform (STFT), which carries on the Fourier
transform in a sliding window of the time domain to obtain the time-frequency signal.
The third method is continuous wavelet transform (CWT), which uses a wavelet basis
function to obtain time-frequency information. The analyzing results of three classical time-
frequency representation methods are shown in Figure 6b–d. The STFT adopts Hamming
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window to reduce frequency leakage, and the window is set at 1/6 data length because
the testing engine has six cylinders. The CWT employs the complex Morlet wavelet basis
because its small window area is beneficial for the time-frequency domain analysis. The
results of the WVD and the STFT are completely distorted, and the time domain informa-
tion cannot reflect the cyclic impact components caused by the in-cylinder combustion.
The CWT obtains a better result, but there are still distortion and illusion components
in the low-frequency band. The WVD is bedeviled with quadratic cross-terms and fake
harmonic trajectories. Although quadratic cross-terms have certain relationships to the
faults, they still interfere with the analysis of the multicomponent vibration signal. The
window function in the STFT cannot thoroughly avoid frequency leakage and restricts
the performance in local and nonstationary signals. Due to Heisenberg’s uncertainty prin-
ciple, the CWT fails to maintain high resolutions both in low and high frequencies. The
fourth method is the higher-order spectrum, in which the bispectrum (abbreviated as Bis in
Figure 6) is frequently used for engine vibration analysis. The bispectrum can describe the
non-Gaussian components with asymmetry and nonlinearity. In the engine vibration signal,
the non-Gaussian components are usually the impact components caused by the excitation
sources, such as the in-cylinder combustion and valve seating. The impact features in
normal and abnormal working conditions are different, and the bispectrum is especially
suitable for magnifying the vibration differences brought by engine faults [38]. Figure 6e
shows the bispectrum analysis results of the vibration signal.

Renyi entropies are computed to compare them quantitatively [39], as shown in
Figure 6f. The entropy can describe the information content, and the higher the entropy, the
larger the information content. The bispectrum has the highest Renyi entropy of 8.22, which
shows it is advantageous in information representation. Moreover, the two dimensions of
the bispectrum result both describe frequency information, which makes the size of the
matrix independent from the time domain. The duration of one engine cycle changes with
its speed, so the result sizes of the other three methods also vary. Although the size could
be unified by interpolation, it has a negative impact on the recognition, especially in a wide
speed range.

Based on this, the complete framework of the fault detection model is shown in Figure 7.
First, the bispectrum is employed to transform the one-dimensional time-dependent vibration
signal into a two-dimensional matrix with more impact features. Secondly, the deep ESN
model is built. Thirdly, the improved MVO is used to optimize the hyper-parameters of the
deep ESN. Finally, the trained model can detect engine faults end-to-end.

5.2. Dataset

Detecting multiple engine faults in a single working condition requires advanced
research. In this paper, multiple engine faults in several working conditions, including
different speeds and loads, are analyzed to verify the advantages of the proposed method.
The dataset built based on the experiment in Section 4 is listed in Table 4, including 6480 sets
of samples at speeds of 1300 r/min, 1600 r/min, and 2000 r/min, and loads of 100% and
50%, respectively. Every sample contains the vibration signal during one engine cycle. The
duration of one engine cycle is 120/speed seconds, and the sample is intercepted from the
corresponding data without overlap.

5.3. Results and Comparisons

Two-thirds of the samples are selected randomly as the training data and the rest
as the testing data. The one-dimensional signal is first processed by the bispectrum, and
a simplified matrix of 256 × 256 is obtained. Based on this, three convolutional layers
are designed. The first layer contains three horizontal and vertical Prewitt filters of 5 × 5,
respectively. The second layer contains three horizontal and vertical Sobel filters of 7 × 7,
respectively. The third layer contains three Gaussian lowpass filters of 3 × 3. An average
pooling layer of 2 × 2 is added after every convolutional layer. An AE with one hidden
layer of 1500 nodes is trained to process the 2523-dimensional data (29 × 29 × 3). The
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reservoir size N, spectral radius ρ, and leaky rate α of the ESN are optimized by the
improved MVO, where the search ranges are N ∈ {2, 3, · · · , 15}, ρ ∈ (0, 1.5), and α ∈ (0, 1),
respectively. The original ESN, the DBN, the LSTM, the GRU, and the CNN are analyzed
for comparisons. The results are listed in Table 5. Confusion matrices of these models are
shown in Figure 8 to further analyze the results, where the labels of the working conditions
in Table 4 are recorded as 0–7 from top to bottom.

Figure 7. Framework of engine faults end-to-end detection model.

Table 4. Dataset of engine faults.

Fault Types

Number of Samples

Speed 1300 r/min 1600 r/min 2000 r/min
Total

Load 100% 50% 100% 50% 100% 50%

Normal working condition 90 150 150 150 120 150 810
Abnormal fuel delivery 90 150 150 150 120 150 810

High rail pressure 90 150 150 150 120 150 810
Low rail pressure 90 150 150 150 120 150 810

Big valve clearance 90 150 150 150 120 150 810
Small valve clearance 90 150 150 150 120 150 810

Delayed injection timing 90 150 150 150 120 150 810
Advanced injection timing 90 150 150 150 120 150 810

Total 720 1200 1200 1200 960 1200 6480

Table 5. Recognition rates of models.

Model
Improved MVO

Deep ESN
Deep ESN Original ESN DBN LSTM GRU CNN CNN-BN

Recognition rate 93.10% 23.01% 12.50% 65.28% 78.56% 12.50% 86.90% 90.65%

Except for the ESNs, the max-epochs of the models are set at 500, and learning rates
are set as lr = lr0 × 0.9ep/20 to obtain a better convergence, where lr0 is the initial learning
rate and ep the current epoch. The initial learning rate and the batch size are optimized
by the improved MVO. Additionally, the momentum of the DBN, and the reservoir size,
spectral radius, and leaky rate of the original ESN are optimized.
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Figure 8. Confusion matrices of different models. (a) Deep ESN-improved MVO, (b) Deep ESN,
(c) Original ESN, (d) DBN, (e) LSTM, (f) GRU, (g) CNN, (h) CNN-BN.

The original one-dimensional signals and two-dimensional matrices are tested by
the DBN and the original ESN, but unsatisfying results are obtained. Results of one-
dimensional signals are listed in Table 5. The DBN contains three layers of 1000, 500, and
100 nodes, respectively. The results show that the DBN and the original ESN cannot mine
deep information from limited one-dimensional signals. Primarily, the DBN identifies all
samples as the high rail pressure and obtains a recognition rate of 12.50% (1/8), which
means that the small-size training data could not provide enough information for the DBN
to distinguish vibration signals in different conditions.

Considering the advantages of the RNN in time-dependent signals, the LSTM and the
GRU are employed to analyze the original one-dimensional data. The LSTM and the GRU
both have a three-layer structure with 32 nodes in the hidden layer. The recognition rates of
65.28% and 78.56%, respectively, show that the two classical RNN models could not detect
engine faults accurately. Besides the performances of the classifiers, the deep information
hidden in the time-dependent signal is another obstacle for fault detection, which proves
the necessity of the two-dimensional matrix. The convolutional layer structure of the CNN
is designed the same as the fixed one in the deep ESN for a clear comparison. The CNN
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model can be considered a variant of the LeNet. The CNN identifies all samples as the small
valve clearance and obtains a recognition rate of 12.50% as well. Dropout is employed to
improve the DBN and the CNN; unfortunately, the results remain unchanged. Meanwhile,
batch normalization (BN) [40] is used to optimize the CNN, and a high recognition rate of
86.90% is obtained. The deep ESN without the improved MVO is also analyzed, whose
reservoir size, spectral radius, and leaky rate are set as 4, 0.2, and 0.2, respectively, based
on [35]. It obtains a higher recognition rate of 90.65%, which shows the proposed deep ESN
has advantages in mining deep information in complex data. The deep ESN optimized by
the improved MVO obtains the highest recognition rate of 93.10%, in which the reservoir
size, spectral radius, and leaky rate selected by the improved MVO are 7, 1.05, and 0.59,
respectively. The ideal result shows that the improved MVO could select the best hyper-
parameters for the deep ESN.

As shown in Figure 8, most of the errors in the deep ESN occur between the same fault
in different degrees, such as the delayed and advanced injection timing conditions and high
and low rail pressure conditions. The small valve clearance is the most deceptive condition.
However, besides lower recognition rates, the other models all have a dangerous problem
of recognizing fault conditions as normal ones. In particular, the CNN and traditional
RNN models should be trained by GPU because they would spend several days in the
CPU. Although the DBN could be trained by CPU, it is still seriously slower than the
deep ESN. The hyper-parameter optimization aside, the DBN, LSTM, GRU, and CNNs are
trained with 500 epochs, whose three layers of weights at least need to be adjusted based
on the backpropagation (BP) in every epoch. As for the deep ESN, the ESN is trained only
once by linear regression, and the AE has two weight matrices that are trained with one
epoch. The results show the that proposed deep ESN optimized by the improved MVO is
advantageous and practical.

Moreover, the deep ESN optimized by the improved MVO is tested by another
nine cases, in which the training and testing datasets are re-selected randomly for cross-
validation. Results are listed in Table 6, and Case 1 is drawn from Table 5. The recognition
rates fluctuate around 93%, showing that the proposed method does not benefit from
unique data and has stable performance. The results also verify that the experiment in this
paper is reasonable and obtains reliable data.

Table 6. Recognition rates of the deep ESN-improved MVO under other datasets.

Case 1 2 3 4 5 6

Recognition Rate 93.10% 93.70% 92.92% 93.89% 93.24% 92.78%

Case 7 8 9 10 Average

Recognition Rate 92.87% 93.06% 93.10% 93.38% 93.20%

6. Conclusions and Outlook

An engine early fault end-to-end detection model is proposed based on a novel deep
ESN and an improved MVO. In the deep ESN, a sparse input matrix is proposed based on
the maximum singular value to improve generalization capability, and fixed convolution
kernels and the AE are designed to mine deep spatial information. An improved MVO
with a novel TDR and universe collapse mechanism is studied to search for the best hyper-
parameters of the deep ESN. Compared with the original ESN, the DBN, the LSTM, the
GRU, and the CNN, the proposed model obtains the highest recognition rate of 93.10% in
multiple engine faults of different speeds and loads.

Much work needs to be done in the future. The mechanism of the reservoir should be
analyzed further to improve the accuracy and efficiency of the ESN. Wormholes and white
holes are potential fields in the MVO, and they will be researched in the following work.
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