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Abstract: Optimization of economic aspects of microgrid operation in both grid-connected and
islanded mode leads to contradictive definitions of optimality for both modes. There is no general
agreement on how to cope with this duality. To address this issue, as well as modern energy market
requirements and a better renewable energy utilization necessity in the case of large facilities, a
comprehensive control solution utilizing the appropriate model is needed. In response, the authors
propose a hybrid microgrid model covering fundamental features and designed to work in conjunc-
tion with two switched receding horizon control laws. A relevant controller is chosen according to the
current microgrid operation mode and its cost function tailored to specific demands of the islanded
or grid-connected operation. Performed research led to a new switched hybrid model predictive
control approach focused on microgrid economic optimization. This approach utilizes an appropriate
hybrid microgrid model also contributed by the authors. The introduced solution turned out to
be effective in overall energy cost reduction in the case of large commercial facilities, regardless
of grid-connection and renewable generation scenarios. Furthermore, it also provides satisfactory
renewable energy and storage capabilities utilization in changing grid connection conditions.

Keywords: microgrid economic optimization; energy efficiency; model predictive control; hybrid
systems modeling; microgrid modeling; smart grids; smart cities

1. Introduction

Recent policy for climate and energy leans towards reducing greenhouse gas emissions
and reaching energy systems without a significant carbon footprint. Electricity generation
and consumption are at the forefront of this change. Therefore, currently used distribution
and transmission grids will have to inevitably meet the above-mentioned requirements and
a key solution in achieving carbon-neutral smart grids seem to be wide usage of microgrid
solutions [1]. To reach that neutrality, a vast amount of renewable energy sources is vital
and transition to such means of energy production is already taking place. Unfortunately,
as pinpointed in [2], the adoption of renewable energy sources pose various challenges aris-
ing from user demands and fluctuate profiles of renewable energy generation far different
from traditional means of energy generation. The structural solution to those new chal-
lenges is splitting the electrical network into smaller units based on distributed resources.
Every smaller segment, the so-called microgrid, manages the local loads, generation and is
equipped with storage capabilities. Moreover, it possesses means of connecting to and dis-
connecting from other segments, as well as can exchange energy with them. This approach
significantly improves possibilities of remedying the instability of renewable sources and
allows for fuller utilization of available renewable energy. In addition, small independent
networks capable of island-mode operation tend to be incomparably more reliable in terms
of continuity of supply and, with appropriate control strategies, offer economical benefits
not only in remote regions.

According to [3], when considering complex microgrid control solutions, hierarchical
control is mainly selected. Such systems consist of three distinguishable levels. Primary
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control stabilizes system frequency and voltage in response to rapid load changes, thus
operating on the smallest timescale. Secondary control focuses on nullifying grid parame-
ters deviations in steady-state and synchronizing with the public grid after the transition
to grid-connected operation. Lastly, tertiary control is responsible for power flow control
between microgrid elements or between microgrid clusters and upstream, public grid.
Additionally, it introduces further functionalities in form of large-scale planning or eco-
nomic optimization. As reported in [4], microgrid management is often associated with
optimal control or optimization. Such optimization may concern economic, environmental,
or technical objectives and optimal operation can be achieved using various techniques.
Frequently used approaches include meta-heuristic or heuristic methods, stochastic and
robust methods, Model Predictive Control in various forms, linear, dynamic, and nonlinear
programming, as well as artificial intelligence.

Single and multi-objective optimization methods based on heuristic algorithms such as
particle swarm or firefly optimization are a widespread choice. Some of the usage cases in-
clude cost and sizing optimization with fossil fuel share reduction in energy generation [5],
microgrid load dispatch optimization [6] and for optimization of energy production cost in
a microgrid [7]. Meta-heuristics are also used in combination with other techniques such as
mixed-integer linear programming [8] or artificial neural networks [9]. On the other hand,
artificial neural networks can adapt to uncertainties and are applicable when the exact
model of a system is not available [10]. Exemplary applications include optimal energy
scheduling [11] and storage system management [12]. It is worth noting that, according
to [10], artificial neural networks are more commonly used in primary and secondary
control than on the tertiary level. An exemplary solution utilizing a fuzzy-logic decision
system in a multi-objective optimization problem can be found in [13]. Due to uncertainties,
such as energy demand and generation, robust and stochastic optimization and control al-
gorithms are also applicable in microgrid management cases. Robust optimization focused
on both economy and robustness is presented in [14]. An exemplary optimal stochastic
energy management system can be found in [15] and a robust economic energy and reserve
management system is derived in [16]. Lastly, different mathematical programming meth-
ods are widely used, including dynamic, mixed-integer, and nonlinear programming. Some
of the usage cases include energy generation cost optimization [17] and demand-generation
mismatch optimization [18]. Importantly, the latter two are often equated with hybrid
and nonlinear Model Predictive Control. Given the focus of this paper, usage of Model
Predictive Control and mixed-integer linear programming, especially in hybrid form, will
be discussed in detail below.

The applicability of Model Predictive Control (MPC in short) on all microgrid control
levels is one of its most significant advantages. As reported in [19,20], the popularity of
MPC stems from the fact that the resulting control strategy, due to the direct use of the
process model, respects all system interactions and constraints which are not that easy
to capture using other control methods. Moreover, it provides constraints satisfaction,
stability guarantee and is adequate in application to multi-variable processes. Going back
to the microgrid world, it is clear that any microgrid consists of a substantial amount of
interacting elements, sometimes in an unintuitive manner, and controllers must operate in
a significantly constrained environment. Interestingly, various phenomenons occurring
in microgrid exhibit hybrid behavior, therefore building microgrid hybrid models is not
overly complicated, especially in the economical scope. Additionally, receding horizon
control is highly compatible with hybrid systems and such a combination is widely used.
In [21], a hybrid model is used for economical optimization to include as much detail
as possible and conventional MPC is used in form of a single mixed-integer linear pro-
gramming (MILP) problem among other methods. The scope of research is focused on
grid-connected mode and islanded operation is not considered. A Single Hybrid MPC
(HMPC) solution using Mixed Logical Dynamical (MLD in short) framework in conjunction
with a highly efficient MILP solver is presented in [22]. The scope of modeling focuses
on economic and dynamic modeling of microgrid components including varying energy
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costs taken into account during optimization but no demand-side management. The ex-
act solution is dedicated to the Brazilian energy market. In turn, the authors of [23] aim
to design a management system dedicated to smart house systems. A hybrid model of
its electrical and thermal system is derived, HMPC for on-grid operation proposed and
solved using MILP solver. Importantly, a time-varying energy price is also introduced and
no demand-side management is considered. As can be seen, the usage of mixed-integer
linear programming is very wide, mainly because of highly accessible and efficient solvers,
as well as simulation environments equipped with toolboxes connecting solvers and hybrid
modeling tools. The synergy between microgrid modeled using discrete hybrid automata
described in HYSDEL language and resulting MILP solved using CPLEX solver is precisely
described in [24] where authors propose a hybrid optimization model for management of
microgrid featuring automatic grid connection. A similar approach is presented in [25].
The study presents a hybrid model predictive control solution to optimal economic energy
management of microgrid with hydrogen-based storage. Applied control scheme employs
single Lyapunov-based HMPC using microgrid model in discrete hybrid automata form
converted to MLD representation. Demand-side management is not considered and em-
phasis is put on grid-connected operation. The solution includes optimal dispatch and load
sharing controllers. Naturally, there are other usable optimization approaches, without the
introduction of receding control strategies in form of MPC. The authors of [26] use particle
swarm optimization with the aim of minimizing the operation cost of a microgrid and
improving photoelectric consumption by means of energy demand management. The algo-
rithm is also solving a single MILP problem. Varying energy price is used but the microgrid
remains connected to the public grid.

Considering the wide range of MILP applications and available tools authors of
this paper choose to develop a novel HMPC-based control solution covering separate
optimization of both on-grid and off-grid operation. To clarify, when dealing with microgrid
switching between on-grid and off-grid operation mode, the control system must achieve
an optimal solution regardless of the current mode. However, optimal control for each
of those modes should be reached using different criteria resulting in slightly different
optimization problems but still using the same microgrid model. That said, derivation
of compatible microgrid hybrid model was also needed. Moreover, such a model should
also cover demand-side management and the presence of energy-tariff with changing
energy price.

A novel control concept utilizing switched hybrid MPC applied to economically opti-
mize microgrid operation is the main contribution of this paper. Additionally, a compatible
hybrid microgrid model in MLD form featuring demand-side management, varying energy
price, and operation in both grid-connected and islanded mode is also contributed.

2. Economically Oriented Microgrid Hybrid Model

To date, various methods have been applied to model different aspects of microgrid
operation. The general use of hybrid modeling is a well-established approach to capturing
phenomenons occurring in a microgrid, understood as a dynamical system. Those phe-
nomenons tend to be nonlinear or highly complicated and, what follows, problematic to
directly model. This also entails high computational cost which is vital for model predictive
control-oriented applications. Segmenting complex relationships into relatively simple
pieces and switching them depending on certain conditions proves very useful, especially
in the case of microgrids. Multiple distinguishable microgrid components are naturally
operating in a hybrid manner, for example, energy storage is either discharged or charged,
depending on energy demand and supply balance. The authors decided on employing a
hybrid microgrid model in the mixed logical dynamical form given reduced computational
burden and high compatibility with phenomenons occurring in a microgrid, as well as
with model predictive control. This section introduces a hybrid model built to work in
conjunction with the proposed switched MPC control approach.
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2.1. Energy Storage Description

The derived energy storage model is based on the simple principle of energy balance
sourced from [21] and expanded. Variable Est(k + 1) represents energy aggregated in
energy storage at time k + 1, which depends on current storage level Est(k), constant self-
discharge Esd, energy discharged from storage 1

ηd
E− and amount of energy charging the

storage ηcE+. Charging and discharging efficiency is taken into account and labelled as ηc
and ηd, respectively. Equation (1) describes the aforementioned relationship:

Est(k + 1) = Est(k) + ηcE+(k)−
1
ηd

E−(k)− Esd (1)

Energy charging the storage unit is described as previous energy balance in microgrid
Eb(k− 1) multiplied by boolean δb which indicates positive or negative Eb(k− 1) as follows:

E+(k) =

{
Eb(k− 1) for δb(k) (zex(k))
0 otherwise

(2)

where zex(k) denotes auxiliary variable defined as a product of the real variable Eb(k− 1)
and the logical condition δb. It is equivalent to the expression zex(k) = δb(k)Eb(k − 1).
A similar notation will be used throughout the whole model description. Charging delay
is added to take into account that storage charging or discharging is not instant. Further-
more, energy discharged is expressed as previous energy balance Eb(k− 1) minus already
explained E+(k):

E−(k) = Eb(k− 1)− E+(k) (3)

Substitution of E+(k) and E−(k) to Equation (1) reveals that δb is used to nullify
or include certain expressions depending on energy balance. This means that, given
negative Eb(k), auxiliary binary variable δb(k) becomes zero and storage is discharged with
efficiency ηd. On the other hand, in the case of non-negative energy balance, hence δb(k)
equal one, storage is charged with the efficiency ηc. Finally, self-discharge constant Esd
consists of energy spent to cool storage units labeled as Eac and energy lost due to natural
self-discharge End:

Esd = Eac + End (4)

Appropriate Eac and End values are adopted based on informations from [27].

2.2. Transactions with a Public Energy Network

Other essential components of a microgrid model are energy transactions with a public
energy network. Considering an economically oriented approach, those can be understood
as costs and gains associated with buying and selling energy, respectively. At this point,
it should be emphasized that authors assume energy purchase prices change over time
according to the energy tariff given in [28], which is currently available in Poland. Figure 1
shows the resulting energy price chart.

Figure 1. Energy price chart according to chosen energy tariff.
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As can be seen from Figure 1, three pricing periods can be distinguished: standard
price f f lat, morning peak price fmp and evening peak price fep. Introduction of a simple
timer ttim is necessary for the model to correctly switch between aforementioned prices.
Time aggregated in ttim is increased at every time step k by sampling time Ts and reset,
by subtracting 24, if boolean δtim(k) indicates that ttim(k) is equal or greater than 24. This
relationship is specified by:

ttim(k + 1) = ttim(k) + Ts − ztim(k) (5)

ttim(k) ≥ 24⇐⇒ δtim(k) = 1 (6)

ztim(k) = 24δtim(k) (7)

That simple timer made switching between energy prices according to the current
time possible. However, actual energy price switching is based on inequalities and binary
auxiliary variables δt1(k), δt2(k), δt3(k) and δt4(k) becoming true when certain time has
been exceeded. Variables tmps and tmpe indicate starting and ending time of morning peak,
respectively. Similarly, teps and tepe correspond with the evening peak as follows:

ttim(k) ≥ tmps ⇐⇒ δt1(k) = 1 (8)

ttim(k) ≤ tepe ⇐⇒ δt2(k) = 1 (9)

ttim(k) ≥ teps ⇐⇒ δt3(k) = 1 (10)

ttim(k) ≤ tmpe ⇐⇒ δt4(k) = 1 (11)

In addition, the amount of energy exchanged with the public grid is denoted by Eex
and related auxiliary variable δex, describing its sign, defined in the following way:

Eex(k) ≥ 0⇐⇒ δex(k) = 1 (12)

Then, using timing taken from Equation (9) through Equation (11) and pricing accord-
ing to Figure 1, variability of base energy cost cc(k) can be expressed as:

cc(k) =


Eex(k) fmp for δt1(k) ∧ δt4(k) ∧ δex(k) ∧ δcp (zmp(k))
Eex(k) fep for δt2(k) ∧ δt3(k) ∧ δex(k) ∧ δcp (zep(k))
Eex(k) f f lat for ∼ (δt1(k) ∧ δt4(k))∧ ∼ (δt2(k) ∧ δt3(k)) ∧ δex(k) ∧ δcp (z f lat(k))
0 otherwise

(13)

At last, the total energy purchase cost is defined as an aggregate of various fees,
multiplied by the amount of energy exchanged with the public grid Eex(k). Besides,
according to [28], total energy cost cb(k) consists of switched base energy cost cc(k), co-
generation fee fcg, renewable energy fee fres, quality fee fq and switched power cost cp(k)
further associated with the power fee fp, hence:

cb(k) = Eex(k)( fcg + fres + fq) + cc(k) + cp(k) (14)

with cp(k) defined as:

cp(k) =

{
Eex(k) fp for δt1(k) ∧ δt2(k) ∧ δex(k) ∧ δcp (zp(k))
0 otherwise

(15)

Note that binary variable δcp is associated with the grid connection status. Conse-
quently, when in on-grid mode, δcp equals one and in off-grid mode, its value changes
to zero.

On the contrary, profit from selling excessive energy cs(k) is described by significantly
simpler Equation (16). Given negative Eex(k) indicated by δex(k) equal to zero and active
connection with public grid due to δcp(k) = 1, energy is sold at price fsell . If at least one of
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those conditions is not met, the microgrid is not connected to public grid or is buying the
energy, therefore cs(k) is set to zero.

cs(k) =

{
−Eex(k) fsell for ∼ δex(k) ∧ δcp(k) (zs(k))
0 otherwise

(16)

As a result, profit cs(k) equals the amount of sold energy multiplied by the constant
energy selling price. Appropriate energy selling price is taken from [29] and converted
to euros.

2.3. Critical and Non-Critical Energy Demand

The aforementioned microgrid energy balance takes into account two main load
sources. Both critical Ec(k) and non-critical En(k) loads are given as sum of various
lesser loads:

Ec(k) =
n

∑
i=1

Eci(k) (17)

En(k) =
n

∑
i=1

Eni(k) (18)

Due to the fact that non-critical loads are also controllable, it is necessary to introduce a
demand reduction coefficient β(k). This also poses a problem because β(k) is considered as
an input and disturbance En(k) is treated as a state variable. By definition, every equation
forming part of a mixed logical dynamical model must be affine and hence multiplication
and division of inputs, outputs, and state variables are not permitted. In other words, it
has become necessary to approximate the product of controllable loads summary demand
En(k) and demand reduction coefficient β(k). The main idea is to restrict the range of
values of β(k) to predefined, fixed values of βapx by checking in what range β lies at time k,
store the results of performed checks in binary variables δb1(k). . . δb6(k) defined as follows:

β(k) ≥ βapx1 ⇐⇒ δb1(k) = 1 (19)

β(k) ≥ βapx2 ⇐⇒ δb2(k) = 1 (20)

β(k) ≥ βapx3 ⇐⇒ δb3(k) = 1 (21)

β(k) ≥ βapx4 ⇐⇒ δb4(k) = 1 (22)

β(k) ≥ βapx5 ⇐⇒ δb5(k) = 1 (23)

β(k) ≥ βapx6 ⇐⇒ δb6(k) = 1 (24)

and round original β(k) down to predefined values of βapx1. . . βapx6 in accordance with
the following rules:

Enapx(k) =



En(k)βapx1 for δb1(k)∧ ∼ δb2(k) (zapx1(k))
En(k)βapx2 for δb2(k)∧ ∼ δb3(k) (zapx2(k))
En(k)βapx3 for δb3(k)∧ ∼ δb4(k) (zapx3(k))
En(k)βapx4 for δb4(k)∧ ∼ δb5(k) (zapx4(k))
En(k)βapx5 for δb5(k)∧ ∼ δb6(k) (zapx5(k))
En(k)βapx6 for δb6(k) (zapx6(k))

(25)

The resulting expressions are affine and further applicable to the energy balance
equation. Figure 2 illustrates the methodology set out above through a simple example.
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Figure 2. Visualization of β approximation.

2.4. Power Generator and Energy Balance in Microgrid

It was decided that there would be a deadband on power generator power to mitigate
inconsiderable power values resulting in unnecessary generator activation. Therefore,
generator power Pg(k) is checked if lower than the deadband Pdb and the result is stored
in δdb(k). In case of the power demanded from the generator at time k being less than or
equal to Pdb, boolean δdb(k) is set to zero as set out below:

Pg(k) ≤ Pdb ⇐⇒ δdb(k) = 1 (26)

Moreover, the usage of a power generator bears some costs which cannot be omitted.
Overall generator operation cost cmg is composed of fuel cost approximated by means of
expression z f a1(k)− z f a2(k) and constant maintenance cost cmnt. The generator state is
described using boolean δg(k), with zero indicating that it is not providing any power. As a
result, cmg(k) is described as:

cmg(k) = z f a1(k)− z f a2(k) + zmnt(k) zmnt(k) = cmntδg(k) (27)

It is worth noting that when generator power output lies under specified threshold
Ptr, checked through the following inequality:

Pg(k) ≤ Ptr ⇐⇒ δtr(k) = 1 (28)

fuel cost is independent to Pg and set using fconst. Otherwise, linear approximation using
coefficients fa, fb and fuel price f f d gets chosen. However, the partial fuel cost z f a2(k) is
solely used to nullify the influence of fconst on the fuel cost when above the threshold value.
The aforementioned functionality is introduced using Equations (29) and (30).

z f a1(k) =

{
fconst f f dTs for δtr(k)
( faPg(k) + fb) f f dTs otherwise

(29)

z f a2(k) =

{
fconst f f dTs for δtr(k)∧ ∼ δg(k)
0 otherwise

(30)

Generator startup and shutdown is also to be penalized using already mentioned
boolean generator status δg(k), with csSD and csSU being two cost coefficients, respectively,
for shutdown and startup. Therefore, the resulting cost cst(k) is defined as:

cst(k) = csSD(∼ δg(k) ∧ δg(k− 1)) + csSU(δg(k)∧ ∼ δg(k− 1)) (31)

Finally, energy balance in microgrid Eb at the time k is circumscribed as the sum of
various demands and supplies resulting in Equation (32). The variable ERES expresses
energy provided by renewable sources, Eex2 describes transactions with the public grid
and excessive energy utilization in off-grid mode, zg represents energy provided by power
generator including the deadband and delay to account for power generator reaction time,
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Ec stands for summary critical energy demand and Enapx expresses the energy demand of
controllable loads with respect to demand-side management, hence:

Eb(k) = ERES(k) + Eex2(k) + zg(k− 1)− Ec(k)− Enapx(k) (32)

Note that zg, related to the generator, is delayed one step to account for its response
time. In the interests of clarity and simplicity powers provided by generator Pg and
renewable sources PRES are redefined to corresponding energies as follows:

ERES(k) = PRES(k)Ts (33)

zg(k) = Pg(k)δdb(k)Ts (34)

Furthermore, Eex2 is in fact just redefined Eex with the difference that Eex2 allows
for excessive energy utilization in the off-grid mode which is irrelevant in terms of cost-
oriented Equation (14). As shown in Equation (35), Eex2 is not zeroed either in the on-grid
mode to allow energy selling or when Eex is negative, to allow excessive energy utilization
in the off-grid mode. This can be then summed up using the following expression:

Eex2(k) =

{
Eex(k) for ∼ δex(k) ∨ δcp(k) (zex2(k))
0 otherwise

(35)

2.5. State-Space Model in MLD Form

All equations introduced in previous subsections are converted to single HYSDEL
script in accordance with [30] and compiled, resulting in a hybrid microgrid model in
general mixed logical dynamical form with x(k) being system state vector, y(k) expressing
output vector and u(k) corresponding to input vector:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) + B5 (36)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) + D5 (37)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5 (38)

with vectors of auxiliary variables δ(k) and z(k) defined as follows:

δ = [δex δb δtim δtr δdb δt1 δt2 δt3 δt4 δb1 δb2 δb3 δb4 δb5 δb6]
ᵀ (39)

z = [zex zmp zep z f lat zs zp zex2 zapx1 zapx2 zapx3 zapx4 zapx5 zapx6 ztim z f a1 z f a2 zmnt zg]
ᵀ (40)

and output, input, as well as state vectors given in the form of:

y(k) =
[
cst(k) cmg(k) cs(k) cb(k) SOC(k) βinv(k)

]ᵀ
(41)

u(k) =
[

Eex(k) Pg(k) β(k)
]ᵀ

(42)

x(k) =
[

Est(k) PRES(k) En(k) Ec(k) ttim(k) Eb(k) Eb(k− 1) Pg(k) Pg(k− 1) δg(k) δg(k− 1) δcp(k)
]ᵀ

(43)

Furthermore, two newly introduced output variables SOC(k) and βinv(k) account
for energy storage percentage state of charge and percentage controllable load demand
reduction, respectively, and are defined as:

SOC(k) = 100
Est(k)
Emax

(44)

βinv(k) = 100(1− β(k)) (45)

with Emax indicating storage capacity.
Importantly, the MLD state-space matrices are omitted due to large sizes but nonethe-

less, the method used in receiving them is well known and precisely described in [30,31].



Energies 2022, 15, 833 9 of 21

3. Microgrid Control System Oriented towards Economic Optimization

To optimize the microgrid economical performance, adequate control strategy is
needed. According to various studies including [1,2], model predictive control is one of the
few methods capable of handling complex requirements in terms of control quality in a
microgrid environment and at the same time is characterized by a high compatibility with
complicated hybrid systems used to model microgrids. By using a novel, switched hybrid
model predictive control approach authors are able to incorporate network connection
tolerance in controller design.

3.1. Control System Concept with Switched Hybrid MPC

To accommodate different control objectives and slightly different perceiving of op-
timality in the on-grid and off-grid modes it is decided that the best approach to achieve
optimal performance in terms of costs, but also relatively consistent storage energy level, is
to use dual MPC switched according to connection status to the public power grid. This
is done by having suboptimal control law u∗(k) switch between u∗o f f (k) and u∗on(k) under
dictation of the connection status δcp(k). This can be then expressed as:

u(k) =

{
u∗o f f (k) for ∼ δcp(k)

u∗on(k) for δcp(k)
(46)

In addition, various delays are introduced into the control system structure to take
into account the time needed for performing state and output measurements and also the
amount of time required to calculate control signals. For this reason, at time k, both control
laws are evaluated using measurements from timestep k − 1. Thanks to that approach,
an online optimization solution is applicable due to the fact, that the optimization could
take up to Ts. Figure 3 illustrates the implemented control system structure.

Figure 3. Schematic diagram of the chosen control system structure with switching between two
hybrid model predictive control laws.

3.2. Optimization Problem Formulation

The major element of the model predictive control algorithm is the cost function that
is being minimized. As already mentioned, the authors opted for switched MPC, therefore
two cost functions are introduced. Based on those functions, two optimization problems
are formulated, the first being used when a microgrid is connected to the public grid and
the second exclusively for the off-grid operation. The generalized cost function value
depends on the weighted sum of input, output, and state vector elements using vector
norms. The weight matrices are denoted as R for input vector u and Q for outputs y.
Moreover, J also features reference values for output variables indicated by yr. Apart from
cost function, the optimization problem involves various constraints, concerning energy
storage unit, power generator and demand reduction. Storage energy level, rate of charge,
rate of discharge, as well as generator power, are limited in values and rates of change
marked with ∆. The energy exchanged with the public grid is constrained only in terms of
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values. As a result, optimization problem based on the aforementioned cost function J and
solved in constrained solution space is defined as follows:

min
uk ,...,uk+N

J =
N

∑
k=1
‖Ruk‖1 + ‖Q(yk − yr)‖1 (47)

subject to

Estmin ≤ Estk ≤ Estmax

∆Estmin ≤ Estk − Estk−1 ≤ ∆Estmax

0 ≤ Pgk ≤ Pgmax

−∆Pgmax ≤ Pgk − Pgk−1 ≤ ∆Pgmax

βmin ≤ βk ≤ βmax

−∆βmax ≤ βk − βk−1 ≤ ∆βmax

−Eexmax ≤ Eexk ≤ Eexmax

x0 =x(k) u0 = u(k) y0 = y(k)

with weight matrices and output reference values switched according to operation mode
and defined as:

R =

{
Ro f f (k) for ∼ δcp(k)
Ron(k) for δcp(k)

(48)

Q =

{
Qo f f (k) for ∼ δcp(k)
Qon(k) for δcp(k)

(49)

yr =

{
yro f f (k) for ∼ δcp(k)
yron(k) for δcp(k)

(50)

It is also important to emphasize that Equation (36) through Equation (38) hold for
each k and that xk denotes the prediction step instead of the time step. Initial prediction
values x0, u0 and y0 equal state, input, and output values measured at time k for which
optimization is performed.

According to Equation (46), one problem is solved at every time step k resulting in a
series of N suboptimal control vectors uk, . . . , uk+N from which only the first one is used
and becomes u(k + 1). Optimization problems described above are synonymous with
model predictive control. Therefore, three model predictive control laws are implemented
in MATLAB using Multi-Parametric Toolbox 3.0 according to the guidelines from [32]. Two
of them are included in the switched MPC and one is used for comparison purposes during
testing in form of the non-switched MPC. To speed up control calculation, an efficient MILP
solver from Gurobi Optimizer [33] is used.

4. Parameters and Testing Scenario

It is important to outline model and controllers parameters used during testing and
to emphasize the chosen approach in terms of energy generation and demand scenarios.
The aim was to use as much real-world data as possible, in order to prove the adequacy of
the developed hybrid model and control solution.

4.1. Parameters and Constraints

Various parameters are introduced in expressions composing the hybrid model as well
as in the process of optimization problem formulation. They are then collected in Table 1
and their values were chosen according to distinct sources. Values of βapx1 through βapx6
are selected assuming 50% maximal controllable load reduction and, by setting adequate β
constraints βmax and βmin, a range of values between 100 and 50 percent with 10 percent
maximal rate of change ∆βmax is achieved. It is assumed that the maintenance cost cmnt
equals EUR 1 per hour, the shutdown cost csSD is the same as the price of one unit of fuel
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and startup cost csSD is half the shutdown cost. The natural discharge End, the energy
needed for storage cooling Eac, the efficiencies ηc and ηd as well as the maximal amount of
energy charged ∆Estmax and discharged ∆Estmin over Ts are sourced from [27] as well as the
storage capacity Estmax . The minimal allowed level of energy in storage Estmin is selected
keeping in mind that deep discharge is unacceptable. Parameters fa, fb and fconst, related
to fuel cost are calculated based on [34]. Generator maximum power Pgmax comes from the
same source. Although Ts may prove sufficient for the chosen generator to ramp up to
full power, a much smaller additional ramp up constraint ∆Pgmax is selected to allow for
smoother operation. The energy pricing, including various fees, is borrowed from [28] and
converted to euros. The generator deadband Pdb, fuel threshold Ptr, required connection
power Eexmax , identical to the maximal amount of energy exchanged with public grid,
sampling time Ts and prediction horizon N were fine-tuned during preliminary testing.

On the other hand, matrices of weighting coefficients mentioned in Equation (47),
as well as weighting matrices Rs and Qs associated with single hybrid MPC used during
simulation as a reference, have the following values:

Ron =

25 0 0
0 50 0
0 0 0.1

 Qon =



250 0 0 0 0 0
0 250 0 0 0 0
0 0 1000 0 0 0
0 0 0 2000 0 0
0 0 0 0 15 0
0 0 0 0 0 5



Ro f f =

50 0 0
0 25 0
0 0 0.1

 Qo f f =



250 0 0 0 0 0
0 250 0 0 0 0
0 0 100 0 0 0
0 0 0 1 0 0
0 0 0 0 15 0
0 0 0 0 0 1



Rs =

25 0 0
0 50 0
0 0 0.1

 Qs =



250 0 0 0 0 0
0 250 0 0 0 0
0 0 1000 0 0 0
0 0 0 2000 0 0
0 0 0 0 15 0
0 0 0 0 0 3



(51)

Note that matrices dedicated to different operation modes have slightly different
values. Such diversity allows for different control policies depending on connection status.
For example, Ron features a lower energy exchange penalty and much higher generator
usage punishment compared to Ro f f . Moreover, in the case of Ro f f , those priorities are
reversed, which is much needed in off-grid mode. On the other hand, values of Qs and Rs
should be viewed as a necessary compromise to accommodate for the lack of a switching
mechanism. Given the fact, that on-grid mode poses more cost reduction opportunities,
penalties expressed through both Qon and Qs encourage the management system to sell
more energy if possible and buy less of it from the public grid. At the same time, Qo f f and
Qs allow for a greater extent of load shedding compared to Qon. Similarly, three reference
values vectors are specified:

yron =
[
0 0 10 0 90 0

]ᵀ
yro f f =

[
0 0 0 0 40 0

]ᵀ
yrs =

[
0 0 10 0 65 0

]ᵀ (52)

All outputs except for cs and SOC are to be minimized in the on-grid scenario, hence
their reference values are set to zeros, which nullifies the reference value. On the other
hand, cs denotes income from energy selling, therefore it is to be maximized by means of
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setting very high desired income and therefore turning a resulting problem into income
maximization. When it comes to SOC, the reference value is introduced to encourage
storage unit charging with renewable energy but, at the same time, to leave a sufficient
margin. There is no energy sales opportunity in off-grid mode therefore, reference vector
yro f f , aside from storage state of charge reference, differs only in cs reference value being
changed to zero. Significantly lower target stored energy level allows to not overuse diesel
generator. Values of yrs are similar to yron with one exception being the lower state of
charge reference required to achieve acceptable storage utilization in both on-grid and
off-grid mode.

Table 1. Microgrid model parameters and constraints.

Parameter Value Unit Parameter Value Unit

βapx1 0.5000 - fb 0.5000 -
βapx2 0.6000 - fconst 6.100 -
βapx3 0.7000 - fep 0.1292 EUR/kWh
βapx4 0.8000 - fmp 0.1062 EUR/kWh
βapx5 0.9000 - f f lat 0.0787 EUR/kWh
βapx6 1.0000 - fsell 0.0569 EUR/kWh
βmax 100 % fcg 0.0003 EUR/kWh
βmin 50 % fp 0.0169 EUR/kWh

∆βmax 10 % fq 0.0023 EUR/kWh
cmnt 0.25 EUR fres 0.0005 EUR/kWh
csSD 0.4478 EUR f f d 0.8956 EUR/litre
csSU 0.8956 EUR N 15 -

Eexmax 50 kWh Pdb 0.5000 kW
End 0.0082 kWh Pgmax 100 kW
Eac 2.000 kWh ∆Pgmax 25 kW

Estmin 100 kWh Ptr 32.50 kW
Estmax 480 kWh Ts 0.25 h

∆Estmin −220 kWh ηc 0.9700 -
∆Estmax 61 kWh ηd 0.9700 -

fa 0.1662 -

4.2. Simulated Microgrid Configuration

The authors choose to analyse the performance of the proposed solution when applied
to a large commercial facility with its own photovoltaic installation, power generator and
energy storage. This is why the aggregated, total critical energy demand profile consists
of various load profiles sourced from small and medium businesses as well as residential
buildings, to imitate shops, workshops, public buildings, and lodging facilities connected
to the considered microgrid. Figure 4 features the structure of the analysed microgrid.

What is more, basic controllable loads are also present in form of air conditioning, wa-
ter heating, and decorative elements. The microgrid is connected to the public grid via the
point of common coupling and energy can be exchanged in both directions. Fundamental
information flow concerning the energy management system is also shown in Figure 4.
Aside from energy supply and demand, information on the connection status, as well as,
the storage state is delivered to the management algorithm, while the amount of energy
exchanged with the public grid, generator power set-point, and degree of energy supply
reduction is returned. The main optimization goal is to minimize operation cost, but it
simultaneously takes into account some technical aspects such as generator and storage
usage or continuity of energy supply. Still, the system is also intended to improve the use of
renewable energy. Another point is that, in off-grid mode, microgrid is unable to exchange
energy with the public grid but is able to utilize excessive energy. Nevertheless, such a
surplus of energy is to be avoided. On the other hand, in on-grid mode, the microgrid can
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freely exchange energy with the public grid. It is also worth adding that switching from
on-grid to off-grid mode can be also equated with a power outage in the public grid.

Figure 4. Considered microgrid configuration for a large commercial facility.

4.3. Energy Generation and Demand Scenarios

It is decided that the developed system will be tested using two solar power generation
patterns, the first being a sunny day with nearly peak power and the second being a cloudy
day with very changeable power output. By choosing such scenarios, the solution could
be checked for economical benefits, storage level consistency, and solar energy utilisation
in radically different renewable energy supply conditions. Both one-day scenarios are
prepared using averaged data acquired from a solar plant located in Stargard in Poland.
On the other hand, critical and non-critical demand profiles, already mentioned in the
previous subsection, are prepared using end-user data sourced from [35]. Scenarios chosen
for later use in the simulation are shown in Figure 5.

Figure 5. Critical and non-critical energy demand and solar energy data used during simulation.

What is more, the total energy demand of controllable loads is fairly constant. How-
ever, critical demand is notably higher between the hours of 9:00 and 22:00.

4.4. Performed Tests and Their Methodology

Having all the necessary data, the authors opted for three-stage testing. Firstly, a basic
comparison of switched HMPC performance during the sunny and the cloudy day is made.
Naturally, to activate the control law switch, microgrid grid-connection mode changes
during the simulation period. Such a simple method is chosen to assess how different
generation scenarios affect performance in combined on-grid and off-grid operations.
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Secondly, it was considered appropriate to compare the performance of the proposed
approach against a standard, single, non-switched HMPC solution. Such conduct allows
for a confrontation of switched MPC approach with non-switched one without additional
factors and under the same conditions. As a result, the main part of the testing process is
focused on evaluating the advantages and disadvantages of switched control applied to
the specific case. It is mainly through the lens of economical performance but other factors,
including technical aspects, are also analysed. Consequently, two types of tests have been
performed at this stage:

• comparison of both control strategies over 48-h long simulation period consisting of
the sunny day followed by the cloudy day and with two connection mode switches

• comparison of total operation cost for both approaches using aforementioned renew-
able energy supply scenario but with varying initial storage state of charge SOC(0)
and time of connection mode switch from on-grid to off-grid to f f .

The first routine allows for closer inspection of how individual variables change over
time and how high are output values associated with economical performance. The second
one is solely dedicated to total operation cost exploration in respect to a varying initial state
of charge and mode-switch time. Notably, this routine consists of combined data collected
from 49 individual, 48-h long, test runs. Therefore, each time, two parallel simulations
were performed. Figure 6 illustrates how the tests concerning switched and non-switched
HMPC were performed in MATLAB.

Figure 6. Diagram showing the methodology used to compare switched and non-switched HMPC per-
formance.

Following initial conditions were used during all three stages of testing:

x(0) =
[
SOC(0)Estmax 0 0 0 0 0 0 0 0 0 0 1

]ᵀ (53)

u(0) =
[
0 0 100

]ᵀ (54)

The value of SOC(0) is constant for the first, as well as for the second test and equals
52%. For the purposes of the third routine, two sets are defined in the following way:

X =
{

30 40 50 60 70 80 90
}

(55)

S =
{

0 8 16 24 32 40 48
}

(56)

as well as their Cartesian product:

XS = X × S (57)

The set X contains percentage SOC(0) values, and the set S contains connection mode
switch times to f f . The set XS contains all ordered pairs from sets X and S .

As a result, for each of the 49 pairs test runs are performed using every combination
of initial states of charge SOC(0) and mode change times to f f contained in the table XS . It
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is also worth adding that in this case, only one operation mode switch happens during the
simulation and the microgrid always starts in on-grid mode.

5. Results

Having hybrid microgrid model, control laws, and all the parameters, as well as data,
prepared, simulations are carried over. In order to properly analyse the results, measures
of performance are introduced. Summary startup and shutdown, maintenance, and energy
costs, as well as income from selling energy, are used to better understand simulation
results. Moreover, average SOC and β are also analysed. All those values are presented in
appropriate tables. Furthermore, corresponding figures containing storage state of charge,
energy balance, and all system inputs are also provided. The comments concerning the
first two testing routines are made based on information derived from relevant figure-table
pairs. The last routine is discussed on the basis of the appropriate figure, as well as some
additional numerical data.

5.1. Comparison of Microgrid Performance in Different Renewable Energy Generation Scenarios

The numerical results obtained from sunny and cloudy renewable energy generation
scenarios analysis are summarised in Table 2, while Figure 7 compares storage state of
charge, energy balance, and system inputs over the simulation horizon. It is apparent from
the aforementioned table that the cloudy day turned out to be significantly more costly.
For instance, Cst, Cmg, and Cb have, respectively, about 2.5, 2.5, and 2.2 times higher values
for the case of the cloudy day in comparison to the case of the sunny day. Consequently, this
leads to a 146% higher total operation cost. As Figure 7 shows, such a huge difference stems
from the necessity of compensating for lacking energy supply in off-grid mode, mainly
after 18:00, by means of the power generator. In contrast, higher SOC in the evening of
the sunny day translates into a longer period without the need for energy generated from
diesel fuel.

Table 2. Aggregated output values associated with microgrid operation cost and averaged state of
charge and energy demand reduction coefficient values for sunny and cloudy day.

Variable Sunny Day Cloudy Day Unit

Cst = ∑ cst 0.89 2.24 EUR
Cmg = ∑ cmg 32.43 82.41 EUR

Cs = ∑ cs 0 0 EUR
Cb = ∑ cb 8.77 19.04 EUR

Ctotal = ∑(cst + cmg − cs + cb) 42.09 103.69 EUR
SOC 47.60 38.84 %

β 95.73 90.94 %

From the chart, it can be also seen that SOC in on-grid mode is kept relatively low
in wait for renewable energy supply but when a significant amount of energy becomes
available operation mode is changed. In both scenarios, storage is charged visibly over the
level specified by the reference value, but in the case of the cloudy day, this process is much
less significant. That explains why the average SOC during the cloudy day is 18% lower.
Given the limited time in on-grid mode, there is no energy being sold regardless of the
scenario, hence Cs equals zero. Additionally, in Figure 7 there is a clear trend of reducing
controllable load energy supply only when diesel generator is needed. It can be also seen
from the aforementioned figure, that more fluctuations of energy balance (Eb) occur in
off-grid mode. Furthermore, around 14:00 during the sunny day, a significant amount of
excess energy appears.



Energies 2022, 15, 833 16 of 21

Figure 7. Storage state of charge, energy balance and all system inputs over a 24-h simulation period
of the sunny and cloudy day.

It is important to emphasize that the purpose of this test is to initially verify if chosen
modeling and control approach is appropriate and combined lead to satisfactory results in
one of the simpler scenarios. Summarizing, performed test exhibited that chosen switched
control approach is capable of handling basic energy generation and grid-connection
scenarios. It proves able to use the capacity of the storage to its advantage and to not
overuse power generator although some excess energy occurred, which is not ideal.

5.2. Comparison of Microgrid Performance Using Switched and Non-Switched HMPC Control

Turning now to the second test, the developed switched HMPC approach is compared
with standard, single hybrid MPC. The analysis is based on a 48-h long simulation in-
cluding both the sunny and cloudy days, as well as two grid-connection mode transitions.
The numerical data produced as a result are gathered in Table 3 and matching charts are
presented in Figure 8. Firstly, as Table 3 shows, Cmg and Cb are higher for the case of single
hybrid MPC by about 12% and 34%, respectively. This denotes that, although Pg charts
for both cases seem similar, single HMPC tend to use the generator to a slightly greater
extent. What is more, switched HMPC tend to buy significantly less energy in the on-grid
mode based on data contained in Figure 8. Besides, there is no excess energy at all in
off-grid mode, regardless of the control approach and both control laws make the grid sell
a substantial amount of energy.
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Table 3. Aggregated output values associated with microgrid operation cost and averaged state of
charge and energy demand reduction coefficient values obtained using switched and single hybrid
MPC solutions in the two-day scenario.

Variable Switched HMPC Single HMPC Unit

Cst = ∑ cst 4.93 4.93 EUR
Cmg = ∑ cmg 99.81 112.06 EUR

Cs = ∑ cs 10.83 18.16 EUR
Cb = ∑ cb 30.28 40.55 EUR

Ctotal = ∑(cst + cmg − cs + cb) 124.19 139.38 EUR
SOC 48.62 45.09 %

β 92.50 96.82 %

Figure 8. Storage state of charge, energy balance, and all system inputs obtained using switched and
single hybrid MPC solutions in the two-day scenario.

Interestingly enough, as presented in Table 3, a single HMPC manages to achieve 67%
greater income from energy sales compared to the competitive solution but its summary
operation cost is higher by about 12%. This leads to the conclusion that overall energy
exchange with the public grid is more efficient in the case of switched HMPC, especially
considering identical Cst values and similar Pg values over the whole simulation period.
Another point is that switched solution also provides 8% higher average state of charge
(calculated as percent relative difference). Figure 8 illustrates that both solutions exhibit
similar trends in respect of SOC, although, considering Eb and SOC, switched approach
seem to provide a slightly more consistent storage energy level than the single MPC
solution. This can prove important when considering the storage life cycle. Nevertheless,
the single MPC provides 5% higher average β value even though it features a greater extent
of load shedding penalization. Still, the share of the controllable load in overall energy
demand is relatively small and it does not translate into significant gains in economical
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terms. Admittedly, the performed test shows that switched HMPC approach has a slight
advantage over single HMPC control not just in terms of economical benefits.

5.3. Comparison of Switched and Non-Switched HMPC Control Performance in Various
Connection Scenarios and with Varying Initial Storage State of Charge

The previous test shows the advantage of switched hybrid MPC on the example of a
single scenario but it falls short in proving its superiority in a wider variety of circumstances.
Therefore, to somehow address obvious concerns about the adequacy of the proposed
solution third testing routine is introduced. Through preliminary testing, the initial state of
charge SOC(0) and the time of the transition between on-grid and off-grid operation to f f
are selected as key factors with possibly the biggest impact on simulation results. Finally,
as mentioned in the previous section, 49 simulations covering various combinations of
SOC(0) and to f f are conducted, and gathered data is used to create surfaces shown in
Figure 9.

Figure 9. The total cost of microgrid operation depends on the initial storage state of charge and the
time at which operation mode is changed from on-grid to off-grid.

Although the third testing procedure is the most complicated one, conclusions based
on the relation of both surfaces are rather simple. As it turns out, the quantity of time
in different operation modes has the biggest impact on total microgrid operation cost,
while the impact of the initial state of charge is rather marginal. The single most striking
observation to emerge from overall cost comparison is the fact, that the cost-surfaces do
not intersect and the surface related to switched hybrid MPC is located below the surface
tied to the single HMPC, which in turn, proves that in all 49 cases, overall operation cost is
lower when utilizing the novel solution proposed by the authors. The greater the share
of off-grid operation, the more significant the gains become, which may seem obvious
considering two oriented on specific mode cost functions as opposed to only one. Averaged
total operation cost reduction amounts to 6.26% when using switched MPC with a maximal
cost reduction of 11.23% and a minimal reduction of 3.12%, which proves the adequacy of
the proposed method based on simulation data available to the authors.
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6. Conclusions

Research presented in this paper led to the development of a microgrid economi-
cal optimization strategy based on switched hybrid model predictive control as well as
a compatible microgrid hybrid model on the basis of which the receding horizon con-
trol algorithm operates. The performance of the proposed control scheme was analyzed
through three-stage simulation testing using real solar generation data and real energy
demand profiles. The study was intended to compare and contrast the level of performance
gains offered by switched model predictive control compared to non-switched one. The
introduced solution proved to be effective in changing grid connection conditions and
renewable energy generation regardless of the grid-connection scenario. Its usage led to a
6% averaged total operation cost reduction in comparison with the single HMPC strategy.
Another important point is that the greater the share of off-grid operation, the more signifi-
cant the gains become. Besides, this profit is made mainly due to better renewable energy
utilisation management. An obvious drawback is the lack of means of energy demand
and production forecasting, which means optimization is performed assuming constant
demand and production over the prediction horizon. This is not ideal but, given the fact
that the system presented in this paper manages to work well without forecasting certain
data, this approach can be deemed useful for simple systems. Nonetheless, implementing
such functionalities could noticeably improve performance.

Despite needing minor amendments, the proposed solution can be used in microgrid
management systems intended to cope with common energy supply interruptions or
highly autonomous microgrids in remote regions. Due to generalized microgrid model
formulation and commonly available and exchangeable tools, the proposed model and
control scheme does not depend on specific equipment or software and should be applicable
to any standard microgrid. Given the conceptual character of this study, the authors intend
to supplement more functionalities through further research and address shortcomings
found during testing. Future work suggests the implementation of advanced energy
demand and supply forecasting capabilities, as well as more sophisticated demand-side
management functionalities.
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