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Abstract: The installed capacity of photovoltaic power generation occupies an increasing proportion
in the power system, and its stability is greatly affected by the fluctuation of solar radiation. Accurate
prediction of solar radiation is an important prerequisite for ensuring power grid security and
electricity market transactions. The current mainstream solar radiation prediction method is the
deep learning method, and the structure design and data selection of the deep learning method
determine the prediction accuracy and speed of the network. In this paper, we propose a novel
long short-term memory (LSTM) model based on the attention mechanism and genetic algorithm
(AGA-LSTM). The attention mechanism is used to assign different weights to each feature, so that
the model can focus more attention on the key features. Meanwhile, the structure and data selection
parameters of the model are optimized through genetic algorithms, and the time series memory and
processing capabilities of LSTM are used to predict the global horizontal irradiance and direct normal
irradiance after 5, 10, and 15 min. The proposed AGA-LSTM model was trained and tested with
two years of data from the public database Solar Radiation Research Laboratory site of the National
Renewable Energy Laboratory. The experimental results show that under the three prediction scales,
the prediction performance of the AGA-LSTM model is below 20%, which effectively improves the
prediction accuracy compared with the continuous model and some public methods.

Keywords: solar radiation; inter-hour forecast; long short-term memory; genetic algorithm;
attention mechanism

1. Introduction

In recent years, the demand for energy consumption has increased, followed by a
series of problems such as energy shortages and environmental degradation. In this regard,
as a clean and renewable energy source, solar energy has huge potential and is garnering
increasing attention [1]. However, the instability of solar energy has severely restricted the
large-scale development of photovoltaic power generation. Photovoltaic power generation
is highly dependent on surface solar radiation, and its volatility will have a major impact
on the traditional power system when it is concentrated and connected to the grid on a
large scale [2]. Therefore, it is necessary to accurately predict the amount of photovoltaic
power generation, which is of great significance for ensuring the stability of the power
system and rationally planning the distribution of power resources [3,4]. Solar irradiance
is the most important factor affecting photovoltaic power generation. Global horizontal
irradiance (GHI) and direct normal irradiance (DNI) are the key factors for photovoltaic
power generation and concentrating solar power generation [5]. Accurately predicting
photovoltaic power generation is essentially accurately predicting solar irradiance.

The prediction methods of solar radiation mainly include physical methods based on
thermodynamics and atmospheric dynamics, and machine learning methods based on data-
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driven methods [6]. Because the data-driven method is flexible and has low requirements
for detection data, it is more widely used in actual engineering applications [7]. Based on
the data-driven solar irradiance prediction method, the mapping relationship between his-
torical data and future solar radiation predicted values is established through the analysis
and processing of historical observation data to achieve the purpose of prediction [8–10].
Traditional forecasting methods mostly adopt regression analysis to establish forecasting
models. Daut et al. [11] constructed a Simple Linear Regression (SLR) model by analyzing
the relationship between the daily mean maximum and minimum surface temperature
and daily mean solar radiation. Colak et al. [12] used Auto-Regressive Moving Average
Model (ARMA) and Autoregressive Integrated Moving Average Model (ARIMA) to predict
multi-scale solar radiation. Tirmikci et al. [13] used regression analysis to determine the
coefficients of the new regression equation, and used the new regression equation to predict
the diffuse solar radiation in the Sakarya area, Turkey.

However, these regression methods above ignore the complex nonlinear relationship
between solar radiation and meteorological variables, which limits their prediction ac-
curacy [14]. With the rise of machine learning technology, a variety of machine learning
models have also been used to predict solar irradiance. Belaid et al. [15] used Support Vec-
tor Machine (SVM) to predict the global solar radiation on horizontal surfaces in Ghardaia,
Algeria, and the results showed that the prediction and the measured data are close.
Paoli et al. [16] proposed an optimized Multilayer Perceptron (MLP), which has a better
prediction effect than traditional methods. A large number of experiments have proved
that the machine learning models cloud improve the prediction accuracy comparing to
simple regression methods.

Compared with traditional machine learning methods, deep learning methods could
build more systematic models and obtain better prediction results. Qing et al. [17] used a
Long Short-Term Memory (LSTM) network. Compared with the MLP network, the root
mean square error (RMSE) of the algorithm’s prediction was reduced by 42.9%. How-
ever, the model structure of LSTM method is relatively complex, and the weight and
bias cannot be accurately optimized. Therefore, there is still room for improvement in
prediction accuracy.

The main factors affecting the prediction accuracy of artificial neural networks are
the combination of input parameters, training algorithms, and structure configuration [18].
In response to the above problems, we proposed a prediction model of long short-term
memory (LSTM) based on an attention mechanism (AM) and a genetic algorithm (GA). We
introduced AM as a feature selection method to calculate the attention degree of different
features and evaluate the influence of different variables on the predicted value of solar
irradiance. In the process of model training, features with a high degree of attention are
more likely to be selected. For secondary information, the network will reduce its attention
or even ignore it to improve model prediction accuracy. In addition, the GA is used to
perform a global search on the model parameters to obtain the optimal solution, and the
optimal parameter combination is used to build the LSTM model, which integrates various
meteorological variable data to predict the GHI and DNI after 5, 10, and 15 min.

The main contributions of this paper are as follows:

1. Introduce the AM to determine the influence degree of different features on the target
predicted value, so that the model can focus on important variables; and

2. Use the GA to search for model parameters, establish the optimal model, effectively
improve the prediction speed and accuracy of the model, and prevent problems such
as too long training time, slow parameter update, or even gradient disappearance.

The remainder of this paper is organized as follows: Section 2 introduces related
theories, including long short-term memory, attention mechanism and genetic algorithm.
Section 3 describes the experimental materials and proposes a predicting method. Section 4
analyzes the experimental results and discusses the performance of the proposed model.
Finally, Section 5 summarizes the research conclusions.
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2. Related Theoretical Background
2.1. Long Short-Term Memory

Recurrent neural networks (RNNs) are mainly used to process time series data. As a
variant of RNNs, the long- and short-term memory networks introduce a gate mechanism to
control the preservation and loss of information, which can retain information for a longer
period of time, and has more advantages in solving the problem of gradient explosion and
gradient disappearance during long sequence training [19]. Therefore, it is more suitable
for predicting solar radiation.

A neuron of LSTM has three gates, namely, the forget gate ft, the input gate it, and the
output gate ot. LSTM can be described by the following mathematical expressions [20]:

ft = σ
(

W f · [ht−1, xt] + b f

)
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tan h(Wi · [ht−1, xt] + bi)

Ct = ft × Ct−1 + it × C̃t
ot = σ(Wo · [ht−1, xt] + bo)

ht = ot × tan h(Ct)

(1)

where W represents the weight of the LSTM cell, ht−1 represents the output at the previous
moment, xt represents the input at the current moment, b represents the corresponding
bias, and σ represents the sigmoid activation function. The forget gate ft determines which
information to discard by multiplying with the cell state Ct−1 at the previous moment.
When the ft value is 1, all the information in the cell at the previous moment is retained.
When the ft value is 0, all information is discarded. The new information is obtained by
multiplying the input gate it and the updated information C̃t at the current moment, which
determines the current cell state together with the retained information. Finally, the output
gate ot is multiplied by Ct mapped by the activation function tanh to obtain the output ht
at the current moment.

The depth of the single-layer LSTM network is shallow, resulting in relatively average
network performance [21]. In some solutions, a single-layer LSTM network is often stacked
to form a multi-layer LSTM. In a multi-layer network, the output of each time step of the
first layer is used as the input of the second time step, and the output of the network is
determined by the output of the last time step [22].

2.2. Attention Mechanism

In the process of predicting, additional features carry more information, and the
performance of the model improves accordingly. However, information overload can also
lead to higher model complexity and prolong training time [23]. The attention mechanism
is inspired by the human visual attention mechanism, which can assign greater weight to
the more effective information among the input information, reduce the attention to other
information, and effectively improve the efficiency of problem solving [24], which has been
widely used in various fields such as object detection [25], neural machine translation [26],
and so on [27].

We use X = [x1, x2, · · · , xN ] to denote the input N pieces of information. For the ith
input information, the probability αi of being selected is calculated by the softmax function
is as:

αi =
exp( f (xi))

N
∑

j=1
exp( f (xj))

(2)

where attention distribution αi represents the degree of attention of the ith information in
X, and:

N

∑
i=1

αi = 1 (3)
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f (xi) is called the attention scoring function:

f (xi) = tanh(Wxi + b) (4)

where W and b denote the weight matrix and bias, respectively. The information processed
by the attention mechanism becomes the input information with the attention value.

2.3. Genetic Algorithm

The genetic algorithm (GA) is a search strategy inspired by Darwin’s biological evolu-
tion theory to search for the optimal solution through the process of simulating biological
evolution and natural selection [28], and the details of GAs could refer to [29,30]. The
implementation process of the genetic algorithm could be summarized as follows:

(1) Encode each individual in the population of potential solutions to the problem;
(2) A set of solutions is randomly generated as the initial population, and the fitness of

each individual is calculated;
(3) Refer to the fitness function to obtain new individuals through selection strategies;
(4) Perform crossover and mutation operations on the new individual to produce the

next set of offspring, and calculate the fitness of all individuals in it; and
(5) Iterate the entire process until the stop condition is met.

In this study, a genetic algorithm is used to search for model parameters, determine
the optimal model structure and input window size so that the model can maximize
information without affecting performance, simplify the model structure, and reduce the
training time and improve prediction accuracy.

3. Materials and Methods
3.1. Data Collection

The weather data we selected came from the public database of the Solar Radiation
Research Laboratory (SRRL) of the National Renewable Energy Laboratory (NREL). The
SRRL is located in Golden, Colorado, USA. The total amount of solar radiation received
by SRRL is large, the observation position is excellent, and there are over 75 instruments
recording the weather conditions in real time.

We selected meteorological elements closely related to solar radiation in the database,
including GHI, DNI, solar zenith angle, temperature, air mass, relative humidity, opaque
cloud cover, wind speed, station pressure, and aerosol optical depth. The sample range
covers all the daytime data of 2018 and 2019 (the solar zenith angle is less than 90◦). The
sampling frequency is 1 minute. In total, there are 53,1347 groups of samples for the
following experiments.

In the process of predicting the GHI, in addition to the GHI, eight factors were selected
to form the input of the prediction model. These eight factors are the solar zenith angle,
temperature, air mass, relative humidity, opaque cloud cover, wind speed, station pressure,
and aerosol optical depth.

When predicting the DNI, the eight factors above were selected as the input of the
model. When predicting GHI and DNI, the principle of dividing the dataset in this paper
was to randomly select 80% of the 2018 data as the training set and the remaining 20% of the
2018 data as the validation set. The full-year data of 2019 were selected as the testing set.

3.2. Data Preprocessing

In order to reduce the influence of different dimension data on the results and improve
the prediction accuracy and convergence speed of the model, meteorological data acquired
were first normalized. The linear normalization method was adopted. The formula is
as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(5)



Energies 2022, 15, 1062 5 of 14

where Xnorm is the normalized data of a certain meteorological element, X is the original
data, and Xmax and Xmin are the maximum and minimum values of the corresponding
sequence data, respectively.

3.3. AGA-LSTM Model

The traditional LSTM has excellent performance in dealing with time series problems.
However, the manual selection of parameters is inefficient and prone to failure [31]. Mod-
els established by selecting parameters through manual experience often have various
problems such as low prediction accuracy, slow convergence, and overfitting [32].

In order to fully mine data information and obtain excellent prediction results, we
proposed the AGA-LSTM model to predict solar radiation. The AGA-LSTM model includes
three parts: the AM is used to amplify key information to extract main features, LSTM is
used to predict GHI and DNI, and the GA is responsible for optimizing the model. The
prediction process of the AGA-LSTM model is shown in Figure 1.

Figure 1. The prediction process of the AGA-LSTM model.

In the predicting process, the above-mentioned eight influencing factors have different
degrees of influence on the predicted value. Therefore, we introduced an attention mecha-
nism to select the most relevant features. In the initial stage, each feature was given its own
weight and bias according to the impact on the prediction result, and the corresponding
score was obtained after the calculation of the tanh function. The softmax processes the
scores and calculates the probability of each feature being selected, which is the attention
degree. The attention degree is used to characterize the importance of the predicted value,
guide the model to devote more attention to the main features, and inhibit the attention to
secondary information.

When processing large quantities of data, the use of batch operations to group infor-
mation with attention values can effectively speed up the calculation speed of LSTM. The
input of LSTM is an n × 9 matrix, where n represents the data of the past n moments and
9 represents 9 features. The dropout layer is connected to prevent overfitting. Finally, the
predicted value is output through the dense layer.
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Research has found that the prediction effects of LSTMs with different structures are
also quite different. Traditional methods mostly manually select parameters based on the
experience of the researchers. This method not only consumes a significant amount of
time, but it is also difficult to select the most suitable parameters. Therefore, we used a
genetic algorithm in this study to automatically search for the optimal parameters, which
significantly improves the efficiency compared to the exhaustive method.

There are many parameters of the model that need to be optimized. Among them, the
number of neurons and the number of network layers determine the structure of the model,
and the model structure plays a decisive role in the prediction performance. Therefore,
the number of neurons and the number of network layers of the model are taken as the
optimization goals of the genetic algorithm.

At the same time, the size of the input window is also related to the prediction accuracy
and speed of the model. Similarly, two parameters, time step and time interval, are used
when the genetic algorithm is employed to search the size of the time window.

In this research, we first determined the range of 4 search parameters. According to
previous research, we set the ranges for the number of neurons, the number of network
layers, the time step, and the time interval as [1,16], [1,5], [1,10], and [1,10], respectively. All
target parameters are integers. Therefore, each individual in the space is coded using integer
coding. By initializing the population through a random number generator, calculating
the fitness f (xi) of each individual, new individuals were obtained scientifically through
genetic operations such as selection, crossover, and mutation. Finally, an LSTM model was
constructed using individual genes as parameters to predict solar radiation at a future time.
The flow chart of the genetic algorithm is shown in Figure 2.

Figure 2. The flow chart of the genetic algorithm.

Referring to the predicting errors, the fitness function of a LSTM was defined as:

f (x) =
1

N1

N1

∑
i=1

(x̂i − xi)
2 (6)

where x is the mean value of all data, N1 is the number of all samples, x̂i is the predicted
value of the model, and xi is the actual value of solar irradiance.

When performing the selection operation, the roulette wheel selection strategy [33]
was adopted, so that individuals or LSTMs with lower errors were selected to perform
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crossover and mutation with greater probability. The calculation formula for selection
probability is as follows:

P(xk) =
1/ f (xk)

∑N
j=1

1
f (xj)

(7)

where f (x) represents the fitness function and N represents the number of LSTM or
individuals.

When applying the genetic algorithm, the parameters were set as follows: crossover
rate = 0.6, mutation rate = 0.001, population size = 50, epoch = 20, iteration = 40. In other
words, each individual in a population with an individual size of 50 iterates 40 times to
complete one generation of iterations. A total of 40,000 iterations were completed. In the
training process of the LSTM module, nRMSE was used as the loss function, the Adam
algorithm was used as the optimizer, and the learning rate was set to 0.1. We used the
pre-divided training dataset to train the model. The optimizer continuously adjusts the
parameters of the model according to the loss value generated by the training set, optimizes
the model structure, and thus improves the prediction performance.

4. Results and Discussion

To evaluate the performance of the proposed method, we conducted our experiment
on an Nvidia GeForce RTX 2080Ti server with Intel Core I9-9900K CPU using Python based
on PyTorch’s deep learning framework.

4.1. Evaluation Index

Correlation coefficients (r), normalized mean bias error (nMBE), normalized mean
absolute error (nMAE), and normalized root mean squared error (nRMSE) were used to
evaluate the performance of the prediction model. The calculation formulae are as follows:

r =

N
∑

i=1

(
ŷi − ŷi

)
(yi − y)√

N
∑

i=1

(
ŷi − ŷi

)2 N
∑

i=1
(yi − y)2

(8)

nMBE =
1
N

N

∑
i=1

(ŷi − yi)/y× 100% (9)

nMAE =
1
N

N

∑
i=1
|ŷi − yi|/y× 100% (10)

nRMSE =
1
y

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 × 100% (11)

where N is the number of all samples, ŷi is the predicted value of the model, ŷi is the mean
of all predicted values, yi is the measured value, and y is the mean of all measured values.

In addition, the persistence model, usually used as a basis to evaluate the performance
of the prediction model, is defined as:

DNI(t + 1) = DNI(t). (12)

Forecast skill (Fs) is an evaluation index defined based on the persistence model:

Fs = (nRMSEp − nRMSE f )/nRMSEp × 100%, (13)

where nRMSEp and nRMSE f are the nRMSEs of the persistent model and the forecast
model, respectively.
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4.2. Performance in Predicting GHI

In this study, an attention mechanism was applied to restate the importance of different
input features to the prediction model, and the model structure was optimized by a genetic
algorithm. The optimization parameters included the number of LSTM cells, the number of
network layers, time steps, and time intervals. The GHI prediction model was established
under different prediction scales.

The optimization processes of the genetic algorithm for the GHI prediction model
under different prediction scales is shown as Figure 3. It can be seen that in the initial stage,
the fitness values, defined as Equation (6), of different individuals or LSTMs vary greatly.
With the increase in the iteration number, the overall fitness value of the population tends to
be consistent, although there are also few individuals that fluctuate. In the end, the fitness
value of the network tends to be stable and a small value, indicating that the algorithm
has reached its convergence and the predicting model has achieved greater performance,
which reflects the beneficial effects of the genetic algorithm on the model.

Figure 3. The optimization processes of the GHI model: (a) 5 min prediction model optimization
process; (b) 10 min prediction model optimization process; (c) 15 min prediction model optimization
process.

The model was trained through the training dataset, and the final optimized parameter
results of the model were obtained after testing on the validation dataset, as shown in
Table 1. The number of LSTM cells represents the number of neurons in each layer of
LSTM. In order to reduce optimization time and complexity, the number of neurons in
each layer of a LSTM model was set the same during the optimization processes by the
GA. The number of network layers represents the number of hidden layers of the LSTM
network. The time step represents the dimension of the input sequence, and the time
interval represents the time difference between two adjacent input sequences. Significantly,
the input sequence represents the true value at certain moments, not the average value of
the current time window.



Energies 2022, 15, 1062 9 of 14

Table 1. Optimization results of the GHI prediction model parameters at different scales.

Prediction Scale Number of
LSTM Cells

Number of
Network Layers Time Step Time Interval

5 min 8 1 5 2
10 min 11 2 1 4
15 min 14 2 5 6

In order to evaluate the accuracy of different prediction models, the above evaluation
indices were used to compare the performance of AGA-LSTM and other models. Table 2
shows the performance of the persistence models, LSTM, GA-LSTM, and AGA-LSTM under
three different prediction scales. Among them, the LSTM is designed with reference [22] to
the existing manual parameter selection method, and the GA-LSTM is designed without an
attention mechanism. The dimensions of input variables of all models are the same.

Table 2. The performance of AGA-LSTM models for predicting GHI.

Prediction
Scale Models r nMBE (%) nMAE (%) nRMSE (%)

5 min

Persistence 0.9836 −0.15 75.43 37.69
LSTM 0.9425 −3.58 16.70 14.34

GA-LSTM 0.9672 −4.09 12.74 8.83
AGA-LSTM 0.9735 −5.67 9.99 6.35

10 min

Persistence 0.9660 −0.26 75.14 37.19
LSTM 0.9427 −4.81 14.49 21.58

GA-LSTM 0.9553 −7.66 12.73 9.36
AGA-LSTM 0.9558 −7.31 12.42 8.99

15 min

Persistence 0.9608 −0.09 71.09 40.85
LSTM 0.9395 −3.81 18.78 23.22

GA-LSTM 0.9471 −7.48 15.10 11.39
AGA-LSTM 0.9416 −7.65 15.06 11.28

It can be derived from Table 2 that under the three prediction scales of 5, 10, and
15 min, the nRMSEs of AGA-LSTM are 6.35%, 8.99%, and 11.28%, respectively, which are
lower than other comparison models. The forecast skills of AGA-LSTM reach 83.2%, 75.8%,
and 72.4% over the persistence model, respectively. These results show that AGA-LSTM
has advantageous prediction performance under the prediction scale of 5, 10, and 15 min,
although there is a systemic bias of the AGA-LSTM model. This is because the attention
mechanism and genetic algorithm optimize the model structure, improve the learning
efficiency, and work together to improve the performance of the model.

In order to further analyze the performance of the proposed model, the relative error
distributions of GA-LSTM and AGA-LSTM for predicting GHI under three prediction
scales were shown as Figure 4. The x-axis represents the relative error of the predicted
value when the GHI was normalized as Equation (5), and the y-axis represents the number
of predicted values. The more concentrated the histogram is in the range where the relative
error is around 0, the better the prediction effect. It can be deduced that the error generally
presents a normal distribution, and most the relative errors of the predicted value are
concentrated in the range of [−0.1, 0.1], which indicates that the predicted values have a
sufficient tracking effect on the real values, and AGA-LSTM can accurately predict the GHI
of 5, 10, and 15 min.
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Figure 4. The relative error distributions of GHI by GA-LSTM and AGA-LSTM; (a) error distribution
of 5 min prediction model; (b) error distribution of 10 min prediction model; (c) error distribution of
15 min prediction model.

4.3. Performance in Predicting DNI

The optimization process of the genetic algorithm for DNI prediction models under
different prediction scales is shown in Figure 5. Different individuals or LSTMs for predict-
ing DNI in the initial population correspond to different fitness values that was defined
as Equation (6), indicating that there are differences in the network structure constructed
by different hyperparameters. As the number of iterations increases, the fitness values of
different networks gradually gather, but there are also some sudden fitness values. The
number of iterations continues to increase, and finally, the fitness value converges to the
point that represents the best performance of the network.

Figure 5. Cont.
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Figure 5. The optimization processes of the DNI model; (a) 5 min prediction model optimization
process; (b) 10 min prediction model optimization process; (c) 15 min prediction model optimization
process.

Finally, the genetic algorithm was used to search the parameters of the DNI prediction
model under different prediction scales, and the results are shown in Table 3. The number of
LSTM cells, time step and time interval increased with the prediction scale when predicting
DNI, which was a little different from those of the models for predicting GHI in Table 1.

Table 3. Optimization results of DNI prediction model parameters at different scales.

Prediction Scale Number of
LSTM Cells

Number of
Network Layers Time Step Time Interval

5 min 7 1 3 2
10 min 8 1 5 4
15 min 9 3 7 3

In order to verify the performance of the DNI prediction model, the above evaluation
indices were used to compare the performance of AGA-LSTM and other models. The
results are shown in Table 4. Under the three prediction scales of 5, 10, and 15 min, the
nRMSEs of AGA-LSTM are 12.68%, 11.63%, and 16.57%, respectively, which are lower than
other comparison models; and the forecast skills of AGA-LSTM reach 75.9%, 77.4%, and
67.4%, respectively. This shows that at the prediction scale of 5, 10, and 15 min, AGA-LSTM
has superior performance compared to other prediction models in terms of the nRMSE.

Table 4. The performance of the AGA-LSTM model for predicting DNI.

Prediction
Scale Models r nMBE (%) nMAE (%) nRMSE (%)

5 min

Persistence 0.9691 0.06 86.83 52.56
LSTM 0.9211 −2.13 22.86 31.09

GA-LSTM 0.9407 −12.93 20.15 15.41
AGA-LSTM 0.9526 −6.39 15.96 12.68

10 min

Persistence 0.9610 −0.01 80.03 51.53
LSTM 0.9323 0.65 16.78 29.81

GA-LSTM 0.9458 −2.14 15.49 13.24
AGA-LSTM 0.9573 0.56 14.90 11.63

15 min

Persistence 0.9399 0.02 81.57 51.35
LSTM 0.9011 −0.54 25.37 36.94

GA-LSTM 0.8979 −0.20 22.18 18.84
AGA-LSTM 0.9337 −0.98 21.37 16.57
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Figure 6 shows the relative error distribution of predicting DNI under the scale of 5,
10, and 15 min when the predicting DNI was normalized as Equation (5). The relative error
of most predicted values is between [−0.1, 0.1], but the number of relative errors out of the
range of [−0.1, 0.1] is obviously more than that of GHI in Figure 4, which means that the
prediction performance of GHI is better than that of the DNI. However, the AGA-LSTM
was better than the GA-LSTM in terms of DNI prediction due to there being more errors of
AGA near zero.

Figure 6. The relative error distributions of DNI; (a) error distribution of 5 min prediction model;
(b) error distribution of 10 min prediction model; (c) error distribution of 5 min prediction model.

5. Conclusions

In this paper, we propose an AGA-LSTM model to predict GHI and DNI at 5, 10, and
15 min time steps. LSTM is usually used to solve time series problems, but the selection of
parameters restricts its performance. Our model uses attention mechanism to increase the
attention of important influencing factors, and at the same time employs a genetic algorithm
to search for network structure parameters and then applies them to the traditional LSTM
model. The results show that the values of nRMSEs predicted by AGA-LSTM for GHI
and DNI are both lower than those of other comparison models, and that the forecast
skills of AGA-LSTM reach more than 67%. This shows that AGA-LSTM outperforms than
other prediction models, can more effectively express complex features between data, and
improve prediction accuracy and speed.

This model also has some shortcomings. The absolute values of nMBEs of the AGA-
LSTM model are not the lowest, which means there is a certain systemic bias of the
AGA-LSTM model. In future, we will study the influence of different meteorological
factors on the prediction accuracy of the model, and select a more appropriate input
combination to improve the prediction accuracy; the ground-based cloud image contains
other information about the sky condition, and the model can be constructed by fusing
meteorological numerical value and cloud image information to further improve the
prediction performance.
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