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Abstract: The results show that Wood Chips of Acacia Nilotica trees available in Sudan lands can
be successfully used in the gasification process and, on the same basis, as a bio-renewable energy
resource. Simulation models were used to characterize the air gasification process integrated with
a Regenerative Gas Turbine Unit. The results revealed that at a moisture content of 12%, gasification
temperature of 1500 K, pressure of 20 bar, and air-like gasification medium, the biomass gasifier’s
flow rate is higher at higher syngas rates. The results verified that there is an optimum ER for each
syngas rate, in which the slow growth of the ER revealed the maximum gasifier biomass flow rate.
For ER growth at lower levels, the specific fuel consumption (SFC) of the RGT Unit declines sharply
from the maximum value reached at 0.27 kg/kW·h at an ER of 5% to the minimum value reached
at 0.80 kg/kW·h at an ER of 25% for the lowest gasification temperature of 1000 K. Moreover, ER
growths at low levels have a significant effect on the RGT plant’s performance, leading to increased
RGT thermal efficiency. The increase in the biomass moisture content led to a sharp decrease in the
RGT thermal efficiency. The RGT thermal efficiency remains high at higher gasification pressure.
The results revealed that the syngas lower heating value remains high at lower produced syngas
rates. At the optimum ER, the H2 mole fraction depicted a value of 1.25%, 0.85% of CO, and 10.50%
of CH4 for a lower heating value of 38 MJ/kg syngas. It is shown that the gasification air entered into
the gasifier decreases amid the increase in the biomass moisture content. At different syngas rates
(3–10 kg/s) and optimum ER, the results predicted that the Wood Chip biomass flow rates decrease
when the gasifier efficiency increases. The simulation model revealed that ER growths at lower levels
have a significant effect on increasing the power of the RGT plant.

Keywords: Acacia Nilotica; air gasification; syngas; equivalence ratio; regenerative; gas turbine

1. Introduction

Agriculture is considered the driver force of income and livelihood in Sudan. This
sector occupies between 60% and 80% of the population and is regarded as the engine for
raising other economic zone, such as trade, industry, and transport [1,2].

In Sudan, biomass is a vital renewable energy source because the carbon in biomass is
observed as part of the biological carbon cycle widely produced on the land [3]. Biomass is
a biological substance that consists of forest, agricultural, and paper waste [4,5] and various
organic materials [6]. Because of the absence of a power supply in the rustic population,
the rural population principally relies on biomass as a wellspring of energy [1]. Just
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around 10% of the whole population uses fossil fuels, primarily in urban areas. Biomass
powers such as wood, cow waste, and agriculture garbage are primarily gathered from
the local regime and have turned into an exchanged ware as cooking fuel. Biomass (such
as wood, agricultural residue, and municipal waste) [7–10], with its sustainability and
overall accessibility, is relied upon by numerous individuals to assume a key part in future
energy scenarios.

The gasification process is usually accomplished in three steps [11]. Firstly, the gasifica-
tion of biomass particles [12,13] happens through the drying step, which is pursued by the
second process of the pyrolytic reactions [14,15], in a minimum oxygen environment, which
results in a DE volatilization and declining of the biomass particle [16]. The end process is
the formation of tar and char. The pyrolysis step occurs progressively from the surface and
moves towards the center of the biomass particles [11]. During the gasification reactions,
only a limited amount of air will be supplied to the gasifier to avoid any occurrence of the
combustion reactions. The air provided should not be exactly the measure of air utilized
for complete oxidation of the biomass. Through this process, the biomass will be converted
into valuable products, such as a combustible mixture of gases known as syngas, producer
gas, or wood gas [17–20]. This producer gas is also known as synthetic gas, which is
composed of carbon monoxide (CO), methane (CH4), along with carbon dioxide (CO2),
hydrogen (H2), and nitrogen (N2) [17,21]. Nitrogen is not an inflammable gas; thus, it is not
preferred as a component in the producer gas, as it dilutes the syngas and has no energy
value. The proportion of the thick biomass stage to the total reactor volume is an important
factor in classifying the biomass gasifiers. According to this procedure, the gasifier can be
categorized into (a) thick-phase gasifiers and (b) lean-phase gasifiers. In the lean-phase
gasifier, such as the fluidized bed, the volume occupied by the biomass is very limited
to about 0.05–0.20 m3. Most of the gasifiers used for heavy-duty utilization, particularly
in the progressing countries, are the dense-phase reactors, such as the fixed bed reactors,
with a dense factor of 0.30–0.08 m3. Other factors that affect the choice gasifier are the fuel,
reactor size, ash content, and moisture. The fixed bed gasifiers have reasonably limited
scope power age units and industrial heating applications [22].

There are four types of biomass gasifiers: co-current or downdraft gasifiers, counter or
updraft current gasifiers, fluidized bed gasifiers, and cross-draft gasifiers. Furthermore,
the gasification technique is chosen based on the accessible fuel value, capacity range,
and producer gas quality [23–27]. Downdraft gasifiers have a thermal capacity range of
1 kW to 1 MW, whereas updraft gasifiers have a thermal capacity range of 1.1 MW to
12 MW, fluidized-bed gasifiers have a thermal capacity range of 1100 KW to 50,000 KW,
and cross-draft gasifiers have a thermal capacity range of 10,000 KW to 200,000 KW [28].
A review [11,29] demonstrated that 2.5% were updraft type, 75% of the designs were
downdraft type, 20% were fluidized bed systems, and 2.5% were of different other designs
according to the gasifiers’ manufacturers in Canada, the United States, and Europe [29].

Due to the low initial cost and the stability of the electrical supply under different
circumstances, the use of Gas Turbine Units in electricity generation has gained more
opportunities. Another outstanding feature [30] of this equipment is its capability of quick
starting using a wide variety of fuels [31], from natural gas, syngas to residual oil or
powdered coal [32–36]. In addition, the availability of better materials for construction
and the use of adequate blade cooling systems [37,38] to counter the inlet gas tempera-
ture, which can often exceed 1200 ◦C [39], have improved the use of GT power supply
units. As a result, the overall thermal efficiency of a GT plant can be about 35%, which
is almost the same as that of a conventional steam power plant [35]. It is also becoming
more common in land vehicles, such as buses and trucks, trains, and ships. The GT is
frequently used to power auxiliaries, such as pumps, blowers, and compressors, in the
oil and gas industry [35,40]. Researchers have conducted research and utilized different
methods [41] to raise the thermal efficiency of reformative GT cycles [35,42]. One of which
is the reheating process used to raise the thermal efficiency of gas and steam turbine cycles.
Similarly, regeneration improves both the simple GT and the steam turbine cycles’ thermal
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efficiency. The combined cycle [43,44], which combines a gas turbine and a steam turbine
cycle, is a more-essential procedure for increasing the thermal efficiency of the power
plant cycle [35,45,46].

This work aims to reinforce the understanding of a regenerative RGT as a thermal
process utilizing the integration of the Biomass Gasification Unit at the combustor and
applying similar design parameters to Khartoum North Station (GT,187 MW) in Sudan.
The study pushes for establishing a qualified operational and conceptual design procedure
and reviews for the Integrated Biomass Gasification for Regenerative Gas Turbine Unit
“IBGRGT”. The work also presents a preliminary strategy to identify the performance and
evaluation criterion of the Gasification of Biomass Process utilizing the effect of various
operating conditions.

2. Materials and Methods

Acacia Nilotica Wood Chips, available in Sudan with an average size of 1 × 2 × 3 cm,
were used as a feedstock and experimentally characterized according to the standard
literature data [47–51]. The wood chip samples were processed for proximate analysis
to identify the moisture content, ash content, volatile, and fixed carbon using the ASTM
Standards mentioned in our previously published studies [19,21,26]. To identify the carbon,
hydrogen, nitrogen, and oxygen content, ultimate analysis was performed using a Perkin
Elemental Analyzer. The data from both analyses are shown in Table 1. As per the proximate
analysis, the sample showed higher moisture content and volatiles with low ash content.
The sample showed higher carbon and oxygen content. To reveal the heating value of the
sample, bomb calorimetry was used. The results include the measured higher heating value
of the Nilotica Biomass, which was a value of 19,094.94 kJ/kg, via a Calorimeter setup. Air
was used as a gasification agent. The gasification system considered in this study is the
cross-draft gasifier.

Table 1. Ultimate and proximate analysis of Acacia Nilotica Wood Chips.

Proximate Analysis
(wt%)

Ultimate Analysis
(wt%) Lower Value of

Heat (kJ/kg)
Water Ash Volatile Fixed

Carbon C H O N S

37.88 1.43 68.49 30.08 48 6 44 0.40 - 19,094.94

3. Modeling of Components

A schematic of a regenerative gas turbine and Biomass Integrated Unit (BIGT) [3]
with a syngas producer is shown in Figure 1. The system comprises a hot air-driven gas
turbine, compressor, combustor, and regenerator beside the Gassifier Unit. By using the
gasification of dry biomass, the gasifier produces syngas [3]. The biomass material will
be fed to the gasifier [52] at surrounding conditions described briefly in Figure 1. Since
air is the gasification medium, gasification occurs in compressed air and produces syngas
that enters the combustion chamber. A thermodynamic equilibrium method [7] based on
a stoichiometric approach according to the method of Jarungthammachote and Dutta [53]
was used for modeling the gasifier. The syngas composition is predicted using this model
at the gasifier’s operational temperature and pressure. The global reaction of gasification
can be written as [12,22,51]:

CHxOyNz + wH2O + m(O2 + 3.76N2)→ x1H2 + x2CO + x3CO2 + x4H2O + x5CH4 + x6N2 (1)

All coefficients from x1 to x6 will be calculated using atomic balancing and equilibrium
constant equations. The following are the steps to take [3,42]:

x2 + x3 + x5 = 1 (2)
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2x1 + 2x4 + 4x5 = x + 2w (3)

x2 + 2x3 + x4 = y + w + 2m (4)

2x6 = z + 3.76× 2m (5)

The secondary gas-phase reactions can be derived by examining the equilibrium
constant expression of the oxidation reactions [11] in the gasifier, which virtually approaches
an equilibrium state. These are the reactions:

C + 2H2 → CH4 (6)

CO + H2O→ CO2 + H2 (7)

The reactions described above [3] are known as the methanation and the gas–water
shift reaction, and their equilibrium constants are as follows:

K1 =
PCH4

P2
H2

=
x5

x2
1

(8)

K2 =
PH2PCO2

PCOPH2O
=

x3x1

x2x4
(9)

Finally, the energy balance is applied for the calculation of the gasification temperature
(Tgasif) as follows [54]:

h
o
f,Biomass+wh

o
f,H2O= x1

(
h

o
f,H2

+∆h
)
+ x2

(
h
◦
f,CO + ∆h

)
+ x3

(
h
◦
f,CO2

+ ∆h
)
+ x4

(
h
◦
f,H2O + ∆h

)
+

x5

(
h
◦
f,CH4

+ ∆h
)
+ x6

(
h
◦
f,N2

+ ∆h
) (10)

which is the formation enthalpy in kJ/kmol, its value in the reference state is zero for
all chemical compositions, and the enthalpy difference between the given state and the
reference state [3]. The RGT power plants comprise four parts: compressor, combustion
chamber (CC), turbine, and generator. The integrated biomass regenerative combined cycle
arrangement considered in Figure 1 demonstrates how to utilize the hot turbine exhaust gas.
The fresh atmospheric air from the surroundings is filtered and drawn continuously into the
circuit; the energy is added by fuel combustion in the chamber unit [35]. The combustion
products are spread through the turbine [55] and consequently produce electrical work,
while the rest of the exhaust gases are discharged into the Biomass Gasifier and Regenerator
Units. The needed power output of the gasifier, Q (MWth), is an essential input parameter
set by the client [17]. Based on this, the designer calculates the amount of fuel to feed
into the gasifier and the amount of gasifying medium required. The volume flow rate of
the product gas, Vg (Nm3/s), is calculated by subtracting its lower heating value, LHVg
(MJ/Nm3), from its ideal higher heating value, LHVg (MJ/Nm3) [17].

Vgas =
Q

LHVgas

(
Nm3

sec

)
(11)

The lower heating value (LHV) or net heating value can be determined from gas
formation (yi), according to [17]:

LHVgas =
N

∑
i

yi × LHVi (12)

The net heating value or higher heating value (HHV) can be determined from gas
formation (yi), according to [17]:

HHVSyngas =
N

∑
i

yi ×HHVi

(
kJ

kmol

)
(13)
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HHVSyngas =
HHVSyngas

MwSyngas

(
kJ
kg

)
(14)

To find the biomass feed rate, the following formula is used, in which Mf, the needed
power output, is divided by the LHV of the biomass (LHVbm) and by the gasifier efficiency
(ηgef) [17]:

Mf =
Q

LHVBiomass × ηgef
(15)

The following unified correlation for HHV is based on 15 existing correlations and
50 fuels, including liquid, coal, biomass, and gas, developed by Channiwala and Parikh [17].
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Figure 1. The regenerative gas turbine cycle integrated with the Biomass Gasifier Unit.

The percentages of carbon, hydrogen, sulfur, oxygen, nitrogen, and ash, as determined
by a final analysis on a dry basis, are C, H, S, O, N, and ASH. A critical parameter is the
theoretical air demand for the entire combustion of a unit mass of fuel, mth, called the
stoichiometric air requirement. Equation (16) [15] shows how to calculate it:

Mth =

[
0.1153C + 0.3434

(
H− O

8

)
+ 0.0434S

] (
kg·air

kg· dry fuel

)
(16)

How to calculare the amount of air needed, Ma, is shown below [17]:

Ma = Mth·ER (17)

The gasification of a unit mass of biomass in an air-blown gasifier is calculated by
multiplying it by another parameter, ER.

The air requirement of the gasifier, Mfa, at a fuel feed rate of Mf is the amount of
actual air [17]:

Mfa = Mth·ER·Mf (18)

The equivalence ratio (ER) [17] is a crucial design parameter for gasifiers. The stoichio-
metric air–fuel ratio is the ratio of the actual air–fuel ratio to the stoichiometric air–fuel
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ratio. This word refers to conditions when there is a lack of oxygen, such as those seen in
a gasifier [17]:

ER(< 1.0)Gasification =
Actual Air

Stoichiometric Air
= EA(> 1.0)Combustion (19)

EA denotes the excess air coefficient [17]. Fuel is gasified rather than combusted when
the ER value is very below 1.0, which has a big impact on the quality of gas produced by
a gasifier. A gasifier’s oxygen requirements, an air supply, or air-separation equipment
that removes oxygen from the air can be used to fulfil this need. [17] Gasification efficiency
is measured in cold-gas efficiency or hot-gas efficiency [17]. The energy intake above the
potential energy output is known as cold-gas efficiency. With an LHV of Qg, the efficiency
of gasifying Mf kg of solid fuel to produce Mg kg of the product gas is given as [17]:

ηcg =
Qg·Mg

LHVBiomass·Mf
(20)

where LHVf is the solid fuel’s lower heating value (LHV). The hot-gas efficiency, abbrevi-
ated as ηhg, is defined as [17]:

ηhg =
Qg·Mg + Mg·CPg·(Tf − T0)

LHVBiomass·Mf
(21)

T0 is the fuel temperature entering the gasifier, and Tf is the gas temperature at the
gasifier egress or the burner’s access [17]. Accordingly, the intake pressure at the compressor
inlet was modeled with the following equation [16]:

P1 = PATM − ∆Pintake (22)

where the intake pressure drop (∆Pintake) was taken to be 0.005 bar, and the intake tempera-
ture was modeled as the ambient temperature [56]. The process on the temperature-entropy
diagram [42] is represented in Figure 1. The compressor compression ratio (rP) can be
defined as [35,41]:

rP =
P2

P1
(23)

where P1 and P2 are the compressor’s inlet and outlet air pressure, respectively [18]. The
isentropic outlet temperature leaving the compressor is modeled by the equation [35,57,58]:

T1

T2s
=

(
P1

P2

)γa−1
γa

(24)

The specific heat ratio for air γa was taken as 1.4 and was predicted at γg = 1.3 for the
gas. The isentropic efficiency of the compressor and turbine was taken to be in the range of
85% to 90%. The isentropic compressor efficiency is expressed by the equation [59,60]:

ηc =
T2s − T1

T2 − T1
(25)

where T1 and T2 are the compressor inlet and outlet air temperatures, respectively,
and T2s is the compressor isentropic outlet temperature. The specific work required to run
the compressor work (WC) is modeled with the following equation [60]:

.
Wc =

.
maCPa(T2 − T1) =

.
maCPaT1

 rp
γa−1
γa − 1
ηc

 (26)



Energies 2022, 15, 741 7 of 18

Additionally, the specific heat of air is taken as CPair = 1.005 kJ
kgK . The specific heat of

flue gas (Cpg) is given by [60]:

Cpg = 1.8083− 2.3127× 10−3T + 4.045× 10−6T2 − 1.7363× 10−9T3 (27)

From the energy balance, the combustion chamber equation is as follows [18,51]:

.
maCPaTx +

.
mfLHV +

.
mfCPf Tf =

( .
ma +

.
mf
)
CPgTit (28)

where
.

mf is the fuel mass flow rate in (kg/s),
.

ma is the air mass flow rate (kg/s), LHV is
the fuel’s low heat value, Tit is the turbine inlet temperature, CPf is the specific heat of fuel,
and Tf is the temperature of the fuel. The specific heat of the flue gas was modeled with
CPg = 1.07 kJ/kg·K; efficiency was set at 95%, and a pressure drop of ∆PC,C = 0.4785 bar
was set in the combustor. Accordingly, the efficiency of the combustor is modeled as [35]:

ηC,C =

.
mgCPgTIT− .

maCPaTx
.

mfLHVg
(29)

The air–fuel ratio at the combustor was modeled according to the following equation [35]:

AFR =
A
F

=

.
ma

.
mf

(30)

where the total mass flow rate is given by [35]:

.
mg=

.
ma+

.
mf (31)

The discharge gas of the turbine is predicted according to the equation [35]:

T8

T4s
=

(
P8

P4

)γg−1
γg

(32)

where the actual outlet temperature leaving the turbine at isentropic conditions is modeled
according to [35]:

ηt =
T8 − T4

T8 − T4s
(33)

The regenerator effectiveness ε is modeled according to the equation [59]:

ε =
T3 − T2

T4 − T2
(34)

where T3 is the combustor inlet temperature. The shaft work produced from the turbine is
calculated by the equation [35]:

.
WRGT =

.
mgCPg(T4 − TIT) =

.
mgCPgTITηt

1− 1

rp

γg−1
γg

 (35)

The network from the GT Unit is expressed by the equation [35,61]:

.
WRGT,Net =

.
WRGT −

.
Wc =

.
mgCPgTITηt

1− 1

rp

γg−1
γg

− .
maCPaT1

 rp
γa−1
γa − 1
ηc

 (36)



Energies 2022, 15, 741 8 of 18

The output power from the GT is expressed with the equation [35,60,61]:

PRGT =
[ .
WRGT −

.
Wc

]
× ηMechηGen (37)

The mechanical (ηMech) and generator (ηGen) efficiencies were taken to be 92% and
95%, respectively.

The heat supplied is expressed with the equation [35]:

.
Qadd =

.
mgCPgTIT− .

maCPaT3 (38)

The heat supplied (per kg. air) to the combustor was modeled according to the
equation [35]:

.
Qadd =

.
mfLHVgηC,C

.
mair

=
LHVg ∗ ηC,C

AFR
(39)

The GT efficiency is determined by the equation [35]:

ηover,RGT =

.
WRGT,Net

.
Qadd

(40)

Accordingly, the heat rate (HR), which is defined as the spent heat to generate unit
energy of electricity, is determined by the equation [35,62]:

HR =
3600×mf × LHVg

ηover,RGT
(41)

The specific fuel consumption (SFC) is determined by the equation [35]:

SFC =
3600× .

mf
.

WRGT,Net
(42)

4. Results and Discussion

The gasification process was simulated using Acacia Nilotica Wood Chips biomass
available in Sudan. A detailed energy analysis was derived from investigating the optimal
design conditions of the system that integrates the Biomass Unit with the Regenerative
Gas Turbine Power Plant. The work was executed with the Thermodynamics Engineering
Equation Solver (EES) codes. The work investigated air as a gasification medium to produce
syngas fuel for Wood Chips (Acacia Nilotica). Figure 2 depicts the effect of the equivalence
ratio (ER) on the gasifier’s biomass mass flow rate at different syngas rates (5–20 kg/s).
As observed, at a moisture content of 12%, gasification temperature of 1500 K, pressure of
20 bar, and air-like gasification medium, the biomass gasifier’s flow rate is higher at a higher
syngas rate. The higher value of the biomass flow rate reached 35 kg/s of the wood chips at
a yielded syngas rate of 20 kg/s. The results verified that there is an optimum ER for each
syngas rate, in which the slow growth of the ER revealed the maximum gasifier’s biomass
mass flow rate. After that, the further increases in the ER showed a slow downtrend
due to increasing combustion products, changes of syngas constituents amid CO2, water
vapor, nitrogen, and a massive decrease in the lower heating value of the syngas. The
point of inflection can be regarded as the point of the optimal design of the system to
derive the required biomass rate for the necessary air gasification to produce the assigned
syngas rates. The produced syngas composition varies with the amount of supplied air to
the process.
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Important to note that increasing the biomass content leads to a sharp decrease in the
gasifier’s efficiency. The simulation results observed that an increase in the syngas rate
revealed an increase in the required biomass rate for gasification. However, the quality
of the produced gas depends mainly on the amount of qualified air to achieve the high
energy content of the gasification products [63]. Figure 3 displays the relationship between
biomass moisture content and the RGT thermal efficiency at different gasification pressures
(5–20 bar). As observed, the increase in the biomass moisture content leads to a sharp
decrease in the RGT thermal efficiency.
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At 200 K and a gasification temperature of 1500 K, the RGT thermal efficiency revealed
a higher value of 62% at the lowest biomass moisture content of 10% and the lowest value
of 61% at higher rates of moistures. The RGT thermal efficiency remains high at higher
gasification pressure. Higher values of biomass moisture content led to the low energy
content of the syngas, which yielded low values of RGT thermal efficiency. As the amount
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of moisture content decreases, higher amounts of water have to be evaporated [64]. Since
the heat needed to vaporize this water is transferred from the syngas constituents at the
gasifier outlet, the temperature’s products decrease, thus lowering the energy content and
the syngas’ physical and chemical exergy [64].

Lowering the moisture content of the biomass entering the gasifier raises the efficien-
cies of both the RGT and the Gasifier Unit. Further removal of the moisture will increase the
chemical exergy of the product gas, and the physical exergy will be slightly increased [64].
The exergetic efficiency of the gasification process [17] decreases with the moisture con-
tent increase. In addition, with the increase in the moisture content, the CO2 and H2O
production rate increases [65]. The increase in the gasification pressure has influenced
the RGT thermal efficiency and the syngas LHV due to enhancement of the gasification
reactions and the growth of the major constituents of the syngas product. Figure 4 shows
the variation of the equivalence ratio (ER) with syngas lower heating value at different
wood chips syngas rates (5–25 kg/s), at gasification pressure of 20 bar, the temperature of
1500 K, and moisture content of 12%. The profile exhibited an increase in the syngas LHV
with the ER, till an optimum amount of the ER, subsequently the further increase in the ER
has led to slow down the syngas LHV.
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The results revealed that the syngas lower heating value remains high at lower pro-
duced syngas rates. This is attributed to the increase in the raw biomass materials, which
influences increasing the irreversibilities sharply inside the gasifier, which causes a re-
duction in the gasifier efficiency. The calorific value of the produced syngas depends on
the heating value of the consumed biomass [11]. The higher the biomass heating value,
the higher the calorific value of the produced syngas. Tar content in the gasification product
is always higher for fuel richer with ash [66]. The results observed that the amount of
consumed biomass plays a significant role in the final syngas energy content.

The gradual increase in the biomass should have a certain limit since a small amount
of the required air will result in incomplete gasification of the biomass and produce less
syngas energy content. The effect of the equivalence ratio (ER) on the RGT thermal
efficiency at different gasification temperatures is presented in Figure 5. As observed,
the simulation results revealed an optimum ER in which a higher RGT thermal efficiency
occurred; thereafter, the additional amount of ER led to a decline in the thermal efficiency
of the RGT Unit gradually. ER growths at low values have a significant effect on the
performance of the RGT and lead to an increase in the RGT thermal efficiency. The low,
moderate, and optimum ERs produce a high amount of the required syngas constituents,
which revealed high syngas energy content and improved efficiency.



Energies 2022, 15, 741 11 of 18

Energies 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

simulation results revealed an optimum ER in which a higher RGT thermal efficiency oc-
curred; thereafter, the additional amount of ER led to a decline in the thermal efficiency 
of the RGT Unit gradually. ER growths at low values have a significant effect on the per-
formance of the RGT and lead to an increase in the RGT thermal efficiency. The low, mod-
erate, and optimum ERs produce a high amount of the required syngas constituents, 
which revealed high syngas energy content and improved efficiency. 

 
Figure 5. Effect of the equivalence ratio on the RGT thermal efficiency for different gasification tem-
peratures. 

To some extent, the reduction in the temperature promotes the growth of CO and H2 

concentrations and the decrease in the CH4 concentration in the syngas [67]. The increase 
in the temperature results in primary and secondary water–gas shift reactions, secondary 
cracking, and reforming of heavy hydrocarbons activity. Thus this results in increasing 
the concentration of the H2 in the syngas [54,68]. The activity of water gas shift reaction 
and Boudouard reactions will significantly increase due to temperature growth. 

Consequently, the carbon reacts with CO and H2O vapor produces a lot of CO. How-
ever, the further temperature growth promotes combustion reactions and thus decreases 
of CH4 amount at the syngas [54,68] final products. Figure 6 presents the variation of the 
equivalence ratio (ER) and the percentage mole fractions of the syngas at a gasification 
temperature of 1500 K, pressure of 20 bar, regenerator effectiveness of 95%, gasifier effi-
ciency of 95%, moisture content of 12%, and a produced amount of 5 kg/s syngas. The 
influence of the significant parameter, ER, is displayed and observed. 

Figure 5. Effect of the equivalence ratio on the RGT thermal efficiency for different gasification temperatures.

To some extent, the reduction in the temperature promotes the growth of CO and H2
concentrations and the decrease in the CH4 concentration in the syngas [67]. The increase
in the temperature results in primary and secondary water–gas shift reactions, secondary
cracking, and reforming of heavy hydrocarbons activity. Thus this results in increasing the
concentration of the H2 in the syngas [54,68]. The activity of water gas shift reaction and
Boudouard reactions will significantly increase due to temperature growth.

Consequently, the carbon reacts with CO and H2O vapor produces a lot of CO. How-
ever, the further temperature growth promotes combustion reactions and thus decreases
of CH4 amount at the syngas [54,68] final products. Figure 6 presents the variation of the
equivalence ratio (ER) and the percentage mole fractions of the syngas at a gasification tem-
perature of 1500 K, pressure of 20 bar, regenerator effectiveness of 95%, gasifier efficiency
of 95%, moisture content of 12%, and a produced amount of 5 kg/s syngas. The influence
of the significant parameter, ER, is displayed and observed.

Additionally, the RGT thermal efficiency remains high at lower gasification tempera-
tures. The optimum ER can be regarded as the point of the optimal design of the system
to identify the amount of the required air to produce qualified syngas constituents and
achieve a higher RGT thermal efficiency. Many reasons promote the temperature de-
crease for the gasification process, such as the ash, moisture, and the conditions of the
gasification reactions.

The simulation results verified an increase in the syngas mole fractions amid increasing
the ER to an optimum ER amount. The trend predicted a slowdown among the further
increase if the ER. The moisture content of 12% is considered low and was reflected in the
composition of the final syngas product. Beyond the optimal point of the ER, a massive
decrease in the syngas energy content and the growth of the oxidative combustion reactions
are occurring. The N2 and H2O vapor formation increase with the increase in the ER, while
the formation of CO2, CH4, H2, and CO exhibited decreases upon increasing the ER. At
the optimum ER, the H2 mole fraction depicted a value of 1.25%, 0.85% of CO, and 10.50%
of CH4, for a lower heating value of 38 MJ/kg syngas. The highest value of the syngas
composition is depicted by N2 since air is the gasification medium. Although a higher
syngas energy content is observed, the amount of N2 in the produced gas could be reduced
by using steam or oxygen as oxidizing agents [11].
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The influence of the biomass moisture content on the RGT actual gasification’s airflow
rate can be observed in Figure 7. It is shown that the gasification air entered into the gasifier
decreases amid the increase in the biomass moisture content. The biomass moisture content
affects the quality of the consumed biomass. At a constant ER and syngas rate, increases in
moisture content led to a decrease in the energy content of the syngas and an increase in
the amount and the demand of the biomass flow rates, thus influencing a lower demand
for the required air for the complete gasification process.
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Further reduction in the gasification’s air amid increasing the biomass moisture content
will diminish the gasification process and produce an unqualified syngas final product. In
addition, the results demonstrate that increasing the gasification temperature has slowed
down the amount of the actual air required for gasification. Literature data revealed that,
as the initial moisture content increases, the gasification temperature slows down due
to changes in the syngas composition and the effect of the water–gas shift, Boudouard,
and combustion reactions [69–71]. Moreover, the influence of the gasification pressure
resulted in an increase in the amount of the actual air required for gasification (see Figure 8)
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since the biomass flow rate is higher at a higher gasification pressure. With air used as
a gasification medium, it was observed that the increase in the gasification pressure led
to an acceleration of the reaction rate and the product’s conversion of the gasification
reactions. Figure 9 shows the influence of the gasifier efficiency on the biomass flow rate
for the gasification process. At different syngas rates (3–10 kg/s), an optimum ER of
35%, gasification temperature of 1500 K, pressure of 20 bar, and moisture content of 12%,
the results predicted that the Acacia Nilotica Wood Chip biomass flow rate required for
a complete gasification process decreases amid increases in gasifier efficiency. In addition,
the demand for a higher biomass flow rate is attained at higher Wood Chip syngas rates.
The irreversibilities of the gasifier are attributed to various factors during the gasification
process, such as the quantity of the biomass flow rate, friction losses, pressure drops,
releases of the high amount of gases, water corrosion, scale formation, the fusion of metals,
tar and char formations, etc. In addition, results show that there is an optimum gasifier
efficiency, in which the assigned biomass flow rate should be identified to minimize the
possible source of irreversibilities at the gasification process.

As plotted in Figure 10, at different gasification temperatures (1000–1600 K), pressure
of 20 bar, biomass moisture content of 12%, and syngas rate of 5 kg/s, the ER shows a
significant impact on the specific fuel consumption (SFC) of the RGT power plant. With
ER growth at lower levels, the specific fuel consumption (SFC) of the RGT Unit sharply
declines from the maximum value of 0.27 kg/kW·hr at an ER of 5% to the minimum value
of 0.80 kg/kW·hr at an ER of 25% for the lowest gasification temperature of 1000 K. The
results show that there is an optimum ER for each gasification temperature that ensures
minimizing the SFC of the RGT power plant. Beyond the optimum ER, the trends predicted
an inflection point, which exhibited an increase in the SFC. This is attributed to the excess
amount of air released, resulting in more combustion reactions, changing the syngas
composition, and slowing down the syngas’ lower heating value. The SFC of the RGT
power plant reached 0.30 kg/kW·h at the higher ER of 95%. In addition, the results show
that the SFC remains low at lower gasification temperatures. The influence of the ER on the
RGT power plant at different syngas rates is shown in Figure 11. The simulation model
revealed that ER growths at lower levels significantly affect the RGT power. The optimum
ER delivered the highest RGT power, after which the syngas composition and combustion
reaction will diminish the power due to a decrease in the LHV of the syngas fuel. At an ER
of 5%, maximum power of 400 MW is reached at Acacia Nilotica Wood Chips’ syngas rate
of 20 kg/s, whereas minimum power is reached at 50 MW for a syngas rate of 5 kg/s.
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5. Conclusions

This work reviewed and investigated the integration of the Biomass Gasifier Unit
with a Regenerative Gas Turbine power plant, including the effect of various parameters.
Simulation models were used to characterize the gasification process of Acacia Nilotica
Wood Chip biomass in Sudan. This type of biomass (Acacia Nilotica Wood) is of great
interest due to its wide domestic uses and agricultural lands. A parametric analysis of
the released syngas composition, actual gasifier air, temperature, pressure, LHV, moisture
content, equivalence ratio, gasifier efficiency, thermal efficiency, power, and specific fuel
consumption of the regenerative gas turbine power plant was carefully investigated to
identify the optimal design points of the gasifier system and the working conditions of the
RGT power unit using this type of biomass. With an average syngas LHV of 30,000 MJ/kg,
the results revealed that such a type of biomass (Acacia Nilotica Wood Chips) could achieve
high thermal efficiency and a valuable energy-saving process with the Regenerative Gas
Turbine Unit.
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Nomenclature

T Temperature (K)
S Entropy (kJ/kg·K)
P Pressure (kPa)
rP Compression Ratio -
γ Specific Heat Ratio -
ηC Isentropic Compressor Efficiency -
ηgef Gasifier Efficiency -
TS Compressor Isentropic Temperature (K)

.
WC Specific Compressor Work (MW)
.

ma Air Mass (kgair)
.

mf Fuel Mass (kg·fuel)
.

mg Gas Mass (kg·gas)



Energies 2022, 15, 741 16 of 18

Mth Gasifier Stoichiometric Air Flow Rate (kg air/kg dry fuel)
CC Combustion Chamber -
ER Equivalence Ratio -
RGT Regenerative Gas Turbine -
IBG Integrated Biomass Gasification -
Mech Mechanical -
Gen Generator -
EES Engineering Equation Solver -
Tx Combustor Inlet Temperature (K)
∆PC,C Combustor Pressure Drop (bar)
ηC,C Combustor Efficiency -
ε Regenerator Effectiveness -

.
WGT Turbine Shaft Work (MW)
ηT Turbine Efficiency -
yi Syngas Mole Fraction -
PGT GT Power (MW)
.

Qadd Heat Supplied (kW)
CPa Heat Capacity of Air (kJ/kg·K)
CPf Heat Capacity of Fuel (kJ/kg·K)
CPg Heat Capacity of Flue Gas (kJ/kg·K)
Mfa Gasifier Actual Air Flow Rate (kg air)
ATM Atmospheric -
HHV Higher Heating Value (kJ/kg)
LHV Lower HeatingValue (kJ/kg)
TIT Turbine Inlet Temperature (K)
ASH Ash Content (wt%)
HR Heat Rate (MW)
SFC Specific Fuel Consumption (kg/kW·hr)
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