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Abstract: How to improve the combustion efficiency and reduce harmful emissions has been a hot
research topic in the engine field and related disciplines. Researchers have found that nano-additives
to diesel-biodiesel fuel blends have achieved significant results. Many research results and both
current and previous studies on nanoparticles have shown that nano-additives play an essential
role in improving the performance of internal combustion engines and reducing the emission of
harmful substances. This paper summarizes the recent research progress of nanoparticles as additives
for diesel-biodiesel fuel blends. Firstly, the excellent properties of nanoparticles are described in
detail, and the preparation methods are summarized and discussed. Secondly, the effects of several
commonly used nanoparticles as diesel-biodiesel fuel blends on combustion performance and harmful
substances emissions in terms of combustion thermal efficiency, brake specific fuel consumption, CO,
UHC and NOx, are reviewed. Finally, the effects of nano-additives on internal combustion engines,
the environment and human health are discussed. The work carried out in this paper can effectively
contribute to the application of nanomaterials in the fuel field. Based on our work, the researchers can
efficiently select suitable nano-additives that enable internal combustion engines to achieve efficient
combustion and low-emission characteristics.

Keywords: biodiesel; diesel; nano-additives; performance; emission

1. Introduction

As a type of non-renewable resource, fossil fuel is being used excessively by human
beings all over the world [1]. In today’s world, people are promoting low-carbon living, and
the emissions from fossil fuel combustion have a negative impact on plant and animal health
and the environment [2–4]. According to the Lancet Countdown [5] on health and climate
change, climate change will affect human health over a lifetime due to the greenhouse
effect caused by the massive consumption of fossil fuels, with average temperatures today
more than four degrees higher relative to the pre-industrial revolution period. Therefore,
there is an urgent need for fuels that can replace fossil fuels, and the search for renewable,
green alternative fuels with similar performance has become a hot pursuit nowadays.

In the future, internal combustion engines will remain the primary power source for
transportation. For this reason, the diesel engine should improve the high combustion
efficiency and reduce the lower emission. Moreover, the traditional fuels should be replaced
with renewable energy [6–9]. Currently, researchers have studied many alternative fuels for
diesel engines and found the biodiesel is considered a very favored alternative fuel [10,11].
The biodiesel is a renewable resource produced in large quantities using various methods.
It is mainly produced by the esterification of animal fats, vegetable oils and waste oils
in the presence of a catalyst [12–18]. Its main advantage is that it requires essentially no
engine modifications when used as an engine fuel. It maintains almost the same engine
performance in brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), and

Energies 2022, 15, 1032. https://doi.org/10.3390/en15031032 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15031032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8521-6956
https://doi.org/10.3390/en15031032
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15031032?type=check_update&version=2


Energies 2022, 15, 1032 2 of 27

brake power. At the same time, emissions such as hydrocarbons (HC), carbon monoxide
(CO), and particulate matter (PM) are significantly reduced in the absence [19]. With the
intensive research on biodiesel fuels, it was found that biodiesel such as rapeseed methyl
ester [20], jatropha seeds [21], rapeseed methyl ester [22], and sunflower methyl ester
can be blended with diesel in different ratios to obtain better emission and combustion
performance [23].

In addition, researchers have found several adverse effects in studies of diesel-biodiesel
fuel blends [24], such as relatively low cloud and pour points, poor atomization of fuel
injection, relatively low calorific value and generally high NOx emissions [25,26]. Thus,
the researchers have tried newer approaches to improve engine performance and reduce
exhaust emissions, such as the addition of fuel additives and pretreatment blends [27,28]. The
addition of nanoparticles to diesel-biodiesel has emerged as one of the most effective and
promising fuels [29,30]. It could be due to the many superior properties of nanoparticles:
increased energy content, large surface area to volume ratio, increased number of active
centers required for different reactions and processes, faster catalytic reaction rate, high
catalytic activity, etc. [31,32]. Elahi et al. [33] found that the addition of added alumina to B20
(20% biodiesel and 80% diesel) resulted in a significant reduction in combustion time (CD)
and ignition delay (ID), an increase in peak pressure, and a slight increase in heat release
rate (HRR) at maximum load and cylinder pressure. HC and CO missions were reduced
by 26.72% and 48.43%, respectively, while NOx increased by 11.27%. Hosseini et al. [34]
conducted experiments on a CI single-cylinder engine by adding carbon nanotubes to diesel-
biodiesel fuel blends at 30, 60 and 90 ppm. The results showed compared with diesel fuel,
the power, BTE and BSFC of diesel engine fueled with blend fuel was increased by 3.67%,
8.12% and 7.12%, respectively. However, NOx emissions increased by 27.49%. Meanwhile,
Sajith et al. [35] conducted engine tests with different additions (20–80 ppm) of modified
biodiesel in compression-ignition engines. They investigated the effect of cerium oxide
nanoparticles on engine performance and emission characteristics. The results showed that
the brake thermal efficiency of the diesel engine fueled with the addition of cerium oxide
nanoparticles increased by 1.5%. In addition, the cerium oxide promoted the HC oxidation,
and the NO and HC emissions were reduced by 30% and 40%, respectively. Similarly,
adding Cu, Fe, Pt and graphene nanoparticles to diesel-biodiesel fuel blends can improve
combustion and reduce emissions to varying degrees [36–46].

This paper reviews research progress on different nano-additives for improving com-
bustion and emission characteristics in diesel-biodiesel fuel blends. The main research
contents of this paper review are as follows: (1) A comprehensive understanding of the
preparation of various nano-additives and their excellent properties; (2) The performance
and emission characteristics of combustion and diesel-biodiesel fuel blends combustion
engines with different nano-additives, such as increasing engine power, reducing harmful
emissions; (3) The researchers selected the most suitable nanoparticles to be added to
diesel-biodiesel based on the nature of the nano-additive to achieve efficient combustion
and low emissions in diesel engines; (4) To understand the limitations of nano-additives,
such as the effect of unburned nanoparticles on engine life, pollution of the atmosphere,
and harmful effects on plants and animals.

2. Nano-Additives: A Very Promising Fuel Additive

Nanoscale materials are currently widely used in industry. Their application to diesel-
biodiesel fuel blends is an exciting concept and a potential new fuel that has not yet been
fully exploited. The reason for the widespread use of nano-additives in diesel-biodiesel
is that they exhibit a larger contact surface area, better stability, catalytic properties, rapid
oxidation, immense heat of combustion, and large heat and mass transfer rates [47,48]. As
shown in Figure 1, nanoparticles are available in different forms (one-dimensional or multi-
dimensional), different sizes (1–100 nm) and different surface shapes (cubes, rectangles,
cylinders), etc. [49].
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At present, researchers have conducted many experimental studies on the addition
of nano-additives to diesel-biodiesel fuel blends and have achieved surprising results.
Researchers are currently studying the nano-additives mainly include metals, metal oxides,
carbon nanotubes, graphene, organic materials, and hybrid nanomaterials. Among them,
the metal oxide nano-additive is one of the more popular nano-additive, which usually
has a strong redox reaction because they carry oxygen. It has the advantage of reacting
with CO, HC molecules and Carbon atoms in soot and generating large amounts of oxygen,
allowing the fuel to burn thoroughly [51,52]. Hao et al. [53] found that aluminium (Al)
nano-additives had a strong oxygen extraction ability and could significantly reduce the
induction time and energy required for catalytic exothermic reactions. Singh et al. [54] found
that carbon-based single-walled nanotubes and multi-walled nanotubes could dramatically
increase the ignition rate, ignition delay period, and extend the total combustion time.
Therefore, it can be concluded that nano additives are very promising in fuels.

3. Different Preparation Methods to Obtain Stable Nanoparticles

Nanofluid is an extension of nanotechnology and is a fluid obtained by uniformly
dispersing nanoparticles into a liquid fluid [55,56]. The flow of nanofluid preparation is
shown in Figure 2. Different nanomaterials greatly influence the dispersion and stability of
nanofluids, so the preparation and characterization of nanofluids are very important [57,58].
In recent years, researchers have conducted much research on the practice of nanoparticles.
They have achieved good results in improving nanoparticles’ physical and chemical proper-
ties and controlling nanoparticles’ size, shape, and porosity. Therefore, selecting a suitable
preparation method is very important for nanofluids [59–64]. The synthesis methods of
nanofluids are usually in one step, two step and some new techniques have arrisen.
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gether at the same time. The main advantages of the one-step method are: (1) The produc-
tion cost is low compared with other methods because the production is simple and does 
not require drying, storage or dispersion. (2) The nanofluid produced by the one-step pro-
cess can maintain stability for a long time due to the low aggregation of nanoparticles. 
The current main methods for one-step synthesis of nanofluids include direct evaporation, 
vapour deposition, laser ablation, and submerged arc welding nanoparticle synthesis sys-
tems. The one-step method was first proposed by Akoh et al. [66], using vacuum evapo-
ration to obtain 0.25 nm ferromagnetic metal super-particles. Tran et al. [67] produced 
well-dispersed nanoparticles with a size of 9–21 nm by laser ablation without the use of
dispersants or surface reagents. Lo et al. [68] developed a submerged arc nano synthesis 
system based on the gas coalescence principle, where copper aerosols had immediately 
coalesced into nanoparticles in the presence of a dielectric liquid. The nanoparticles were 
then dissolved in the dielectric liquid to form metallic nanofluids. This method is mainly 
used to prepare copper, copper oxide, cuprous oxide and copper phase nanoparticles, and 
then dissolve them in dielectric liquid to become metal nanofluid. 

3.2. Two-Step Preparation Method
The two-step method is a method in which nanoparticles are first fabricated and then 

mixed into the base fluid using different techniques. Nanofluids prepared by two-step 
method have good dispersion efficiency and stability; this is the most widely used 
nanofluid synthesis method [69,70]. The main techniques for synthesizing nanomaterials 
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3.1. One-Step Preparation Method

The one-step method is prepared by mixing nanoparticles and the base solution
together at the same time. The main advantages of the one-step method are: (1) The
production cost is low compared with other methods because the production is simple and
does not require drying, storage or dispersion. (2) The nanofluid produced by the one-step
process can maintain stability for a long time due to the low aggregation of nanoparticles.
The current main methods for one-step synthesis of nanofluids include direct evaporation,
vapour deposition, laser ablation, and submerged arc welding nanoparticle synthesis
systems. The one-step method was first proposed by Akoh et al. [66], using vacuum
evaporation to obtain 0.25 nm ferromagnetic metal super-particles. Tran et al. [67] produced
well-dispersed nanoparticles with a size of 9–21 nm by laser ablation without the use of
dispersants or surface reagents. Lo et al. [68] developed a submerged arc nano synthesis
system based on the gas coalescence principle, where copper aerosols had immediately
coalesced into nanoparticles in the presence of a dielectric liquid. The nanoparticles were
then dissolved in the dielectric liquid to form metallic nanofluids. This method is mainly
used to prepare copper, copper oxide, cuprous oxide and copper phase nanoparticles, and
then dissolve them in dielectric liquid to become metal nanofluid.

3.2. Two-Step Preparation Method

The two-step method is a method in which nanoparticles are first fabricated and
then mixed into the base fluid using different techniques. Nanofluids prepared by two-
step method have good dispersion efficiency and stability; this is the most widely used
nanofluid synthesis method [69,70]. The main techniques for synthesizing nanomaterials
are currently divided into bottom-up and top-down processes (Figure 3).
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The bottom-up method is the accumulation of materials from atoms to agglomerates
to nanoparticles. The commonly used methods are sol-gel, chemical vapor deposition,
pyrolysis and biosynthesis. The sol-gel method has the advantages of simple synthesis,
scalability and controllability, and is the preferred method of researchers today. Singh and
PalSingh [72] used zinc acetate (Zn(CH3COO)22H2O) as the precursor, ethanol (CH2COOH)
as the solvent, sodium hydroxide and distilled water as medium and successfully Zinc
Oxide(ZnO) nanoparticles with nanometer size of 81.28–84.98 nm were prepared by sol-gel
method. Similarly, Alagiri et al. [73] prepared nickel oxide(NiO) nanoparticles using the
sol-gel method. Bhaviripudi et al. [74] synthesized single-walled carbon nanotubes using
gold nanoparticle catalyst by thermochemical vapor deposition. Biosynthesis is a green
method for producing non-toxic and biodegradable nanoparticles using bacteria, plant
extracts, fungi, and precursors [60].

The top-down approach is to reduce the larger size materials into nanoscale particles.
Commonly used methods include mechanical grinding, nanolithography, laser ablation,
and thermal decomposition. Mechanical grinding is a physical method for preparing
nanoparticles, which works by plastic deformation of large-sized materials into particle
shapes [75]. Nanolithography uses advanced photolithography to reduce large-sized mate-
rials from microns to less than 10 nm. There are many processes for nanolithography such as
electron beam, optical, nanoimprinting, multiphoton and scanning probe lithography [76].
Laser solution ablation is a reliable top-down method and the synthetic preparation of
precious metal nanoparticles using laser solution ablation is usually more trustworthy
than conventional chemical reduction methods [77]. Table 1 shows various nanoparticles
synthesized in different ways [71].

Table 1. Category of the nanoparticles synthesized from the various methods [71].

Category Method Nanoparticles

Bottom-up

Sol-gel Carbon metal and metal oxide based
Spinning Organic polymers

Chemical Vapour Deposition Carbon and metal based
Pyrolysis Carbon and metal oxide based

Biosynthesis Organic polymers and metal-based

Top-down

Mechanical milling Metal, oxide and polymer-based
Nanolithography Metalbased

Laser ablation Carbon based and metal oxide based
Sputtering Metal-based

Thermal decomposition Carbon and metal oxide based

3.3. Some New Techniques

In addition, researchers have achieved remarkable results using two or more nanopar-
ticles to prepare nanofluids. Hybrid nanofluids have received much attention due to their
ability to improve the chemical and thermophysical properties of single-phase nanoflu-
ids [78,79]. Arul Mozhi Selvan et al. [80] investigated the effect of incorporating cerium
oxide nanoparticles and carbon nanotubes into diesel-biodiesel-ethanol blends on engine
performance and emissions. It was found that cerium oxide nanoparticles acted as oxy-
gen supply catalysts to oxidize CO and reduce nitrogen oxides. The activation of cerium
oxide removes carbon deposits in the cylinder, resulting in a significant reduction in HC
and smoke emissions. The combined use of both nanoparticles can contribute to clean
combustion and further reduce emissions.

4. Nano-Additives in the Diesel-Biodiesel Fuel Blends

Biodiesel has been used in various countries or around the world, and the benefits
it brings are undeniable [81,82]. Compared with diesel fuel, biodiesel is a renewable en-
ergy source, very friendly to the environment, degradable and non-toxic [20,83]. Many
scientific studies have shown that mixing biodiesel with diesel in different ratios as a diesel
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engine fuel can improve diesel engines’ combustion performance, service life, and reduce
emissions. However, biodiesel also has disadvantages, such as poor flowability in the cold
state and increased NOx and CO2 emissions due to the increased oxygen content of the
blended fuel. Researchers have found that nanoparticles can compensate for the drawbacks
of biodiesel. Wang et al. [84] incorporated different mass fractions (0.05–5%) of cerium
oxide nanoparticles into nanofluid fuels, investigated the evaporation characteristics at
673 K and 873 K and compared with diesel. The results showed that the promotion of
fuel droplet evaporation by cerium oxide nanoparticles was very obvious. In particular,
the addition of nano-additives at 873 K can prolong the droplet life due to their ability to
promote secondary atomization of fuel during diesel injection and combustion, as well
as strong micro-explosion phenomena that can occur during evaporation (Figure 4). In-
depth research studies have found that the base fuel’s thermophysical properties and the
nanoparticles’ stability and the nanofluid’s density, porosity, and structure affect the inten-
sity of secondary atomization [85]. The effects of the most commonly used nanoadditives
such as copper oxide(CuO), aluminium oxide(Al2O3), cerium oxide, Graphene Oxide(GO),
carbon nano-tubes(CNT)and titanium dioxide(TiO2) added to diesel-biodiesel fuel blends
on the combustion performance and emissions of the engine are summarized as shown
in Table 2. These nanoparticles have the advantages of high thermal conductivity, strong
catalytic function, high oxygen content, more free radicals and fast combustion rate, which
are conducive to reducing fuel consumption, improving thermal efficiency and further
improving emission pollution.
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In addition, many researchers have found the micro-explosion phenomenon in diesel-
biodiesel fuel blends with the addition of nano-additives, which was an interesting phe-
nomenon. Micro-explosion is caused by heterogeneous nucleation, where nucleation occurs
at the droplet surface [86]. It enables secondary atomization or further fragmentation of the
fuel droplets to produce very fine droplets that can mix well with air to achieve fast com-
bustion [87–89]. As shown in Figure 5, Jong Boon et al. [90] compared the micro-explosions
of three different nano-additives (GNPs, Al2O3, and CeO2). The results showed that GNPs
had higher micro-explosion frequencies than Al2O3 and CeO2. This was because GNPs
have a weaker van der Waals force constraint, leading to easier thermal decomposition and
accelerated combustion processes. Thus, the fuel conversion efficiency of the diesel engine
is improved and the output work is increased.
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Table 2. The main role of nano-additives in diesel/biodiesel mixed fuel.

Diesel Blended
with

Blended
Percentage Nanoparticle NPs Dosage

and Size Main Effect Refs.

Neochloris
oleoabundans
methyl ester

5–15% CuO2
60 ppm

Nanoparticle-added fuel has higher BTE, EGT
and lower BSFC, showing higher peak cylinder

pressure
[38]

<50 nm

Garcinia
gummi-gutta 20% CeO2, ZrO2 and

TiO2
25 ppm

CO, UBHC and smog emissions are reduced
NOx and CO2 emissions increase sharply at peak

loads.
[62]

biodiesel–
ethanol 30% CeO2 nd CNT 25–100 ppm

CO emission increased to 22.2%, while HC and
smog emissions decreased to 7.2% and 47.6%,

respectively.
[80]

Jatropha 20%
Al2O3

10–30 ppm

BSFC decreased by 4.93%, BTE increased by 7.8%
and emissions of HC, CO, flue gas decreased

and nitrogen oxides by 5.69%, 11.24%, 6.48% and
9.39%. Respectively.

[91]

biodiesel 10% 28–30 nm

Oenothera
Lamarckian

biodiesel
20% GO

30–90 ppm

Power and EGT increased significantly, and CO
and UHC emissions were significantly reduced.
However, carbon dioxide emission and nitrogen

oxide emission increased slightly.
[92]
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Table 2. Cont.

Diesel Blended
with

Blended
Percentage Nanoparticle NPs Dosage

and Size Main Effect Refs.

150 nm
Botryococcus

braunii algae oil 20% CuO2

50 ppm Shows higher BTE, lower BSFC and EGT, and
increases the fuel mixture in the combustion

chamber
[93]

50–100 nmmethyl ester

Dairy scum oil
methyl ester 20% GO

20–60

BSFC was decreased by 8.34%, BTE was
increased by 11.56%, unburned HC decreased by
21.68%, and smoke decreased by 24.88%, which

was significantly improved.
[94]

23–27 mm

tamanu biodiesel 0–30% TiO2 25–100 ppm Various reductions in CO, nitrogen, CO2, HC,
oxygen and flue gas opacity were found. [95]

Waste cooking
oil 20% CeO2-WCNT 90 ppm

BSFC decreased by 0.2501 (kg/ kW-h), NOx was
reduced by 18.90%, CO by 38.8% and HC by

71.40%.
[96]

Waste cooking
oil 5–20% Al2O3 and TiO2 50–100 ppm

Performance parameters such as BTE and BFSC
improved significantly, NOx, UHC and CO
emissions decreased, while CO2 emissions

increased.

[97]

Jatropha-n-
Butanol 50%

GNP-
Multi-walled

carbon
nanotubes
(MWCNT)

50 ppm NOx, CO and UHC were reduced by 45%, 55%
and 50% respectively [98]

(JME40B)

Jojoba (JB20D) 40% Al2O3 50 ppm
12% reduction in BFSC, 4.5% increase in peak
cylinder pressure, 4% increase in maximum

pressure
[99]

waste frying oil 20%
Mn2O3 25–50 ppm

The engine consumes less fuel while producing
the same power output. BTE has been improved.

Both reduce emissions of NOx and CO
[100]

Co3O4

10% astor oil
+20%Ethanol 30% cerium oxide 25 ppm

Increased BTE and IMEP, CO, reduced ignition
delay, lower HC emissions, and lower smoke

levels
[101]

Algae oil 20% SiO2 and TiO2
50–100 ppm BSFC, BTH, CO, CH and CO2 are well improved

in performance characteristics and emission
reduction.

[102]50 nm

water 10%
Al2O3, CuO,

MgO, MnO and
ZnO

100 ppm The BSFC reduction rate of Al2O3 is high.
17% reduction in CO emission when using ZnO [103]34 nm

Lemon and
orange peel oil 20% CNT, CeO2 50–100 ppm Higher BTE and lower BSFCwith relatively low

CO and HC emissions [104]

5. Effect of Different Nano-Additives on Combustion and Emissions of
Biodiesel-Diesel Engines

How to use nano-additives to improve the combustion and emission performance
of engines is an important research topic [105]. Researchers have selected suitable nano-
additives based on the fuel blends’ viscosity, flash point, and solubility [106,107]. Moreover,
the effects of using nano-additives and biodiesel-diesel blends on engine stability, combus-
tion and emission characteristics were further investigated [108,109].

5.1. Effect of Nano-Additives in Diesel-Biodiesel on Engine Combustion

Many researchers have found that the addition of nano-additives can overcome the
disadvantages of biodiesel, such as poor oxidative stability, high fuel consumption, exces-
sive carbon deposition in engine combustion and so on. As shown in Table 3, the effect of
adding nano-additives on performance parameters such as engine BTE, BSFC and power
output was investigated.
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Table 3. Effect of Nano-additives on engine performance.

Diesel Blended with Nanoparticle BTE BFSC Power Refs.

Waste cooking oil CNT and silver – −7.08% +2% [30]
Honge oil Al2O3 +10.57% −11.65% – [33]

cooking oil CNTs +8.12% −7.12% +3.67% [34]
Soybean ZnO +23.2% −26.66% – [65]

Dairy scum oil graphene oxide +11.56% −8.34% – [94]
Cooking oil MWCNT – −4.5% +7.81% [96]

Jatropha methyl ester GNPs +25% −20% – [110]
Jatropha Al2O3 +24.7% Decrease +3.85% [111]

Ailanthus altissima GO – −14.48% +14.3% [112]
Cooking oil Fe2O3 +15.05% −10.73% – [113]

Soybean SiO2 +6.39% +9.88% – [114]
Neem NiO +2.9% −1.8% – [115]

Algae oil CeO2 increase decrease – [116]
Pungamia pinnata coconut shell increase decrease +0.65% [117]
Waste Cooking Oil Al2O3 increase decrease increase [118]
Ricinus communis Sr@ZnO +20.83% −20.07% increase [119]
Waste cooking oil Al2O3 +5.80% −14.66% +5.36% [120]

Pongamia CuO +4.01% −1.0% – [121]
Lemongrass Oil CeO2 +3.55% −5.87% – [122]

Jatropha Methyl Ester GO +17% −20% – [123]

5.1.1. The Effect of Nano-Additives on Brake Thermal Efficiency

BTE represents the ratio between the energy produced by the engine and the heat
provided by the fuel, which is an important performance parameter of the engine. Adding
nanoparticles to diesel-biodiesel fuel blends can improve its radiation, heat and mass
transfer performance, so as to obtain fuller combustion and higher thermal efficiency [124].
Ramarao et al. [125] investigated the incorporation of 30–50 nm CeO2 nano-additives in
different cottonseed oil methyl ester blends. It was found that the BTE of diesel-biodiesel
fuel blends with CeO2 addition increased with increasing loading. The BTE of fuel blended
with 0.04 g of CeO2 is approximately 2% higher than diesel at the whole load operation.
Harish et al. [91] observed that the addition of different ratios of Al2O3 nanoparticles
to ternary fuels (70% diesel, 20% jatropha biodiesel, and 10% ethanol) revealed that the
addition of 20 ppm of Al2O3 nanoparticles improved the BTE by 7.8%. It could be due to
the catalytic activity of the nanoparticles, which promotes micro-explosion of the droplets,
thereby enhancing fuel vapour and air mixing and improving the possibility of complete
combustion [126].

Raju et al. [127] studied alumina and MWNTs, which were added to tamarind methyl
ester mixture with 30 ppm and 60 ppm, respectively. As shown in Figure 6, both nano-
additives improve the BTE of the engine, and the BTE increases with the increase of nano
particle content. It was due to the metal nanoparticles promoting better air-fuel mixing and
larger specific surface area to volume ratio, which significantly improves the combustion
efficiency. In addition, the incorporation of alumina nanoparticles had higher BTE than
carbon nanotubes under the same conditions. Among the fuel blends with nano-additives,
the addition of 60 ppm alumina nanoparticles had the highest BTE of 35.74%, which was
4.5% higher than the tamarind seed methyl ester blend at peak load conditions. It was
due to alumina nanoparticles’ relatively high oxygen content, which resulted in more
oxygen atoms involved in the reaction during combustion, thus increasing the combustion
efficiency. Syed et al. [128] observed that a similar increment in thermal efficiency was
obtained for the higher concentrations of alumina oxide nanoparticles in biodiesel.
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In addition, nano-additives can be used as catalysts. This is due to the ability of
nanoa-dditives to improve surface area and reactive surfaces, which increases chemical
reactivity [129]. As shown in Figure 7, Janakiraman et al. [61] found that the BTE of
B20 + TiO 2 (25 ppm) blended fuel was close to that of diesel at high load, and it was
6.05% higher than that of B20 blend. This may be due to the nano-additives which helps
in faster combustion and better atomization during the combustion process. GNPs can
reduce the duration of late combustion in the exhaust stroke, thus reducing incomplete
combustion of the fuel and increasing thermal efficiency [130,131].
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Dharmaprabhakaran et al. [93] CuO2 nano-additives of 25 ppm, 50 ppm, 75 ppm
and 100 ppm were added to the mixture of Staphylococcus brucei algal oil methyl ester.
The experimental results show that BTE enhanced with increasing of load under various
fuel blending. Diesel-biodiesel containing 100 ppm CuO2 showed higher BTE in all cases
compared with B20. It could be due to the high surface to volume ratio of CuO2 nanoparti-
cles, which produces good atomization and rapid evaporation of the fuel, improving the
combustion efficiency (Figure 8).
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5.1.2. The effect of Nano-Additives on Brake Specific Fuel Consumption

BSFC is the fuel consumption and utilization per unit of power and time. Generally,
diesel-biodiesel has a higher BSFC than diesel, mainly because the calorific value of diesel-
biodiesel fuel is lower than that of diesel when the engine output is constant, resulting
in the need to consume more fuel to maintain the same power [132]. The researchers
found that adding nanomaterials to the fuel to improve the engine’s BSFC was a good
method [133,134]. This section investigates the effect of adding various nano-additives to
diesel-biodiesel on BSFC.

Fayaz et al. [135] prepared nano-fuel blends by dispersing three different nanoparticles
(Al2O3, CNT and TiO2) into diesel-biodiesel fuel blends. Figure 9 shows the variation of
BSFC from 1050 rpm to 2300 rpm at full engine load. The results show that the BSFC
decreases as the speed increases, and the BSFC of the fuel with nano-additives is signifi-
cantly lower than that of diesel, especially additives containing Al2O3 will achieve superior
results. The nanoparticles dispersed into the diesel-biodiesel were able to resolve blockage
and atomization and improve the air-fuel mixture. In addition, these nanoparticles all
increase the surface area to volume ratio, which leads to better combustion and lowers
fuel consumption.
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Hatami et al. [136] investigated the effect of adding Al2O3 and MWCNT to diesel-
biodiesel on engine. As shown in Figure 10, the brake specific energy consumption at full
load was reduced by 5.6%, 9.0%, 10.4% and 13.1% for 50 ppm of MWCNT, 100 ppm of
MWCNT, 50 ppm of Al2O3, and 100 ppm of Al2O3, respectively, compared with diesel-
Schleicher oleosa. It was due to the fact that the nanoparticles act as catalysts in the
combustion reaction and increase the oxidation rate.
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Figure 11 shows the BSFC for different blends [137]. The results showed that the
BSFC of the engine decreases significantly as the load increases. In addition, the BSFC was
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minimum when the concentration of nano-additive in the diesel-biodiesel was increased
from 400 ppm. However, the BSFC increased when the concentration of nano-additives
was increased from 400 to 600 ppm. This may be because further concentration increases
may affect the fuel system components and thus the fuel spray characteristics.
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In addition, nanoparticles affect engine power and exhaust gas temperature. Hoseini
et al. [138] found that the addition of GO nanoparticles to diesel-biodiesel resulted in a
significant increase in engine braking power. It was due to the increased surface-to-volume
ratio of GO nanoparticles, which increases the heat transfer coefficient, resulting in higher
peak cylinder pressures and faster heat release rates. Gad and Jayaraj [139] found that the
addition of nanoparticles to jatropha biodiesel blends resulted in a reduction in exhaust
gas temperature, with a maximum temperature reduction of 27%. This may be due to the
improved fuel-air mixing and in-cylinder combustion characteristics of the nanoparticles,
which improve engine efficiency.

5.2. Engine Emission Characteristics of Diesel-Biodiesel Fuel Blends with Nano-Additives

In the last few decades, scientists have reached a consensus and reported that nano-
additives were causing a change in current energy sources. The addition of nanoparticles
to diesel-biodiesel fuel blends has been widely used in diesel engines [19,126,139]. After
identifying potential targets for expanding the application of nanoparticles, the researchers
learned as much as possible about the effects of adding nano-additives on diesel engine
emissions (Table 4).
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Table 4. Effect of nano-additives on harmful gas emissions.

Diesel Blended with Nanoparticle NOx CO HC Refs.

Honge oil HOME +11.27% −47.43% −37.72% [33]
Garcinia gummi-gutta TiO2 −22.57% −35.89% −6.39% [61]
Oenothera lamarckiana GO +9% −22% −26% [92]

Jatropha methyl GNPs −55% −65% −65% [110]
Cooking oil MWCNT +8% −20% +28% [114]
Pongamia CuO −9.8% −29% −7.9% [121]
Jatropha GO −13% −60% −70% [140]

Orange peel oil TiO2 −9.7% −18.4% −16.0% [141]
Mahua CuO +3.2% −33% −5.33% [142]

Pongamia Fe3O4 −8% decrease +16.6% [143]
Azadirachta indica NiO +6.1% −25.4% −10.8% [144]

Flaxseed oil Cr2O3 −6.66% −14.05% −12.93% [145]
Waste Plastic Oil rice husk +14.1% −7% −15.3% [146]

Palm oil GNPs +3.65% −4.41% −25% [147]

5.2.1. The Effect of Nano-Additives on Nitrogen Oxide Emissions

NOx is considered one of the leading pollutant gases emitted by CI engines. According
to the thermal mechanism, the formation of NOx is mainly the result of the interaction
between oxygen and nitrogen at high temperatures in the cylinder. As can be seen from the
Figure 12, the NOx emissions of the blended fuel with CeO2 nano-additive were higher
than diesel -biodiesel fuel blends. This may be caused by the higher oxygen content in the
fuel mixture and the higher temperature in the cylinder [148]. The nanoparticles would
improve the oxidation process during combustion, leading to increased NOx emissions.
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Vellaiyan [149] studied the addition of nanoparticles to a modified fuel blend (diesel-
soy biodiesel) and compared the emission characteristics with those of diesel. The results
showed that the emission levels of CO and UHC emissions were significantly reduced, al-
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though NOx emissions increased slightly at full load. This is because alumina nanoparticles
can better use the oxygen inherent in soybean biodiesel.

In addition, some researchers found that nano-additives could reduce NOx emis-
sions.As shown in Figure 13, Perumal et al. [121] CuO nanoparticles of 50 ppm and 100 ppm
sizes were mixed into malachite biodiesel as fuel for CI engine. The experimental results
showed that after adding CuO nanoparticles, the NOx, CO and HC emissions of the fuel
were significantly reduced, and the NOx emissions are reduced by about 9.8%. It could
be due to the catalytic reaction of CuO nanoparticles improving the heat transfer in the
combustion chamber. In addition, the addition of copper nanoparticles can improve the
oxidation stability of Soya bean biodiesel and prevent its oxidation, thus reducing the NOx
emissions to a greater extent [150].
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5.2.2. The Effect of Nano-Additives on HC Emission

Unexploded HC are mainly pollutants produced by the incomplete combustion of
fuels. Many researchers have found that when engines run on biodiesel-diesel, the high
amount of oxygen in the biodiesel’s structure leads to complete combustion, resulting in
lower HC emissions [151–154]. In addition, the addition of nanoparticles can further reduce
HC emissions.

As shown in Figure 14, Dhinesh et al. [155] investigated the effect of adding 20 ppm
cerium oxide nano-additive to Cymbopogon flexuosus biofuel with cerium oxide on the
engine. The results show that compared with diesel-biodiesel without nanoparticles, HC
emission is reduced by 3.63% due to the oxygen vacancy capacity of ceria nanoparticles.

Kataria et al. [156] investigated the effect of WCO and 5 wt% of zinc-doped calcium
oxide nano-additives on diesel engine performance in a four-stroke, water-cooled, single-
cylinder, variable compression ratio direct injection diesel engine. The results showed that
the combustion of different percentages of biodiesel and blends with nanoparticles reduced
HC emission compared to diesel fuel. The nanoparticles could reduce further HC emission,
which indicated cleaner and more complete fuel combustion. In addition, as shown in
Figure 15, carbon nanotube particles have an additional carbon structure that leads to
increased HC emission compared with diesel fuel. At the same time, oxygenated additives
promote complete combustion and silver nanoparticles can reduce HC emission [30]. EL-
Seesy et al. [123] selected graphene oxide as a nanomaterial to prepare Jatropha curcas
biodiesel nano fuel at different concentrations (25, 50, 75 and 100 mg/L). The results showed
a 50% reduction in UHC emission of JME-GO blends compared with pure JME fuels. A
comprehensive comparison revealed that graphene oxide at a concentration of 50 mg/L
had the best effect on engine performance and emissions. In addition, the incorporation of
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nanoparticles (TiO2, CeO/CeO2, Al2O3, and GO/GNP) commonly used in nano fuel into
diesel-biodiesel can all reduce HC emission to varying degrees [157–163].
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5.2.3. The Effect of Nano-Additives on CO Emission

The main causes of CO production are insufficient oxygen, long oxidation residence
time, and high in-cylinder temperature, which leads to incomplete fuel combustion [164,165].
It is well known that biodiesel to diesel fuel can significantly reduce CO emission. In
addition, researchers have delved deeper and found that the addition of nano additives to
diesel-biodiesel can significantly reduce CO emission [114,166,167]. This section explains
the effect of nanoparticle addition to diesel-biodiesel fuel blends on CO emission.

As shown in Figure 16, Prabu [168] investigated the combustion and emission char-
acteristics of nano Al2O3 and CeO2 as additives to Jatropha curcas biodiesel in a single
cylinder four-stroke direct injection diesel engine. The results showed a 60% reduction in
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CO emission from the nanoparticle blend compared with diesel. The reduction of CO emis-
sion is mainly due to the catalytic nature and redox ability of Al2O3 and CeO2 nanoparticles,
which can further oxidize CO to CO2 [169]. Shaaf and Velraj [170] investigated the effect of
adding alumina as a nano additive to modified fuels on the combustion and emissions of
single cylinder direct injection engines. As shown in Figure 17, the CO emission of the fuel
with nanoparticles added at a 0–75% load were higher than that of diesel fuel because the
presence of alumina nanoparticles hindered the fuel mixing process at low loads. However,
the CO emission of the fuel with nanoparticles at full load are significantly lower than that
of diesel because the nanoparticles increase the atomization rate and redox characteristics
of the fuel at full load, which leads to complete combustion.
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6. Limitations of Nano Additive in Engine Applications

In the past few decades, researchers have discovered many excellent properties of
nano-additives (as shown in Figure 18), which have been widely used in engine applications.
However, their development in the engine field is hampered by several factors, such as
preparation costs, damage to engine components, and the effects of toxicity to plants,
animals, and humans when released into the atmosphere. Pantzali et al. [171] identified the
need for advanced and sophisticated equipment to prepare nanofluids, which could lead to
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high prices and was a significant factor preventing their mass application. Qibai et al. [172]
found that the use of carbon-coated aluminum may lead to higher ash accumulation in
the diesel particulate filter, hindering the performance of the after-treatment system and
the engine itself. Deqing et al. [173] found that fuel blends containing highly doped CeO2
nanoparticles could lead to premature engine ignition, and the nanoparticles left at the end
of the engine combustion process could be released into the atmosphere through smoke,
causing severe air pollution. Gantt et al. [174] analyzed CeO2 nanoparticles in exhaust
gases using electron microscopy. They found that about 40% of the cerium particles were
attached to micron-sized volcanic ash particles, and the rest were released into the air as
separate particles. The researchers also found some released cerium nanoparticles in water
and soil [175,176]. In addition, researchers found that carbon nanotubes, CeO2, TiO2, and
other particulate matter were released into the environment, and these nanoparticles, which
were about 10 nm in size, rapidly combined and fused into clusters of 100 nm or larger,
entering the air through the respiratory process, causing damage to the lungs, brain, eyes,
and liver, and possibly transferred to the fetus of a pregnant woman [177,178]. Exposure
of carbon nanotube nanoparticles in humans causes skin-related problems, ocular allergic
effects, and cardiovascular-related problems [179]. Gatti [180] evaluated 18 colon tissue
samples affected by cancer and Crohn’s disease and found nanoparticles in all cases.
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7. Comprehensive Evaluation of Nanoparticle-Doped Diesel-Biodiesel Using Life
Cycle Assessment

The addition of nano-additives is often considered a more environmentally friendly
fuel compared with diesel-biodiesel. However, this subjective decision may change when
considering the environmental burden of exhaust emissions during the production phase
and late combustion of the fuel. Therefore, there is a need to introduce new concepts and
methods to comprehensively assess the benefits and harms of biofuels for human health
and the environment [181]. Life cycle assessment (LCA) is an integrated environmental
analysis method that can be used to assess the environmental impact of different fuel
blends [182,183]. More precisely, the conventional combustion characteristics of diesel-
biodiesel engines with nano-additives are translated into several combined outputs (human
health, ecosystem quality, climate change, and resource damage categories) to derive the
most environmentally friendly blends. Mukhopadhyay et al. [184] conducted a comprehen-
sive analysis of nano-additives added to diesel-biodiesel using a LCA system, and the most
environmentally friendly diesel engine hybrid fuel was obtained. This approach maximizes
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engine performance while minimizing environmental and human hazards. As shown in
Figure 19, Hosseinzadeh-Bandbafha et al. [185] conducted a comprehensive study on the
emission index of carbon nanoparticles-doped diesel-biodiesel emulsion engines using
LCA. It was found that carbon nanoparticles blended fuel with 38 µM addition was the
most preferred as well as the most environmentally friendly. Overall, LCA can be used
as a “cradle-to-grave” analytical tool to evaluate the beneficial and/or adverse engine
and environmental impacts of various nano-additives added to diesel-biodiesel at various
stages of its life cycle.
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8. Conclusions

From this study, the selection of suitable nano-additives according to the physical and
chemical properties of biodiesel is important to improve engine performance and reduce
harmful emissions. This paper reviews the application of nano-additives in the field of
diesel-biodiesel fuel blends. The following conclusions can be drawn:

(1) Nano-additives have many excellent properties, such as large contact surface area,
good stability, good catalytic performance, fast oxidation rate, high heat of combustion,
etc. These advantages can be applied in the fuel field to improve the combustion of
internal combustion engines and reduce harmful gas emissions.

(2) The stable presence of nanoparticles in solution is significant, and among the two-
step methods, sol-gel and mechanical grinding are relatively simple and less costly
methods for making nanofluids.

(3) In general, researchers have usually studied with CuO, Al2O3, MWCNT, CeO2, GO,
CNT, and TiO2, which are nano-additives added to diesel-biodiesel fuel blends and
have achieved remarkable results. In terms of engine performance, CeO2 was the most
effective in reducing BFSC by as low as 30%, and MWCNT was the best in improving
BTE by up to 36.81%. In terms of emission, TiO2 has the best effect in reducing NOx,
with a minimum reduction of 22.57%, GNPs has the best effect in reducing CO, with a
minimum reduction of 65%, GO has the best impact in reducing HC, with a minimum
decrease of 70%.

(4) Nano-additives in the field of internal combustion engines should be concerned
about their harmful effects when they achieve significant results. After the engine
combustion process, the nano-particles left behind that are not involved in combustion
are released into the atmosphere; atmospheric pollution and human toxicity are severe.
Moreover, the introduction of LCA to fully evaluate the benefits and hazards of
biofuels to human health and the environment is described in detail.
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Therefore, nano-additives have a bright future in diesel-biodiesel engines. It should
be emphasized that the addition of nano-additives to diesel-biodiesel fuel blends is seen as
an important way to protect human health and improve the environment.
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