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Abstract: Clean heating has not been widely applied in rural Chinese areas. Considering the abun-
dance of solar energy resources, harvesting solar energy for heating can be an effective solution
to the problem of space heating in most rural areas. As the disperse building distribution in rural
areas makes it difficult to implement centralized heating on a large scale, deploying centralized–
decentralized hybrid solar heating system can achieve the best result from both the technical and
economic perspectives. Taking a virtual village in Tibet as an example, this paper explores how to
obtain optimal design of centralized–decentralized hybrid solar heating system based on building
clustering. The results show that: (1) Compared with the fully centralized system and fully decen-
tralized system, the centralized–decentralized hybrid solar heating system in the studied case could
achieve a life cycle cost (LCC) saving of 4.8% and 2.3%, respectively; (2) The LCC of centralized–
decentralized hybrid solar heating system basically decreases when the cost of the heating pipelines
in the whole region decreases, but the emergence of single-household solar heating system may
greatly increase the operating cost; (3) The necessity of designing a centralized–decentralized hybrid
solar heating system can be determined by the pipeline price and building density, but the threshold
values of pipeline price and building density are highly case-specific.

Keywords: density-based clustering; minimum spanning tree; solar heating system; system
optimization; genetic algorithm

1. Introduction

Buildings in rural areas of China are commonly dispersed in different locations,
making it difficult to implement centralized heating. For this reason, no effective heating
solution that can perfectly strike the balance between technical efficiency and economic
efficiency [1,2] has been found for rural areas. Abundant solar energy and low population
density in rural areas provide favorable conditions for the utilization of solar energy [3,4].
However, for rural areas with a scattered building layout, choosing an appropriate solar
heating mode is difficult. If a centralized solar energy system is used to provide heating
for multiple households, heat loss during long-distance heat transmission will increase
heating costs [5,6]. If independent solar heating systems are used to provide heating for
individual households [7–9], the overall energy efficiency of the heating systems cannot be
improved [10,11] because it is impossible to fully utilize the complementing effect [12–14]
between the heating loads of different buildings that are located relatively close to each
other. Therefore, neither a fully centralized solar heating system nor a fully decentralized
solar heating system is a good solution to space heating in dispersed rural areas; thus,
there is an urgent need to raise a new design method for solar heating systems in scattered
rural areas.

The energy loads of different types of buildings in an area can differ to varying extents.
As the load pattern varies from building to building, demand profiles of several adjacent
buildings can be aggregated over the same time horizon to level off the overall heating
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demand profile [15] so as to reduce the energy supply cost [16,17]. This is called the com-
plementing effect. To fully utilize the complementing effect, a centralized–decentralized
hybrid heating has been conceived [18,19]. To implement centralized–decentralized hybrid
heating, a building space clustering analysis needs to be carried out for the target area based
on building spacing and the complementary characteristics of loads. Then, independent
centralized solar heating systems can be designed for different building groups. Spatial clus-
tering is an analysis method that divides objects in a spatial data set into multiple clusters
composed of similar objects [20,21]. Spatial clustering methods mainly include partition
clustering algorithm [22,23], hierarchical clustering algorithm [24,25], density-based clus-
tering method [26,27], grid-based clustering method [28,29], and model-based clustering
method [30,31]. Among them, partitioning clustering algorithms, density-based methods,
and graph theory-based methods are more often used in regional building clustering.

A partitioning clustering algorithm is a heuristic method (e.g., based on K-means or
K-medoids algorithms) that divides a given set of objects into groups, so that each group
contains at least one object and each object belongs to and can only belong to one of the
groups. Unternährer et al. [32] used K-means clustering technique to divide the entire urban
area into several smaller neighborhoods. Similarly, Samira et al. [33] proposed a systematic
approach combining the K-means partitioning clustering method with a GIS model to
represent an urban area macroscopically as a set of “integrated partitions” integrated by
consumers, resources, and energy conversion technologies, solving the problem of energy
system design and operational strategy optimization in urban areas. However, the center
point of each region in this study was chosen autonomously. To overcome this shortcoming,
Giovanni et al. [34] used classification techniques and clustering algorithms to identify
representative buildings in each cluster. Predictive modeling was used to expand cluster
membership in the case where some buildings were excluded from the analysis. The graph-
theory-based approach, also known as the Minimum Spanning Tree (MST) clustering
algorithm, was first proposed by Zahn [35]. The main idea of this clustering method is
to first consider each object to be processed as a node of a “graph” and then find similar
relations (e.g., proximity relations) to form an undirected graph, and the constraint weights
are assigned to each edge of graph. Regnauld [36,37] analyzed the scale-independent
Gestalt parameters such as average size, shape, and density of each building group and
then established rules and constraints on the spatial structure of the triangular network,
but these constraints were not introduced hierarchically into the building clustering. To
disentangle the degree of influence of multiple constraints, Qi and Li [38] introduced the
constraints hierarchically into the building clustering process based on various influencing
factors such as distance, direction, and similarity. Although the above two methods were
often applied to the study of regional clustering of buildings, each method has obvious
limitations. For the K-means divisional clustering method, a pre-determined number
of clusters should be determined previously. Moreover, the initial cluster centers are
generated by random selection and sensitive to noisy data. For the graph-theory-based
method, constraints such as the number of clusters should also be determined in advance.
Therefore, these two methods are not suitable for spatial clustering of buildings with
different distributions in areas where the buildings are scattered.

The density-based clustering method, which can identify any number of clusters
with arbitrary shape in noisy datasets, is an appropriate solution to building clustering in
various regions [39]. The basic idea of the Density-based Spatial Clustering of Application
with Noise (DBSCAN) algorithm is that for each point of a cluster, the neighborhood of a
given radius has to contain at least a minimum number of points (Minpts) where radius
and Minpts are input parameters, but this initial method is sensitive to noisy data. Duan
et al. [40] improved on this by proposing a density clustering algorithm for discovering
clusters of different local densities in spatial databases, which is able to solve the problem of
clustering data with different local densities. The algorithm improved by Dharni et al. [41]
for multi-density data can obtain different values of neighborhood radius according to
the density of different data regions, which can effectively handle multi-density data,
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but each additional one has to traverse the data set, which greatly affects the efficiency
of the algorithm. A fast clustering algorithm for DBSCAN was proposed in study [42],
which reduces the number of region queries and thus the clustering time by selecting
individual representative objects in the core object neighborhood as seed points for class
expansion. Liu et al. [43] applied a new density-based spatial clustering algorithm, which
is able to detect clusters of arbitrary shape and non-uniform density in the presence of
noisy points in spatial objects. However, all of the above studies only performed density
clustering for spatial locations but failed to consider the load differential characteristics
between demand-side buildings. Wang [44] used a density-based clustering method
that considered the complementary effects of spatial dimensions and different demand
curves to improve the efficiency and accuracy of large urban energy–water linked system
optimization. Marquant [45] considered the building distances along with the load demand
of building users based on a density clustering algorithm and divided the urban-scale case
into multiple zones to solve the multi-scale energy network planning problem. However,
the above studies mostly target large-scale conventional energy systems in urban areas
with relatively stable energy production system. Very few studies have examined solar
heating systems, which are characterized by large fluctuations of power output.

In summary, although there has been some research focused on combining building
clustering with energy system optimization [46,47] to improve the overall financial and
technical performance [48], solar heating systems are rarely considered in which hydraulic
and thermal characteristics are fully studied in the calculation of transmission loss. In
this study, a new methodology is adopted to carry out an in-depth analysis of the impact
of building clustering on the design and operation of solar heating systems. After the
buildings with an area are clustered into multiple building groups, the designs of the
solar heating systems for different building groups are optimized separately, and the
optimal design of the centralized–decentralized hybrid solar heating system is obtained by
comparing the system life cycle costs (LCCs) [49] under different clustering schemes. The
results of this study provide theoretical support for the design of solar heating systems in
areas with a dispersed building layout. The main contributions of this study are as follows:

• An optimization framework is developed for centralized–decentralized hybrid solar
heating systems based on building clustering.

• A building clustering method is proposed by combining the DBSCAN with the Kruskal
minimum spanning tree algorithm.

• A sensitivity analysis is conducted to investigate the impacts of pipeline price and
building spacing on the design of solar heating systems.

The remainder of this paper is organized as follows: the methodology is provided in
Section 2, the results of the study are presented in Section 3, the discussion is presented in
Section 4, and the conclusions of the study are given in Section 5.

2. Methodology

The flowchart of the combined optimization method proposed in this paper is shown
in Figure 1. The process can be roughly divided into the following five steps:

(1) Collecting data;
(2) Building clustering based on density;
(3) Generating pipeline network in each building group;
(4) Optimizing the solar heating system design for each building group;
(5) Determining optimal building clustering scheme and optimal system design.

From Step (1) to Step (3), various categories of data are collected, the whole district is
divided into several clusters by using the density-based building clustering technique, and
the pipeline network is generated by using the Kruskal minimum spanning tree algorithm.
In Step (4) the corresponding solar heating systems for all the building clusters are designed.
Finally, by comparing the total system cost, the optimal building clustering scheme and
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optimal system design can be determined in Step (5). The technical details of the involved
approaches are described in Figure 1.
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2.1. Building Clustering

Among density-based building clustering methods, the DBSCAN algorithm is the
most widely used because (1) there is no need to specify the number of building groups in
advance, (2) building groups with arbitrary shapes can be discovered, (3) noise points can be
identified, (4) outliers can be handled properly. Because the DBSCAN algorithm is sensitive
to the initial parameter settings, we adjusted the neighborhood radius Eps and minimum
number of samples Minpts within a certain range to obtain different clustering schemes.

The execution steps of the DBSCAN algorithm are as follows:
Input: Dataset D, neighborhood radius Eps, and minimum number of samples Minpts.
Step 1: Randomly select an unprocessed object p from dataset D. If this object meets

the requirement of minimum number of samples within its neighborhood radius Eps, it is
called “core object”.

Step 2: Traverse the entire dataset; find all the objects that are density reachable from
object p (Ii an object set D, if there is a point chain p1, p2, . . . , pn, pi ∈ D (1 ≤ i ≤ n), and
pi+1 is directly density-reachable from pi, then point pn is deemed as density reachable
from p1) to form a new group.

Step 3: Generate the final clustering result based on density connections (of there is an
object o that makes both object p and object q density reachable from o, then object p and
object q are deemed as density connected).

Step 4: Repeat steps 2 and 3 until all objects in the dataset are processed.
It can be seen from the above steps that a density-based cluster is a group of density-

connected objects, and its purpose is to maximize density reachability. After clustering the
buildings using the DBSCAN algorithm, we can analyze the distribution of sample points
of each building group and set the core object point of each building group as the location
to install the centralized solar heating system.

2.2. Generation of Pipeline Network in Each Building Group

After the buildings are clustered using the DBSCAN density-based clustering method,
it is necessary to determine the pipeline network with minimum length in each building
group. The conventional Delaunay triangulation method can generate a two-dimensional
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planning map of buildings in each group and reduce the pipeline connections between
buildings far away from each other, but it cannot generate the pipeline network with
minimum length. On the basis of triangulation-based planning, this paper further applies
the Kruskal minimum spanning tree algorithm to generate pipeline network with minimum
total length while ensuring that all buildings can be connected.

The minimum spanning tree algorithm assumes that in a given undirected graph
G = (V, E), (u, v) represents the edge connecting vertex u and vertex v, and w(u, v)
represents the weight of this edge. Suppose there exists a subset of E called T; if T is an
acyclic graph and w(T) has the minimum value, then T is the minimum spanning tree of G.
The minimum edge weight can be calculated using Equation (1):

w(T) = ∑
(u,v)∈T

w(u, v) (1)

The Kruskal algorithm assumes that the initial state of the minimum spanning tree is
a non-connected graph T = (V, {}) with only n vertexes and zero edge, and each vertex in
the graph constitutes a connection component. The algorithm selects the minimum cost
edge from E. If the vertices attached to the edge are on different connection components in
T, the edge is added to T; otherwise, this edge is discarded and the next minimum cost edge
is selected. This operation is repeated until all vertices in T end up forming a connection
component. Therefore, Kruskal algorithm determines the shortest path connecting all
vertices according to the distribution of edge connections in the graph.

2.3. Design Optimization of Solar Heating System in Each Building Group
2.3.1. System Structure and Components

After the building groups are determined, a centralized solar heating system for each
building group can be constructed. The structure of the solar heating system in this study
is shown in Figure 2. The system consists of solar collectors, a natural gas boiler (auxiliary
heat source), a water tank, heating pipelines, and multiple heat users.

(1) Solar collector

In solar heating systems, a flat plate collector is the most widely used collector type.
The formulas [50] for calculating heat collection, inlet water temperature, and outlet water
temperature of collectors are as follows:

QSC(τ) = 3.6AC[FR(τα)e IC(τ)− FRUL(Tci(τ)− Tα(τ))] (2)

where QSC(τ) represents the heat collection capacity of collector at the time τ, kJ; FR
represents the dimensionless heat transfer factor of collector; AC represents the effective
heat collecting area of collector, m2; (τα)e represents the product of effective transmittance τ
and absorptivity α; IC(τ) represents the solar radiation intensity, W/m2; UL represents the
total heat loss coefficient of collector, W/(m2·◦C); Tci(τ) represents the inlet temperature of
collector at the time τ, ◦C; and Tα(τ) represents the ambient temperature at the time τ, ◦C.
The constant 3.6 in Equation (2) is required to convert heat units. The unit of heat collection
for solar collectors on the left side of the equation is kJ, while the unit of heat collection on
the right side is W. Therefore, the right side is multiplied by 3.6 to unify the units.

Tco(τ) =
QSC(τ)

csmsc
+ Tci(τ) (3)

where, cs represents the specific heat of thermal mass, kJ/(kg·◦C), and msc represents the
circulation mass flow of collector, kg/h. Tco represents the outlet temperature of collector,
◦C. Equation (2) calculates the amount of heat collected by the solar collector, which is used
as a known value in Equation (3) to calculate the outlet water temperature of the collector.
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(2) Water tank

In this paper, the short-term water tank is chosen as the heat storage facility, and a
single node model is developed. The mathematical expression of the temperature variation
of the water in the water tank is as follows [51]:

(ρwVtan kCw)
dTs(τ)

dτ
= QSC(τ) + Qgb(τ)−Qtan kloss(τ)−Qpipeloss(τ)−Qh(τ) (4)

where ρw is the water density, kg/m3; Cw is the specific heat capacity of water at constant
pressure, kJ/(kg·◦C); Vtan k represents the water tank volume, m3; dTs(τ)

dτ is the temperature
change in the water tank per unit time; Qgb(τ) represents the heat output from gas boiler
at the time τ, kJ; Qtan kloss(τ) represents the heat lost to the ambient environment from the
water tank at the time τ, kJ; Qpipeloss(τ) is the amount of heat loss from the transmission of
the pipe network at the time τ, kJ; Qh(τ) represents the heating demand of the building
group at the time τ, kJ.

The formula for calculating heat loss of water tank is as follows:

Qtan kloss(τ) = Utan k ·Vtan k · (TS(τ)− Tα(τ)) (5)

where Utan k represents the heat loss coefficient of water tank, W/(m3·◦C).

(3) Auxiliary heat source

In this paper, the natural gas water boiler is used as the auxiliary heat source in the
solar heating system, and its heat output can be calculated using Equation (6),

Qgb(τ) = 3600ηgbηloadPgb (6)

where ηload represents the operating load rate of gas boiler, %; ηgb represents the heating
efficiency (85%) of gas boiler, %; Pgb represents the rated power of gas boiler, kW.

(4) Heat loss during transmission

When each clustering scheme is determined, the amount of heat loss Qpipeloss(τ)
during transmission to each heat consumer at the time τ can be calculated as follows:
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Qpipeloss(τ) = (Tsu(τ)− Tre(τ)) ·
·

mp(τ) · Cw · ρw −Qh(τ) (7)

Tsu(τ) =

{
50, Ts(τ) < 50 ◦C
Ts(τ), Ts(τ) ≥ 50 ◦C

(8)

Qh,n = ερwcw
·

mn(Tsu,n − Tn) (9)

Qh,n = ρwcw
·

mn(Tsu,n − Tre,n) (10)

Tout = (Tin − Ta)e−λk Lk/(cwρw
·

mk) + Ta (11)

where
·

mp(τ) represents the water flow of primary network at the time τ, m3/h; Tsu(τ)
represents the temperature of the water supply out of the tank, ◦C; Tre(τ) represents the final
return water temperature of the primary network, ◦C; Tsu,n, Tre,n represents the primary
network inlet and outlet water temperature at user n, ◦C; Tn represents the secondary
network inlet water temperature at user n, ◦C; λk represents the heat transfer coefficient
of the pipe at pipe k, W/(m2·◦C); Lk represents the length of pipe k, m; ε represents the
heat transfer efficiency of the heat exchanger at user n, %;

·
mn represents the water supply

flow of primary network at user n, m3/h;
·

mk represents the water supply flow in pipe k,
m3/h; Tin, Tout represents the inlet and outlet water temperature of the pipe, ◦C; and Qh,n
represents the heating demand of the building group at user n, kJ.

2.3.2. System Control Strategy

The starting and stopping of the solar collector and auxiliary heat source are affected
by the temperature of tank. The control strategy of the solar heating system is shown in
Figure 3. The upper limit value of the water tank heating temperature is 85 ◦C. When the
difference between the outlet temperature of the solar collector (Tco) and the water tank
temperature (TS) is larger than or equal to 8 ◦C and the water temperature of the heat
storage tank is less than 85 ◦C, the circulating water pump at the collector end is turned
on; otherwise it is turned off. When the water temperature of the heat storage tank is less
than 50 ◦C, the auxiliary heat source is turned on; otherwise it is turned off. In Figure 3,
S represents the start–stop control switch for each device, Sco represents the start-stop
control switch for the solar collector, and Sgb represents the start-stop control switch for the
auxiliary heat-source gas boiler. When the device start-stop factor S is equal to 0, the device
is off; when S is equal to 1, the device is on.

2.3.3. Objective Function

For each building group, the optimization objective is to minimize the LCC of the
centralized solar heating system in that building group. The objective function is

minLCC = min(CRF · y · Cin + Com − Crc) (12)

where Cin represents the total initial investment of all equipment in the system (including
the cost of pipe network construction), CNY; Com represents the operation cost of sys-
tem equipment within the service life, CNY; Crc represents the residual value of system
equipment, CNY.

The initial investment of the system can be expressed as:

Cin = Cco · Aco + Ctan k ·Vtan k + Cgb · Pgb + Cpipe · Lpipe + Can (13)

where Cgb represents the equipment cost per input power of gas-fired boiler, CNY/kW; Cco

represents the unit price of solar collector, CNY/m2; Ctan k represents the equipment cost
of unit volume of water tank, CNY/m3; Cpipe represents the unit price of pipe network,
CNY/m; Lpipe represents the total length of pipe network, m; Can represents the cost of
accessories, including piping accessories such as water pumps, valves, etc., CNY.
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The annual operating and maintenance (O&M) cost of the heating system refers to the
fuel consumption cost incurred by the equipment operation and the related transportation
cost. In this study, the O&M cost largely consists of the cost of natural gas consumed by
the heating equipment. Therefore, the operation cost of the system equipment during the
operation period is

Com = Cuhgb ·
y

∑
i=1

Qhgb + CE ·
y

∑
i=1

Lpump + Cin · ζ (14)

where Cuhgb represents the unit heat price of the gas-fired boiler, CNY/kJ; Qhgb represents
the annual heat output of gas boiler, kJ; CE represents the unit electricity price, CNY/kWh;
Lpump represents the cumulative power consumption of the pump in a year, kWh; ζ
represents the ratio of equipment maintenance cost to equipment purchase cost, which is
set to 2%.

The unit heat price of the gas-fired boiler can be calculated as

Cuhgb = Cgas/(ηgb · Calgas) (15)

where Cgas represents the unit price of the gas, CNY/m3, and Calgas represents the calorific
value of natural gas, kJ/m3.

The residual value of system equipment is calculated using Equation (16):

Crc = Cin · r. (16)

where Crc represents net residual value of fixed assets (portion of the residual value of a
fixed asset at the end of its useful life, less any fixed asset liquidation costs payable), CNY,
and r represents the ratio of the net residual value of fixed assets to the original value of
fixed assets (varies in the range of 3–5% [52], set to 4% in this paper).

The capital payback factor is calculated as follows:
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CRF =
i(1 + i)y

(1 + i)y − 1
(17)

where i is the annual interest rate, set to 8%, and y is the service life of the system, set to
15 years [53].

2.3.4. Constraints

(1) Equality constraints

For each building group, the hourly heating supply of the solar heating system should
always be equal to the hourly heating demand of all users in the building group. The
mathematical expression of the equality constraint is

Qsc(τ) + Qgb(τ)−Qtan k(τ)−Qtan kloss(τ)−Qpipeloss(τ) = Qh(τ) (18)

where Qtan k(τ) represents the amount of heat stored by the water tank at the time τ, kJ.

(2) Inequality constraints

The system inequality constraints are expressed as follows.

0 ≤ Aco ≤ Amax (19)

0 ≤ Vsx ≤ Vmax (20)

0 ≤ Pgb ≤
Qhmax

ηloadηgb
(21)

40 ◦C ≤ TS ≤ 85 ◦C (22)

where Aco represents the total area of all solar collectors, m2; Vsx represents the volume of
water tank, m3; and Qhmax represents the maximum heating demand of building group,
in this case the maximum hourly heating load is set as 6.55 kW. The maximum area limit
for solar flat plate collectors is taken from a simulated typical building, whose roof area is
65.88 m2. The related parameter settings are shown in Table 1.

Table 1. Parameter settings.

Equipment Capacity Minimum Maximum

Collector area/m2 0 65.88
Tank volume/m3 0 10

Water tank temperature/◦C 40 85 [51]

At the beginning, the water temperature in the water tank is set to 50 ◦C, and the
temperature of the working medium in the collector is set to 10 ◦C.

The model is solved using the genetic algorithm in the Matlab environment, with the
time step set to one hour and the whole heating season (1 November to 31 March) set as
the calculation cycle. The optimization variables include the total area of solar collectors
(Aco), volume of water tank (Vtan k), and rated power of gas-fired boiler (Pgb). The related
calculation parameter settings are shown in Table 2.

The population initialization number of genetic-algorithm-related studies is generally
set within 50 to 200 in the relevant literature [56,57]. Each individual in the initialized
population corresponds to the capacity of a device in an optimized configuration scheme.
Within the reasonable range, the population initialization number is set to 150 in this study,
and the number of iterations is set to 20.
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Table 2. Calculation parameter settings.

Calculation Parameters Value

System service life y/year 15
FR(τα)e [50] 0.7843

Total heat loss coefficient [50] FRUL/(W/(m2·◦C)) 5.5024
Unit price of collector area [53] CCO/(CNY/m2) 800

Unit price of water tank volume [53] Ctan k/(CNY/m3) 500
Unit power price of gas-fired boiler [54] Cgb/(CNY/kW) 200

Heat loss coefficient of water tank [50] Utan k/(W/(m3·◦C)) 1.74
Pipe unit price Cpipe/(CNY/m) 200
Gas price [55] Cgas/(CNY/m3) 2

calorific value of natural gas [55] Calgas/(kJ/m3) 35,588
Electricity price CE/(CNY/kWh) 0.55

2.4. Comparison and Selection of Optimal Building Clustering Scheme and Optimal
System Design

After multiple clustering schemes are obtained through density-based cluster anal-
ysis, we can optimize the design of solar heating system for each building group in each
scheme and calculate the LCC of the solar heating system of each building group. Thus,
the total LCC of the solar heating systems in each building clustering scheme can be
obtained by adding up the LCCs of the solar heating systems of all building groups in
that building clustering scheme. The scheme with the lowest total LCC is the optimal
building clustering scheme, and the corresponding system design is the optimal design of
the centralized–decentralized hybrid solar heating system [58]. The principle is shown in
the following equation.

TLCC = min
n

∑
i=1

LCC(clusteri) (23)

3. Results
3.1. Case Analysis

Taking a virtual village in Tibet as an example, this paper selects a typical building
to simulate different heating load on a typical day (17 January) for analysis. The typical
building has two floors, with a total building area of 131.76 m2. In rural areas, there are
various type of buildings with different functions, including office buildings such as village
committees and some scattered offices. As some rural residents work at office buildings
in the daytime and rest in residential buildings at nighttime, the heating demands of
office buildings and residential buildings are totally different. Thus, the office building,
together with other two types of residential buildings, are assumed to be the three typical
buildings in this study. Three major building heating load types are generated via TRNSYS
simulation: residential building heating load (type 1) with people staying in the rooms
all day (stay time: 00:00–24:00), residential building heating load (type 2) with people out
during the day (stay time: 18:00 current day–08:00 next day), and office building heating
load (type 3) with people working in the rooms during work hours (stay time: 08:00–18:00).
Tables 3–5 show the specific differences of the three types.

The envelope parameters for a typical building are set [59] as shown in Table 6. The
ventilation rate for heating is set to 0.5 times/h [59], the cold air permeability coefficient is
set to 0.2 times/h [59], and only the bedrooms and living rooms are heated (the staircase is
not heated). The target indoor temperature is set to 15 ◦C [60], which can basically meet the
needs of people’s daily work and living. The lighting power density is set to 6 W/m2, the
equipment power density is set to 3.8 W/m2, and it is assumed that there are two persons in
one bedroom and three persons in a living room. The windows are double-layer insulating
glass, and the heat transfer coefficient is 2.88 W/(m2·K). The three types of heating loads
on the typical day are shown in Figure 4.
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Table 3. Setting of design parameters for residential building (type 1).

Time (h) 1–8 8–12 12–14 14–18 18–19 19–20 20–22 22–23 23–24

Probability of bedroom personnel being in
the room (%) 100 50 100 0 50 50 50 100 100

Probability of living room personnel being
in the room (%) 0 50 50 100 50 50 50 50 0

Bedroom lighting usage (%) 0 0 0 0 50 50 50 100 100
Living room lighting usage (%) 0 0 0 0 100 100 100 100 50
Bedroom equipment usage (%) 0 0 0 0 70 100 100 100 100

Living room equipment usage (%) 23 23 23 23 23 23 100 100 69

Table 4. Setting of design parameters for residential building (type 2).

Time (h) 1–8 8–12 12–14 14–18 18–19 19–20 20–22 22–23 23–24

Probability of bedroom personnel being in
the room (%) 100 0 0 0 50 50 50 100 100

Probability of living room personnel being
in the room (%) 0 0 0 0 0 100 100 50 50

Bedroom lighting usage (%) 0 0 0 0 0 50 50 100 100
Living room lighting usage (%) 0 0 0 0 0 100 100 100 50
Bedroom equipment usage (%) 0 0 0 0 0 70 100 100 100

Living room equipment usage (%) 23 23 23 23 23 23 100 100 69

Table 5. Setting of design parameters for office building (type 3).

Time (h) 1–8 8–12 12–14 14–18 18–19 19–20 20–22 22–23 23–24

Probability of office personnel being in the
room (%) 0 100 100 100 0 0 0 0 0

office lighting usage (%) 0 100 100 100 0 0 0 0 0
office equipment usage (%) 0 100 100 100 0 0 0 0 0

Table 6. Typical building envelope parameter setting.

Envelope External
Walls Roof Interior

Walls
External

Windows

Heat transfer coefficient K, W/(m2·◦C) 0.545 0.327 7.3 2.88
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Figure 4. Three typical daily heating loads on 17 January.

Taking the building spatial layout of a virtual village in Tibet as an example, we
assigned the above three types of heating loads randomly to the 18 buildings (assumed
to be identical) in the village (Figure 5). The district heating radius for this virtual village
is 86.24 m. Each point in Figure 5 represents a building, and different shapes represent
different load types. The buildings were then clustered using the DBSCAN density-based
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clustering method, during which equal-distance adjustments were made within the neigh-
borhood radius range (22–34 m) and the minimum sample number range (1–7). Totally
six different building clustering schemes were obtained and are shown in Figure 6. Differ-
ent clustering schemes were named A, B, . . . , F in the ascending order of the number of
building groups. Different clusters are distinguished by different colors. For example, there
are in total three clusters in scheme B, so the three clusters are marked with three different
colors. The hollow dots indicate that the single building constitutes a building group, and
its heating demand is satisfied by the single-household solar heating system.
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3.2. Optimization Results

The design optimization of the centralized–decentralized hybrid solar heating system
was carried out under 6 building clustering schemes, and the results are shown in Figure 7.
As can be seen from Table 7 and Figure 7, with the increase of the number of building
groups (i.e., clustering scheme changes from A to F), the total collector area, total tank
volume, and gas-fired boiler capacity of the centralized–decentralized hybrid solar heating
system show a gradual increasing trend, while the length of the heating pipes show a
continuous decreasing trend. When the clustering scheme changes from A to F, more and
more buildings start to be heated by single-household solar heating systems, resulting
in an increase in the capacity of heat-generating equipment, but the surplus capacity
takes a large proportion because the complementing effect between the heating loads of
different buildings is not fully utilized. When the number of building groups increases,
the building spacing in each building group decreases, so the length of heating pipeline
decreases correspondingly.

Table 7. The number of clusters in each clustering scheme.

Clustering Schemes A B C D E F

Number of clusters 1 3 6 11 14 18

Figure 8 shows the system LCC and its breakdown under different building clustering
schemes. It can be seen from Figure 8 that the system LCC decreases first, increases
suddenly, and then decreases with the increase in the number of building groups. Under
scheme B (the number of building groups is 3), the LCC of the centralized–decentralized
hybrid solar heating system is the lowest (171,200 CNY). The design of a district solar
heating system based on building clustering is carried out after taking full advantage of the



Energies 2022, 15, 1019 13 of 21

complementary characteristics of heating load between adjacent buildings. Compared with
the fully centralized system and fully decentralized system, the centralized–decentralized
hybrid solar heating system in the studied case could achieve a life cycle cost (LCC) saving
of 4.8% and 2.3%, respectively.
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The above variation patterns can be explained as follows: (1) When the clustering
scheme changes from A to B, the number of building groups increases from 1 to 3, the scale
of building groups and the total length of the heating pipelines decrease, so the pipeline
cost and heat transmission loss decrease. (2) When the clustering scheme changes from B
to C, the number of building groups increases from 3 to 6 and single-household heating
systems begin to appear. As each system is only used to meet the heating demand of a
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single household, the single-household heating systems will increase the surplus capacity
of the system, resulting in a greater increase in the cost of heat-generating equipment and
operating costs than the reduction in pipework costs. (3) When the clustering scheme
changes from C to F, more and more buildings are heated by single-household heating
systems, resulting in an increase in the surplus capacity of heat-generating equipment.
However, the pipeline cost decreases more. Therefore, with the increase in the number
of building groups, the total system LCC has been basically reduced in sync with the
pipeline cost. Compared with single-household solar heating, centralized–decentralized
hybrid solar heating based on building clustering can effectively reduce the capacity of
other equipment in the system except the heating pipeline, but this will also increase the
length of the heating pipeline. Therefore, whether building clustering can reduce the LCC
of the heating system in the whole region highly depends on the heating network, which is
characterized by the pipeline price and building spacing. Thus, it is necessary to conduct
sensitivity analysis from the perspectives of both pipeline price and building spacing.
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4. Discussion

In order to gain insights into how the clustering schemes can be appropriately made,
sensitivity analysis was carried out as a theoretical analysis of several virtual cases to
identify potential patterns in the clustering results related to pipeline price and building
spacing. According to the above analysis, the price of heating pipeline will significantly
affect the selection of the building clustering scheme, which in turn will affect the design
of the solar heating system. In order to investigate the influence of the pipeline price
on the design of solar heating system, we compared the system LCC of a typical solar
heating system under different pipeline prices (100 CNY/m, 150 CNY/m, 200 CNY/m,
250 CNY/m, and 300 CNY/m) with different building clustering schemes. The results are
shown in Figure 9.
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In Figure 9, the vertical axis represents the total LCC of the solar heating systems in
the cluster, and the horizontal axis represents different clustering schemes from A to F.
Different colors represent the LCC under different pipeline prices. The price of the heating
pipeline has a significant impact on the selection of optimal building clustering scheme.
Under the clustering scheme F, each building represents a building cluster that has its own
solar heating system. As there is no heat transmission between different buildings, there is
no need to build heating pipelines. Thus, the system LCC remains unchanged, which is
zero, when the heating pipeline price changes. When the clustering scheme changes from
A to F under the pipeline price of 200 CNY/m, the total cost of heating system decreases
first, increases afterwards, and decreases again. However, the range of variation is not
significant, so this price can be used as the price threshold to judge whether the local area
is suitable for deploying a centralized–decentralized hybrid solar heating system or not.
When the pipeline price is much higher than 200 CNY/m, the optimal building clustering
scheme is F. When the pipeline price is much lower than 200 CNY/m, the optimal building
clustering scheme is A. When the pipeline price is close to 200 CNY/m, the optimal system
design becomes hard to predict. Because all factors, including climate, building layout,
and building load in a region may all impact the design results, the determination of price
threshold is highly related to the specific case. Thus, it is necessary to conduct research
based on the local conditions in order to determine the optimal building clustering scheme
and heating system design.

In order to appropriately represent the impact of building spacing on the design result,
we assumed that heating radius of the village expands from 21.56 m to 344.96 m, and
the building spacing increases proportionally [61]. In order to quantitatively assess the
aggregation level of each cluster, a density index [44] is introduced in this study. The
density index is calculated by the following equation:

DENSITY =
LMST

N
(24)
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where N is the number of buildings in one cluster and LMST is the total length of heating
pipeline used for transmitting heating to these buildings in the same cluster, m. The
building density of the target area is 22.30.

The system LCCs under different building spacings with different building density
schemes are shown in Figure 10.
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As can be seen from Figure 10, the building density also has a significant impact on
the selection of an optimal building clustering scheme. Similar to the analysis about the
impact of pipeline price on the system design, there also exists a threshold that can be used
to judge whether the centralized–decentralized hybrid solar heating system is necessary.
For the specific case in this study, the density of 22.30 can be regarded as the threshold,
because there is no obvious fluctuation in the system LCC when building clustering scheme
changes. When the building density is less than 22.30, a centralized–decentralized hybrid
solar heating system is favorable. When the building density is more than 22.30, fully
decentralized solar heating system is favorable. Overall, the above results indicate that
centralized–decentralized hybrid solar heating system could achieve the ideal cost-saving
effect only when the pipeline price and building density fall into a certain range. Otherwise,
either fully centralized heating or fully decentralized heating is the optimal system design.

It is clear from the optimization results that the design of energy systems in rural areas
needs to take full account of local energy conditions and tailor energy policies to local
conditions. For energy companies, various service packages should be introduced to meet
the needs of different rural residents. For the government, a well-directed and preferential
subsidy policy [62] should be developed to encourage and stimulate rural residents to
participate in renewable energy utilization projects. However, the actual conditions of
the target area should be fully considered, e.g., the building layout, energy demands, and
natural resources. Moreover, differences in household assets, demographic characteristics,
and other livelihood capital may lead to different energy consumption behaviors [63].
Therefore, there is a need to select appropriate technology pathways and support policies
to accelerate the diffusion of renewable energy in rural areas.



Energies 2022, 15, 1019 17 of 21

5. Conclusions

This paper presents a building clustering method combining DBSCAN density clus-
tering and Kruskal algorithm, taking into account the complementary characteristics of
thermal loads between buildings, and proposes an optimization model of a centralized–
decentralized hybrid solar heating system that is capable of providing the optimal design
of solar heating system for each cluster scheme. The following conclusions can be drawn
through calculation and analysis:

(1) As the number of building groups increases, the total pipe length of a centralized–
decentralized hybrid solar heating system gradually decreases, while the total collector
area, total tank volume, and gas-fired boiler capacity all show a gradual increasing
trend. Compared with the fully centralized design and fully decentralized design,
the centralized–decentralized hybrid solar heating system in the studied case could
achieve an LCC saving of 4.8% and 2.3%, respectively. In the case of relatively
dispersed building layouts, a centralized–decentralized hybrid solar heating systems
for rural areas is a more suitable option.

(2) The economic cost of centralized–decentralized hybrid solar heating systems basically
varies in sync with the cost of the heating pipeline in the system, but the emergence
of single-household solar heating systems may greatly increase the operating cost.
Whether building clustering can reduce the economic cost of the heating system in
the whole region highly depends on the heating network, which is largely decided by
the pipeline price and building spacing.

(3) Finding the threshold of pipeline price and building density can simplify the pro-
cedure to determine the necessity of designing a centralized–decentralized hybrid
solar heating system. However, the determination of the threshold values is highly
case-specific. In this study, thresholds for pipe prices and building density were found
between the upper and lower limits, and using the proposed method, it is possible to
design an energy system solution that suits the local building layout.

This study develops a framework to optimally design the district centralized–
decentralized hybrid solar heating system based on building clustering, the impact of
some important factors (e.g., device prices and building spacing) on the design results are
analyzed by conducting sensitivity analysis, and the threshold values of these factors decid-
ing the system configurations are given. In fact, the co-utilization of the same solar heating
system will lead to the cost allocation problem in real engineering, which is not considered
in this study. Moreover, the social relationship between energy users in different buildings
may also significantly impact the heating system design, as some building owners may be
reluctant to share the same heating system. In the following study, the social relationship
between the owners of the buildings and the cost allocation issue will be fully considered,
so as to expand this study.
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Nomenclature
TS water tank temperature, ◦C
Tco outlet temperature of collector, ◦C
Tci inlet temperature of collector, ◦C
Tα ambient temperature, ◦C
Tsu temperature of the water supply out of tank, ◦C
Tre final return water temperature of primary pipe network, ◦C
QSC heat collection capacity of collector, kJ
Qgb heat output from gas boiler, kJ
Qtan kloss heat lost to the ambient environment from water tank, kJ
Qpipeloss amount of heat loss from the transmission of pipe network, kJ
Qh heating demand of building group, kJ
Qtan k heat stored by water tank, kJ
Aco total area of all solar collectors, m2

Vtan k volume of water tank, m3

Pgb rated power of gas-fired boiler, kW
FR dimensionless heat transfer factor of collector
IC solar radiation intensity, W/m2

UL total heat loss coefficient of collector, W/(m2·◦C)
Utan k heat loss coefficient of water tank, W/(m3·◦C).
LMST the distance obtained by Kruskal Minimum Spanning Tree, m
Qhgb the annual heat output of gas boiler, kJ
FRUL total heat loss coefficient, W/(m2·◦C)
ηload the operating load rate of gas boiler, %
Eps the neighborhood radius, m
Cin total initial investment cost, CNY
Com operation and maintenance costs, CNY
Crc residual value, CNY
Cgb equipment cost per input power of gas boiler, CNY /kW
Cco equipment cost per solar collector, CNY /m2

Ctan k equipment cost per tank volume, CNY /m3

Cpipe unit price of pipe network, CNY/m
Can cost of accessories, including piping accessories such as water pumps, valves, etc., CNY
Cuhgb unit heat price of gas-fired boiler, CNY/kJ
CE unit electricity price, CNY/kWh
Lpump cumulative power consumption of pump in a year, kWh
CRF capital payback factor
y service life of the system, year
i annual interest rate, %
r ratio of residual value to original value, %
ε heat transfer efficiency of heat exchanger, %
λk heat transfer coefficient of pipe at pipe k, W/(m2·◦C)
cs specific heat of thermal mass, kJ/(kg·◦C)
msc circulation mass flow of collector, kg/h
N the number of buildings in the same cluster
Calgas calorific value of natural gas, kJ/m3

ζ the ratio of equipment maintenance cost to equipment purchase cost, %
ηgb the heating efficiency of gas boiler, %
Minpts minimum number of samples
w(T) the minimum edge weight, m
DENSITY the density index
LCC life cycle cost, CNY
DBSCAN Density-based Spatial Clustering of Application with Noise



Energies 2022, 15, 1019 19 of 21

References
1. Luo, X.; Liu, Y.; Liu, X. Bi-level multi-objective optimization of design and subsidies for standalone hybrid renewable energy

systems: A novel approach based on artificial neural network. J. Build. Eng. 2021, 41, 102744. [CrossRef]
2. Luo, X.; Liu, Y.; Feng, P.; Gao, Y.; Guo, Z. Optimization of a solar-based integrated energy system considering interaction between

generation, network, and demand side. Appl. Energy 2021, 294, 116931. [CrossRef]
3. Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the

simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [CrossRef]
4. Zhou, D.; Ding, H.; Wang, Q.; Su, B. Literature review on renewable energy development and China’s roadmap. Front. Eng.

Manag. 2021, 8, 212–222. [CrossRef]
5. Rämä, M.; Mohammadi, S. Comparison of distributed and centralised integration of solar heat in a district heating system. Energy

2017, 137, 649–660. [CrossRef]
6. Morvaj, B.; Evins, R.; Carmeliet, J. Optimising urban energy systems: Simultaneous system sizing, operation and district heating

network layout. Energy 2016, 116, 619–636. [CrossRef]
7. Wu, T.; Xu, D.-L.; Yang, J.-B. Decentralised energy and its performance assessment models. Front. Eng. Manag. 2021, 8, 183–198.

[CrossRef]
8. Luo, X.; Xia, J.; Liu, Y. Extraction of dynamic operation strategy for standalone solar-based multi-energy systems: A method

based on decision tree algorithm. Sustain. Cities Soc. 2021, 70, 102917. [CrossRef]
9. Luo, X.; Liu, Y. A multiple-coalition-based energy trading scheme of hierarchical integrated energy systems. Sustain. Cities Soc.

2021, 64, 102518. [CrossRef]
10. Pajek, L.; Košir, M. Strategy for achieving long-term energy efficiency of European single-family buildings through passive

climate adaptation. Appl. Energy 2021, 297, 117116. [CrossRef]
11. de Uribarri, P.M.; Eicker, U.; Robinson, D. Energy performance of decentralized solar thermal feed-in to district heating networks.

Energy Procedia 2017, 116, 285–296. [CrossRef]
12. Wang, D.Y.; Xu, W.F. Low carbon city construction and building energy planning. J. HV&AC 2011, 41, 17–19.
13. Jafari-Marandi, R.; Hu, M.; Omitaomu, O.A. A distributed decision framework for building clusters with different heterogeneity

settings. Appl. Energy 2016, 165, 393–404. [CrossRef]
14. Xu, L.; Pan, Y.; Lin, M.; Huang, Z. Community load leveling for energy configuration optimization: Methodology and a case

study. Sustain. Cities Soc. 2017, 35, 94–106. [CrossRef]
15. Jing, R.; Wang, M.; Zhang, Z.; Wang, X.; Li, N.; Shah, N.; Zhao, Y. Distributed or centralized? Designing district-level urban

energy systems by a hierarchical approach considering demand uncertainties. Appl. Energy 2019, 252, 113424. [CrossRef]
16. Luo, X.; Hong, T.; Chen, Y.; Piette, M.A. Electric load shape benchmarking for small- and medium-sized commercial buildings.

Appl. Energy 2017, 204, 715–725. [CrossRef]
17. Luo, X.; Liu, Y.; Liu, J.; Liu, X. Optimal design and cost allocation of a distributed energy resource (DER) system with district

energy networks: A case study of an isolated island in the South China Sea. Sustain. Cities Soc. 2019, 51, 101726. [CrossRef]
18. Yang, L.; Entchev, E.; Rosato, A.; Sibilio, S. Smart thermal grid with integration of distributed and centralized solar energy systems.

Energy 2017, 122, 471–481. [CrossRef]
19. Rehman, H.U.; Hirvonen, J.; Sirén, K. Performance comparison between optimized design of a centralized and semi-decentralized

community size solar district heating system. Appl. Energy 2018, 229, 1072–1094. [CrossRef]
20. Lu, Y. Spatial Clustering Detection and Analysis. In International Encyclopedia of Human Geography; Elsevier: Oxford, UK, 2009;

Volume 1, pp. 317–324.
21. Miller, H.; Han, J. Geographic Data Mining and Knowledge Discovery, 2nd ed.; CRC: New York, NY, USA, 2009; p. 152.
22. Chawan, P.M.; Bhonde, S.R.; Patil, S. Improvement of K-Means clustering Algorithm. Int. J. Eng. Res. Appl. 2012, 2, 1378–1382.
23. Mahmud, M.S.; Rahman, M.M.; Akhtar, M.N. Improvement of K-means clustering algorithm with better initial centroids based

on weighted average. In Proceedings of the 7th International Conference on Electrical and Computer Engineering, Dhaka,
Bangladesh, 20–22 December 2012; pp. 647–650.

24. Karypis, G.; Han, E.-H.; Kumar, V. Chameleon: Hierarchical clustering using dynamic modeling. Computer 1999, 32, 68–75.
[CrossRef]

25. Shao, X.F.; Cheng, W. Improved CURE algorithm and application of clustering for large-scale data. In Proceedings of the 2011
IEEE International Symposium on IT in Medicine and Education, Guangzhou, China, 9–11 December 2011; pp. 305–308.

26. Yu, M.; Gao, Y.L.; Song, S.Y. The Algorithm of DBSCAN Based on Probability Distribution. In Frontier and Future Development of
Information Technology in Medicine and Education; Springer: Berlin/Heidelberg, Germany, 2014; pp. 2785–2792.

27. Lv, Y.; Ma, T.; Tang, M.; Cao, J.; Tian, Y.; Al-Dhelaan, A.; Al-Rodhaan, M. An efficient and scalable density-based clustering
algorithm for datasets with complex structures. Neurocomputing 2016, 171, 9–22. [CrossRef]

28. Schikuta, E. Grid-clustering: An efficient hierarchical clustering method for very large data sets. In Proceedings of the 13th
international conference on pattern recognition, Vienna, Austria, 25–29 August 1996; Volume 2, pp. 101–105. [CrossRef]

29. Chen, Z.; Liu, X.S.; Zhuang, D.X. A Fast Incremental Clustering Algorithm Based on Grid and Density. Natural Computation. In
Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007;
Volume 5, pp. 207–211.

http://doi.org/10.1016/j.jobe.2021.102744
http://doi.org/10.1016/j.apenergy.2021.116931
http://doi.org/10.1016/j.rser.2015.07.123
http://doi.org/10.1007/s42524-020-0146-9
http://doi.org/10.1016/j.energy.2017.03.115
http://doi.org/10.1016/j.energy.2016.09.139
http://doi.org/10.1007/s42524-020-0148-7
http://doi.org/10.1016/j.scs.2021.102917
http://doi.org/10.1016/j.scs.2020.102518
http://doi.org/10.1016/j.apenergy.2021.117116
http://doi.org/10.1016/j.egypro.2017.05.075
http://doi.org/10.1016/j.apenergy.2015.12.088
http://doi.org/10.1016/j.scs.2017.07.017
http://doi.org/10.1016/j.apenergy.2019.113424
http://doi.org/10.1016/j.apenergy.2017.07.108
http://doi.org/10.1016/j.scs.2019.101726
http://doi.org/10.1016/j.energy.2017.01.114
http://doi.org/10.1016/j.apenergy.2018.08.064
http://doi.org/10.1109/2.781637
http://doi.org/10.1016/j.neucom.2015.05.109
http://doi.org/10.1109/icpr.1996.546732


Energies 2022, 15, 1019 20 of 21

30. Chamroukhi, F. Robust EM algorithm for model-based curve clustering. In Proceedings of the 2013 International Joint Conference
on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–8. [CrossRef]

31. Van Lith, P.; Betlem, B.; Roffel, B. Fuzzy Clustering, Genetic Algorithms and Neuro-Fuzzy Methods Compared for Hybrid
Fuzzy-First Principles Modeling. Syst. Anal. Model. Simul. 2002, 42, 597–630. [CrossRef]

32. Unternährer, J.; Moret, S.; Joost, S.; Marechal, F. Spatial clustering for district heating integration in urban energy systems:
Application to geothermal energy. Appl. Energy 2017, 190, 749–763. [CrossRef]

33. Fazlollahi, S.; Girardin, L.; Maréchal, F. Clustering Urban Areas for Optimizing the Design and the Operation of District
Energy Systems. In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; Elsevier: Amsterdam, The
Netherlands, 2014; Volume 33, pp. 1291–1296. [CrossRef]

34. Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D.P. Identification of representative buildings and building groups in
urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Build. Environ. 2018,
140, 90–106. [CrossRef]

35. Zahn, C. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Trans. Comput. 1971, 20, 68–86.
[CrossRef]

36. Regnauld, N. Contextual Building Typification in Automated Map Generalization. Algorithmica 2001, 30, 312–333. [CrossRef]
37. Regnauld, N. Spatial structures to support automatic generalization. In Proceedings of the XXII Int. Cartographic Conference, A

CoruÒa, Spain, 11–16 July 2005; ISBN 0-958-46093-0.
38. Qi, H.B.; Li, Z.L. An approach to building grouping based on hierarchical constraints. Int. Arch. Photogramm. Remote Sens. Spat.

Inf. Sci. 2008, XXXVII, Part B2.
39. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Port Land, OR, USA,
2–4 August 1996; Simoudis, E., Han, J., Fayyad, U.M., Eds.; AAAI: Menlo Park, CA, USA, 1996; pp. 226–231, KDD-96
Proceedings. AAAI.

40. Duan, L.; Xu, L.; Guo, F.; Lee, J.; Yan, B. A local-density based spatial clustering algorithm with noise. Inf. Syst. 2007, 32, 978–986.
[CrossRef]

41. Dharni, C.; Bnasal, M. An improvement of DBSCAN Algorithm to analyze cluster for large datasets. In Proceedings of the 2013
IEEE International Conference in MOOC, Innovation and Technology in Education (MITE), Jaipur, India, 20–22 December 2013;
pp. 42–46.

42. Zhou, S.G.; Zhou, A.Y.; Cao, J. A fast density-based clustering algorithm. Comput. Res. Dev. 2000, 37, 1287–1292. (In Chinese)
43. Liu, Q.; Deng, M.; Shi, Y.; Wang, J. A density-based spatial clustering algorithm considering both spatial proximity and attribute

similarity. Comput. Geosci. 2012, 46, 296–309. [CrossRef]
44. Wang, W.; Jing, R.; Zhao, Y.; Zhang, C.; Wang, X. A load-complementarity combined flexible clustering approach for large-scale

urban energy-water nexus optimization. Appl. Energy 2020, 270, 115163. [CrossRef]
45. Marquant, J.F.; Bollinger, L.A.; Evins, R.; Carmeliet, J. A new combined clustering method to Analyse the potential of district

heating networks at large-scale. Energy 2018, 156, 73–83. [CrossRef]
46. Luo, X.; Liu, Y.; Liu, X. Multi-objective optimization and cost-based output pricing of a standalone hybrid energy system

integrated with desalination. Eng. Econ. 2020, 66, 51–70. [CrossRef]
47. Luo, X.; Liu, Y.; Liu, J.; Liu, X. Energy scheduling for a three-level integrated energy system based on energy hub models: A

hierarchical Stackelberg game approach. Sustain. Cities Soc. 2020, 52, 101814. [CrossRef]
48. Luo, X.; Zhu, Y.; Liu, J.; Liu, Y. Design and analysis of a combined desalination and standalone CCHP (combined cooling

heating and power) system integrating solar energy based on a bi-level optimizationmodel. Sustain. Cities Soc. 2018, 43, 166–175.
[CrossRef]

49. Zhang, P.F.; Ariaratnam, S.T. Life cycle cost savings analysis on traditional drainage systems from low impact development
strategies. Front. Eng. Manag. 2021, 8, 88–97. [CrossRef]

50. Zhu, C.; Liu, Y.; Sun, T.; Zhou, Y. Operation optimization of solar energy and air source heat pump combined heating system.
Build. Energy Environ. 2020, 39, 53–57. (In Chinese)

51. Guo, F.; Zhang, J.Y.; Tian, Y.; Yang, X.D. Analysis on size of storage tank in solar space heating system. Acta Energ. Sol. Sin. 2020,
41, 225–232. (In Chinese)

52. Huang, L.X. Objection to the estimated net residual value of fixed assets. Account. Issue 2004, 19, 30–31. (In Chinese)
53. Liu, Y.; Zhou, W.; Luo, X.; Wang, D.; Hu, X.; Hu, L. Design and operation optimization of multi-source complementary heating

system based on air source heat pump in Tibetan area of Western Sichuan, China. Energy Build. 2021, 242, 110979. [CrossRef]
54. Huang, J.; Fan, J.; Furbo, S.; Chen, D.; Dai, Y.; Kong, W. Economic analysis and optimization of combined solar district heating

technologies and systems. Energy 2019, 186, 115886. [CrossRef]
55. He, Z.N.; Zhu, D.Z. Technical Handbook for Solar Heat Supply& Space Heating; Chemical Industry Press: Qianjiang, China, 2009.

(In Chinese)
56. Zhu, Y.H.; Zhuang, D.Z. Application and Study of BP Neural Network and Genetic Algorithm for Optimizational Parameters

Based on MATLAB. Appl. Mech. Mater. 2013, 325–326, 1726–1729. [CrossRef]
57. Jin, F. Application of the MATLAB Genetic Algorithm toolbox in function optimization. Fujian Comput. 2009, 7, 23–24. (In Chinese)

http://doi.org/10.1109/ijcnn.2013.6706758
http://doi.org/10.1080/02329290290031350
http://doi.org/10.1016/j.apenergy.2016.12.136
http://doi.org/10.1016/b978-0-444-63455-9.50050-7
http://doi.org/10.1016/j.buildenv.2018.05.035
http://doi.org/10.1109/T-C.1971.223083
http://doi.org/10.1007/s00453-001-0008-8
http://doi.org/10.1016/j.is.2006.10.006
http://doi.org/10.1016/j.cageo.2011.12.017
http://doi.org/10.1016/j.apenergy.2020.115163
http://doi.org/10.1016/j.energy.2018.05.027
http://doi.org/10.1080/0013791X.2020.1853862
http://doi.org/10.1016/j.scs.2019.101814
http://doi.org/10.1016/j.scs.2018.08.023
http://doi.org/10.1007/s42524-020-0063-y
http://doi.org/10.1016/j.enbuild.2021.110979
http://doi.org/10.1016/j.energy.2019.115886
http://doi.org/10.4028/www.scientific.net/AMM.325-326.1726


Energies 2022, 15, 1019 21 of 21

58. Luo, X.; Liu, X.; Liu, Y.; Liu, J.; Wang, Y. Benefit-based cost allocation for residentially distributed photovoltaic systems in China:
A cooperative game theory approach. Front. Eng. Manag. 2021, 8, 271–283. [CrossRef]

59. JGJ 26-2018; Design Standard for Energy Efficiency of Residential Buildings in Severe Cold and Cold Zones. China Architecture &
Building Press: Beijing, China, 2018.

60. Zhang, Y.; Wu, L.Y. Research on the division of distributing regions of passive solar houses with zero-auxiliary heating source. J.
Xi’an Univ. Archit. Technol. 2020, 32, 227–233. (In Chinese) [CrossRef]

61. Liu, X. Energy stations and pipe network collaborative planning of integrated energy system based on load complementary
characteristics. Sustain. Energy Grids Netw. 2020, 23, 100374. [CrossRef]

62. Luo, X.; Liu, J.; Liu, Y.; Liu, X. Bi-level optimization of design, operation, and subsidies for standalone solar/diesel multi-
generation energy systems. Sustain. Cities Soc. 2019, 48, 101592. [CrossRef]

63. Liu, X.; Liu, X.; Luo, X.; Wang, M.; Fu, H.; Wang, B.; Hu, W. Analysis on the influencing mechanism of informational policy
instrument on adopting energy consumption monitoring technology in public buildings. Energy Effic. 2020, 13, 1485–1503.
[CrossRef]

http://doi.org/10.1007/s42524-019-0083-7
http://doi.org/10.15986/j.1006-7930.2000.03.007
http://doi.org/10.1016/j.segan.2020.100374
http://doi.org/10.1016/j.scs.2019.101592
http://doi.org/10.1007/s12053-020-09895-z

	Introduction 
	Methodology 
	Building Clustering 
	Generation of Pipeline Network in Each Building Group 
	Design Optimization of Solar Heating System in Each Building Group 
	System Structure and Components 
	System Control Strategy 
	Objective Function 
	Constraints 

	Comparison and Selection of Optimal Building Clustering Scheme and Optimal System Design 

	Results 
	Case Analysis 
	Optimization Results 

	Discussion 
	Conclusions 
	References

