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Abstract: This research presents a secondary control for a grid-supporting microgrid with photo-
voltaics sources to guarantee grid code compliance and ancillary services. The secondary control
accomplishes the fault ride-through, which implements a delayed signal cancellation (DSC) algo-
rithm for negative sequence detection. Without mode switching, the proposed control strategy meets
grid code requirements and ensures voltage regulation at the secondary level, which is active and
more salient throughout the transient period of host grid disturbances. This control also ensures a
constant supply of the microgrid’s sensitive local load while adhering to grid code requirements.
Similarly, active power injection into the main grid is limited by progressively altering the MPPT
operating point dependent on the depth of voltage sag to optimize reactive power injection to sustain
grid voltage sag. The recommended secondary control is triggered by utilizing the DSC process’s
detection algorithm to identify the occurrence of a fault in a tiny fraction of a half-cycle in a grid
fault. Consequently, while satisfying microgrid load needs, the devised technique guaranteed that
increases in DC-link voltage and AC grid current were controlled. MATLAB Simscape ElectricalTM
and OPAL-RT Lab are used to do time-domain simulations of the model using the recommended
secondary control systems.

Keywords: microgrid; solar photovoltaic; fault ride-through; grid code; secondary control; dis-
tributed energy resources

1. Introduction

According to current grid code standards, in response to a disturbance in the main
grid causing voltage sags, grid-connected inverter-based microgrids must stop powering
the microgrid loads. In addition, low-voltage microgrids must be disconnected from the
host grid before 120 cycles of voltage sag between 0.5 and 0.9 per unit, according to the
IEEE Std 929-2000 standard [1,2]. Previously, ancillary services, such as fault ride-through
(FRT), were not considered part of the scope of microgrids and were not required [3].
However, isolating a microgrid with a high RES penetration from the main grid in response
to disruptions or grid faults has a major impact on the utility system’s power quality,
operation, and stability [4,5]. Therefore, a utility grid’s microgrid or DER reactive power
supply can minimize overall grid instability while meeting sensitive load needs [6]. As a
result of the rising DER integration, grid codes must be updated with their appropriate
specifications, especially at active distribution systems. Existing investigations [7–9] have
shown that DER may play a substantial role in overall system stability and that photovoltaic
systems can provide ancillary services to ease grid and power electronics difficulties [10].
Furthermore, several studies are underway to ensure that microgrids can have qualities
like FRT and inertia, even on low-voltage networks [11]. Similarly, the problems posed by
substantial DER grid penetration, particularly PV systems, are anticipated and expected,
thereby demanding improved control to address these potential issues. As a result, revising
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the existing grid code requirements is required to allow for a large-scale deployment of
low-voltage DER with FRT capabilities [12].

As a result, some developed countries have amended their respective grid codes to
improve RES efficiency. In 2004, 2006, and 2008, Spain, Germany, and Denmark were
among the first countries that issued the FRT requirements for DERs connected to the
grid [13,14]. The Spanish, Danish, and Chinese code requirements are displayed in Figure 1
accordingly [9,10]. In particular, when the grid-connected units are above the lines, they
need to be connected to the grid instead of stopping power generation. Therefore, DER
or Distributed Generator (DG) systems will remain connected if the voltage amplitude
is above the lines. Nevertheless, in China, the voltage is also regulated, with DER/DG
systems working in high voltage ride-through (HVRT) if the voltage magnitude is higher
than the rated nominal value, nonetheless within limits [15]. It means that if the voltage
level is too high, HVRT should be enabled. In the case of grid failures (voltage sags), grid-
supporting schemes must resist disconnection and stay operational under fault duration.
Even though these requirements are projected for the high-voltage network, they are valid
for the low-voltage grid due to similar concepts [11] and increasing penetration at the
low-voltage level. Voltage sags resulting from fault and other transient disturbances are
severe challenging events in grid-connected systems. Because of power line short circuits,
lightning strikes, and load dynamics, the magnitude of the grid-voltage can momentarily
drop to a particular point, including zero levels. In such situations, the abrupt shutdown
of large DER/DG systems will trigger the collapse of power system distribution [15].
Henceforth, it is obligatory for grid-synchronous DER/DG units to momentarily ride-
through grid voltage sags. Simultaneously, the DER/DG units should provide dynamic
grid supports by contributing reactive power to aid the grid to withstand the transients.
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Aside from FRT, future inverter-based microgrid systems are expected to integrate
grid support, grid fault resistance, dynamic power regulation, and smart ancillary service
supply at the PCC [17,18]. Additionally, as soon as the grid voltage recovers or the fault is
cleared, the PV system is required to function at its maximum active power point for a set
time at a power factor of unity. Grid disturbances are unavoidable, resulting in periodic
voltage sags and posing a considerable challenge to the power inverters. To enable seamless
operational changes, traditional inverter control methods must be upgraded to handle
these rigorous and important operating parameters. Although reactive power injection
via interface inverters is an important issue in control design, reactive power injection is
allowed without exceeding operational power restrictions. Dynamic grid voltage support
is a critical necessity during different degrees of voltage sag in grids. During fault ride-
through operation, reactive current injection takes precedence. Furthermore, reactive power
injection through interfacing inverters should be considered in controller design, and thus,
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reactive power injection is permitted without exceeding the operational power limits [19,20].
In such a way, a microgrid’s DER/DG systems, including PV systems, deliver dynamic
supports to the grid. The reactive power injection requirements during different degrees
of depth in voltage sag in Spain and Denmark grids are revealed in Figure 2. As shown,
the priority is given to the reactive current injection during fault ride-through operation,
and in such a situation, the active power generation and delivery may be preserved or
varied, although it is not necessary. Considering the urgency and impact of prompt reactive
power support, detecting voltage sags to ensure appropriate and suitable action under
faults is critical.
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Several strategies for FRT enhancement in grid-connected systems have been proposed
in the literature through the deployment of devices such as energy storage systems [21],
brake chopper [22–24], active crowbar systems, flexible alternating current transmission
systems, dynamic voltage restorer (DVR), fault current limiters [25,26] and load tap changer.
However, all of these external devices come with high upfront and ongoing expenditures
and technical system difficulties. The ESSs are usually tied electrically to the DC-link via a
DC-DC buck-booster [27]. The ESS absorbs surplus energy from the DC link when a DC
overvoltage occurs—thus, AC grid fault. The DC-DC converter’s duty cycle is altered in
this period to reduce the power from the PV battery and, as a result, reduce DC link voltage.
The ESS stored energy is released into the AC grid immediately after the grid fault is cleared,
and thereby, the ESS enhances the FRT ability by regulating and guarding the DC side
and DC-AC inverter from a high DC-link voltage. Furthermore, ESS implements power
oscillation suppression, peak shaving, and time-shifting [28] apart from improving the
FRT. However, ESS devices have high initial and servicing costs as the main disadvantages.
Similarly, ESS also fluctuates DC parameters before and after a fault. While ESSs are used to
suppress the DC link’s excess energy and protect the DC-AC inverter by riding-through AC
grid faults, reactive current injection to sustain the AC grid voltage is yet to be addressed.

The braking chopper protects the DC-AC inverter from rising DC link voltage cul-
minating in an overvoltage resulting from the AC grid fault. The gate pulses of the IGBT
only trigger the chopper under fault. Hence, the power resistor absorbs the excess energy
generated. This braking chopper structure is beneficial as a result of its low cost and simple
control scheme. In [23,29], the DC-chopper and current limiters are utilized to absorb excess
DC voltage and minimize extreme AC grid current to mitigate DC-link overvoltage and
AC overcurrent problems, respectively, that can cause disconnection or inverter damage.
However, these braking choppers only dissipate power and possess no reactive power gen-
eration ability to support the AC grid voltage under fault. This is because all the generated
power is dissipated at the expense of reactive power injection. The braking chopper is
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combined with other devices such as Fault Current Limiter (FCL) to enhance performance.
This, unfortunately, increases the overall cost.

FACTS controllers are a valid alternative solution to ensure a sustained grid connection
of inverter-based systems under grid faults and introduce reactive power as exigent. For
instance, STATCOM can improve the FRT of fixed speed wind turbines, and SSSC can
be used in FRT capability enhancement control and voltage stabilization. During fault
situations, series terminal voltage mitigation using DVR is done by injecting series voltage
to the grid voltage at the PCC to retain steady DFIG stator voltage [30]. DVR uses a three-
phase power converter tied through a transformer in series between WT and coupling
points [31]. STATCOM’s reactive output power under the voltage dip is more-substantial
compared to SVC. Both devices can support the voltage recovery and inject reactive power,
thereby increasing reactive power controllability for grid support to conform to grid code
FRT stipulations. The coordination between the grid-connected inverter-based system and
STATCOM has been proposed to suppress grid fault’s impact at the PCC. The traditional
STATCOM is limited to only one capacitor-based storage with limited energy storage
ability; however, reactive currents are supplied to anticipate grid voltage recovery during
faults or disturbances. Similarly, SVC injects reactive power to compensate for grid voltage
sags, as discussed in [32]. These controllers are primarily utilized in compensating and
injecting reactive power to boost the FRT capacity. DSTATCOM is a shunt compensation
device generally used to solve power quality problems in distribution systems. The control
strategy of the DSTATCOM plays a vital role in PCC voltage maintenance. Thus, [33]
presents the application of a DSTATCOM to improve the power quality in a ship power
system during and after pulse loads due to high energy demand. However, the system’s
entire cost and complexity are increased due to installing external FACTS hardware. For
instance, installing devices such as DVR in the feeder line prevents the DC-AC inverter
from sensing voltage drops in the AC grid. Furthermore, due to DVR’s limited capacity, it
is inappropriate for extreme AC grid voltage sag [34].

The FCL addresses the over-current when utilized between the microgrid and main
grid as in reference [35–38]. This shields the grid-tied inverter from the AC grid over-
current, thereby improving the FRT under faults. The FCL decreases the excessive current
at the DC-AC inverter’s AC grid side under fault on the AC grid. Reference [39] proposed
a dynamic current curtailment scheme applied in autonomous inverter microgrid in en-
hancing FRT and presented the effectiveness in limiting current and voltage. FCLs are
utilized to reduce the DGs’ contribution to the fault’s current level to enhance FRT [35].
References [40,41] suggested different types of FCL and modified versions of FCL to en-
hance the microgrids, wind turbines, solar photovoltaic, and other DGs FRT capabilities.
The FCL potential to enhance FRT is well established in the literature [42,43]. The FCL
is located between the microgrid and main network, and as such, FRT for all microgrids’
DERs is commonly achieved [36,44]. The SDBRs are deployed in RES (PV and WT) systems
to boost the FRT. The over-voltage concern is addressed by mitigating the excessive DC
link voltage experienced under the AC grid fault. They are installed in series in between
the RES, and the grid coupling point is short-circuited in steady-state and activated under
fault conditions.

As a result, researchers [16,45] have concentrated on creating modified, state-of-the-art
techniques, and FRT can be performed at a low cost and without using any additional
equipment. The purpose is to increase the host grid’s performance and fault recovery
services. For example, Shin et al. (Shin et al. 2015) provide state-of-the-art FRT approaches
based on a low-pass notch phase-locked loop for smooth and rapid transient responses to
unexpected imbalanced grid situations. Similarly, [45] presented a way to support voltage
by increasing the difference between positive and negative sequence voltages, improving
the grid-connected inverter system’s stability and dependability. Furthermore, [46] used a
modulated pulse width modulation to manage the stator phase voltage dynamic braking
resistor for wind systems to limit the impact of grid failure types to achieve a certain degree
of flexibility and robustness. To avoid disconnection during failures, Mirhosseini, Pou,
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and Agelidis [47] devised a control system for single and double PV inverters [48] that
limits active power generation injecting reactive power to sustain the system. In [49], a
nonlinear control for LVRT augmentation and post-fault recovery in a two-stage PV system
is presented. In [50], a PV inverter control that decouples active and reactive power and
smoothly switches between operating modes depending on the grid situation.

In the same way, many novel FRT management methods and schemes were suggested
in [12,16,51]. Zamani et al. [44] recommend inverter-interfaced RES regulating strategies
to enhance the host grid’s dynamic performance during disturbances and faults. In Kou
and Wei [51], some observations were made regarding the specific grid code requirements
for interconnection and operation of microgrids, which suggest LVRT functionality for
microgrids and the provision of additional fault recovery services. As expressed in the FRT
voltage profile, these recommendations expect a grid-connected microgrid to ride through
balanced and unbalanced sags in grid voltage. Interruption, followed by a transition to
autonomous operation, is only allowed if the fault persists [2].

A complementary controller for voltage is suggested in [52] for inverters-based DGs
for the FRT control. This controller is expected to superimpose with minimum adjustments
with numerous available voltage control schemes. These modifications, therefore, do not
necessarily need to alter the initial configuration of these existing controllers. A hierar-
chical control has been proposed in the literature [53,54] towards realizing the numerous
microgrid control and operation requirements. These propositions are with fundamental
control goals, including voltage control, local power allocation among distributed energy
units, frequency regulation, and power control (active and reactive) under synchronization
with the host grid [55]. A rapid fault detection system plays a crucial role in enhancing the
effects of these several strategies.

The voltage sags detection to guarantee proper and acceptable response under failures
is crucial, given the urgency and importance of quick reactive power assistance and active
power limiting. Detecting voltage sag is critical to the overall performance of the FRT
capability control during a grid fault to switch between operating modes quickly and
adequately [56–59]. As a result, built-in fault detection algorithms are used to safely dis-
connect grid-connected inverter-based equipment during grid outages. As a result, several
voltage-sag detection techniques have been proposed; including the positive sequence
technique [60], the root means square (RMS) technique [61], the peak value technique [62],
the missing voltage method [58], and the wavelet transform technique [61]. In terms of
detection speed, design complexity, and efficacy, all of these strategies offer advantages
and disadvantages. Most of these methods are based on transforming the AC signal into
an equivalent DC signal, which provides ease of processing and analysis. Similarly, several
detection methods express voltage sags in terms of RMS; however, the RMS method rep-
resents one cycle historical average value, not an instantaneous value, which may lead to
a long detection time when voltage sag has occurred [63]. RMS values are continuously
calculated for a moving window of the input voltage samples. This convenient magni-
tude measurement is expressed in the signal’s energy content. A continuously moving
window has n samples per cycle, assuming the window contains n samples per cycle (or
half cycle). The sag is detected after the data for a window period has been processed. The
concept observes the shifts in voltage during the fault phenomenon as near as possible.
The closer the fault event is displayed, the more RMS values are measured. The voltage
drop is proportional to the sag level [64]. Despite this, the detection approach that is most
often utilized is RMS due to the RMS technique’s design simplicity and few complexities.
Inverter-based microgrid topologies and control systems must be devised and implemented
to fulfill expected FRT requirements.

This study aims to provide a secondary control strategy that uses a fast delayed signal
cancellation (DSC) for reactive power injection and faults current limiting to improve grid
inverter-based microgrids with solar PV sources. The secondary FRT control specifies
primary control references [65]. The primary and secondary FRT control levels create a
hierarchical control system, and there is no mode switch in the technique. This controller
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is built to meet the requirements of the Spanish grid codes for reactive power injection
to achieve secondary voltage control with a valid and meaningful operation during the
transient fault period.

This study’s contributions are: a fast DSC technique is introduced that detects the issue
promptly in less than 0.1515 ms to ensure dependability and rapid reaction to disturbance
or fault in the system. The DSC has a shorter convergence time and better separates positive
and negative sequences. Using DSC, the voltage sag detection activates reactive power
injection and restricts the fault current, thereby avoiding oscillations in the power and
DC-link voltage. This research presented a method for limiting the active power reference
generated by the MPPT by shifting the operating point, which may be used in a two-stage
PV system. To avoid activating the DC-link overvoltage protection system, a particular
control action is performed to reduce DC-source power production and equip the interface
converters with FRT capabilities. This is accomplished without the converter’s voltage
boosting activity being turned off. During the sag cycle of the AC grid voltage, the voltage
at the DC bus between the DC-DC and DC-AC converter is controlled. As a result, the
recommended solutions in this study reduced the typical momentary DC voltage rise on
the DC bus during the transient process. While fulfilling local load needs, the secondary
level of control improves the fulfilment of the upcoming grid code FRT standards. This
suggested technique eliminates mode switching and allows the PV system to withstand
grid failures and transient disturbances. As with a smooth transition approach, continuous
grid resynchronization is avoided after a failure, reducing local load shedding. Finally, an
adequate power quality for local sensitive loads is obtained during fault duration regardless
of grid status. The secondary control, which guides electricity export and import per the
grid code, improves the traditional primary control.

The remainder of the paper is structured as follows. Section 2 describes how the active
power in a PV system is reduced by altering the operating point of the MPPT in response to
grid voltage sags using the suggested secondary level control utilizing the DSC algorithm.
Section 3 presents the simulation findings, and Section 4 concludes this article.

2. Proposed Fault Ride-Through Control
2.1. Primary Control with Droop

The created time-domain models of DC-AC inverter-based microgrids with a DC-DC
converter and maximum power point tracking incorporate photovoltaic-based distributed
energy resources have a circuit and control diagram. The droop control is applied between
the outer and inner loops of the control to ensure that the two-stage PV system can par-
ticipate in grid frequency and voltage regulation [66]. As a result, droop is introduced
between the DC link voltage control outer loop and the inner current control, as shown in
Figure 3. The goal is to create active and reactive power control based on droop control to
meet the overall control scheme of an inverter-based microgrid with a DC-DC converter.
This is true for the PV system. As demonstrated in Figure 3, the control is based on output
power regulation at a lower value to MPPT extracted power Pmpp per grid frequency and
voltage variation. The variation ofω fromω* is used to control the output power. Pmpp is
typically estimated using MPPT control.
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The outer loop controls the DC-link voltage; hence, the difference between the mea-
sured and reference DC-link voltages in this loop is the controller’s input. The controller’s
output determines the first reference per unit power P∗

pu as given in Equation (1). The
reference per unit power Q∗

pu is set at zero for the unity power factor.

P∗
pu =

(
kpvdc +

kivdc
s

)[
vdc − v∗dc

]
Q∗

pu = 0
(1)

where vdc is the measured value of the DC link voltage
The actual first reference of the power p*, which will serve as the input for the inte-

grated droop, is calculated by Equation (2):

P∗ = PMPP × P∗
pu (2)

The active power output of the inverter is determined by p-ω droop control, which
mimics the inertial response of synchronous generators, whereas the reactive power output
of the voltage source inverter is determined by Q-E droop control given in Equation (3):

P∗∗ = P∗ + kpdroop(ω
∗ − ω)

Q∗∗ = Q∗ + kqdroop(E∗ − vd)
(3)

where kpdroop and kqdroop are the coefficients of the inverter’s frequency and voltage droops,
respectively. p* and Q* are also active and reactive power references, respectively. Further-
more, the droop generates new references for active and reactive power, which are denoted
by p* and Q*, respectively. In addition, ω* denotes the set-point frequency, whereas E*
denotes the voltage’s rated set-point amplitude.

2.2. Secondary Control with Fast DSC

The PCC voltage magnitude control is set up to buffer and prevent surpassing the grid
code maximum defined and needed voltage range (0.9–1.1 pu) in order to avoid exceeding
the limit. To implement an effective unbalanced grid voltage adjustment, the values of its
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symmetrical components are collected. To detect the presence of symmetrical components
and retrieve their values, delayed signal cancellation (DSC) is used. For the grid frequency
of 50 Hz, a time of 5 ms is employed. This is determined as Nd = fs/(4 f1), where fs is the
sampling frequency, and f1 is the fundamental frequency, which in our instance is 50 Hz
grid frequency.

The DSC algorithm measures three-phase voltages and then decomposes them into
their symmetrical components [67]. Voltages recorded in phase are principally indicated
in the stationary reference frame by the Clarke (abc-∝β) transformation. Two opposite
rotations are performed following the above-mentioned resulting stationary reference frame
using the host grid voltage’s phasor measured angle (θ and −θ). This angle corresponds to
the one presented at the phase-locked loop’s output. The positive factor suggests that the
negative component values for vp

αβ and vn
αβ are then stored in two distinct data buffers for

half a time.
Finally, the positive and negative component final samples are produced and instantly

stored in the two buffers for half a length of time. Equation (4) expresses the components
and their additions. In Equations (4) and (5), the second term samples are equal to the
components of the first term; however, a fourth duration is displaced, and a multiple
of the second terms expresses this change. For the LVRT application, the negative and
positive sequence components of voltage and current signals must be acquired. Traditional
DSC approaches published in the literature are used to separate the positive-sequence
component vp

αβ and negative-sequence components vn
αβ using Equation (4). The signal is

delayed within a fourth of the fundamental frequency throughout this precise sequence
separation operation.

vp
αβ = 1

2

[
vαβ(t)− jvαβ

(
t − fs

4· fg

)]
vn

αβ = 1
2

[
vαβ(t) + jvαβ

(
t − fs

4· fg

)] (4)

The typical DSC approach is shown in Figure 4a, where two components of t1 and
t2 of vαβ(t) are rotated counter-clockwise. Following that, in Figure 4b, the fundamental
delay cycle vαβ

(
t − fs/4 · fg

)
is used to extract components t1. As a result, component t1

now has a phase shift delay of −π. As a result, a −2π phase shift delay is applied to the
component t2. As a result, the backward rotation clock will wisely adjust by adding +π to
the phases of the two components. As a result, t1 is rotated back to its original position.
With the superimposition of Figure 4a,b, the component t1 is doubled in length, and t2 is
decreased to zero (b). Figure 4c depicts the result.
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The fast DSC utilized in this work differs from the traditional DSC used in [6] due
to the significant delay (5 ms for 50 Hz) incurred from employing vp

αβ and vn
αβ, which is

a significant shortcoming. Similarly, the ratios fs/4 · fg must be an integer, which is not
feasible in practice. Another disadvantage of vp

αβ and vn
αβ is that the vector vαβ

(
t − fs/4 · fg

)
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will necessitate a large amount of memory. Figure 5 depicts the Fast DSC used for sequence
component separation, with a shorter settling time.
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The voltage vector vαβ consists of both positive and negative components as ex-
panded by:

vαβ = vp
αβ + vn

αβ = vαβ = vαejωt+ϕ1 + vβe−jωt+ϕ2 (5)

where ϕ1 and ϕ2 are chosen as random angles depicting negligible phase shifts. Thus,
Equation (5) can be expanded as a result of Equation (6):

vp
αβ = 1

2

[
vαβ(t)−

j
ω · ∂vαβ(t)

∂t

]
vn

αβ = 1
2

[
vαβ(t) +

j
ω · ∂vαβ(t)

∂t

] (6)

Hence, the filtered version of the vαβ(t) is expressed as v(t)where:

v = vαβ(ωt)− e−jθd vαβ(ωt − θd) (7)

where θd is the delay angle expressed as in Equation (8):

θd =
2π fs

N · fg
(8)

The voltage vector v is derived by applying Equations (5) and (6) to Equation (7) as
expressed in Equation (9):

v = vp
αβejωt + vn

αβe−jωt − ejθd
[
vp

αβej(ωt−θd) + vn
αβe−j(ωt−θd)

]
(9)

Hence, the negative sequence component is cancelled out in Equation (9), as further
expressed in Equation (10):

vp
αβ =

v[
1 − e−j2θd

] = 1
2

[[
vαβ(ωt)− e−jθd vαβ(ωt − θd)

](
1 − ej2θd

)
1 − cos(2θd)

]
(10)

Therefore, the negative component cancelled out is expressed by Equation (11):

vn
αβ =

1
2

[[
vαβ(ωt)− ejθd vαβ(ωt − θd)

](
1 − e−j2θd

)
1 − cos(2θd)

]
(11)
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The positive and negative sequence components are similar to that of traditional DSC,
provided the delay angle in Equations (10) and (11) approaches zero, as expressed in
Equation (8).

Hence, a time delay of fs/N s, which corresponds to the θd as given in Equation (8)
is realized. Thus, at the exact delay angle θd = π/2, the output of the traditional DSC
is achieved.

Suppose:
a = vα − vθd

α cos θd − vθd
β sin θd

b = vβ − vθd
β cos θd + vθd

α sin θd

c = vα − vθd
α cos θd + vθd

β sin θd

d = vβ − vθd
β cos θd − vθd

α sin θd

(12)

Therefore, the sequence component estimates in the stationary reference frame are given as:

vp
α =

1
2

[
a − a cos(2θd) + b sin(2θd)

1 − cos(2θd)

]
(13)

vp
β =

1
2

[
b − b cos(2θd)− a sin(2θd)

1 − cos(2θd)

]
(14)

vp
α =

1
2

[
c − c cos(2θd) + d sin(2θd)

1 − cos(2θd)

]
(15)

vp
α =

1
2

[
d − d cos(2θd)− c sin(2θd)

1 − cos(2θd)

]
(16)

This proposed fast DSC is deployed for the secondary control is given in Figure 5. Therefore,
a transformation from αβ0 stationary reference frame to dq0 rotating reference frame is
performed using:

vα + jvβ =
(
vd + jvq

)
ejωt (17)

2.2.1. Dynamic Voltage Support

The positive and negative component voltage-independent control is done according
to their respective sequence references expressed in Equation (18):

∆Q =

(
kpp +

kpp

sTip

)[
v∗p − vp

]
+

(
kpn +

kpn

sTin

)
[v∗n − vn] (18)

where kpp and kpn are the PI control’s proportional gains for the positive sequence while kip
and kin are the integral gains in the negative sequence.

The control technique uses the DSC to independently change both positive and nega-
tive components in accordance with their respective sequence references to regulate the
microgrid voltage at the local load point of connection with the PCC. As a result, the
microgrid voltage of the DERs and local sensitive loads increases compared to the volt-
age sag experienced in the main grid. As a result, active power is given continuously to
the microgrid sensitive load while providing ancillary voltage support to the main grid.
Equations (19) and (20) express the separate controls of the voltage at the point of common
coupling of the microgrid to the main grid.

Qp =

(
kpp +

kip

s

)[
v∗p −

√
v2

dp + v2
qp

]
=

(
kpp +

kpp

sTip

)[
v∗p −

√
v2

dp + v2
qp

]
(19)

Qn =

(
kpn +

kin
s

)[
v∗n −

√
v2

dn + v2
qn

]
=

(
kpn +

kpn

sTin

)[
v∗n −

√
v2

dn + v2
qn

]
(20)
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where kpp and kpn are the PI control’s proportional gains for the positive sequence while
kip and kin are the integral gains in the negative sequence. The aggregate reactive power
injection from the microgrid through the PCC to the utility grid for ride-through and
reactive power support implies Equation (21) using Figure 6.

∆Q = Qp + Qn + Qreq (21)

where Qp and Qn are the reactive powers obtained from the PCC voltage’s independent
control, as in Equations (19) and (20). Qreq is estimated using the Spanish grid code LVRT
requirement based on the depth of voltage sag, as shown in Figure 6.
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Therefore, the microgrid voltage at the local load point of contact with the PCC is
regulated by the control device using the DSC to change both the positive and negative
components individually in compliance with their corresponding sequence references.
Thus, the voltage within the microgrid common to the DER and local loads improves
reasonably independent of the voltage decrease in the main grid. Active power is then
continuously supplied to the microgrid-sensitive load, thus offering ancillary voltage
support operation to the main grid. Thus, ensuring the independent voltage controls at the
microgrid’s common coupling point to the main grid are demonstrated in Equations (19)
and (20).

Qreq =


(

1.33 − 0.86 · VG
VN

)
QN , VG ≤ 50

100 VN(
0.57 − 6.00 · VG

VN

)
· QN , 90

100 VN ≥ VG > 50
100 VN(

1.00 − 0.20 · VG
VN

)
· QN , VG > 90

100 VN

(22)

Consequently, the required reactive power injection under fault in the main grid is
guided by Equation (22) in accordance with the depth of voltage sag. Accordingly, dynamic
grid voltage support is not required within 90–110% of the nominal grid voltage. Therefore,
in Equation (11), Qreq is the required reactive power stipulated by the grid code, while VG
and VN are the instantaneous and nominal grid voltages.
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2.2.2. Active Power Curtailments

Active and reactive power references are fixed according to control goals and grid
transient conditions. Before a fault, the dynamic power reference is governed by MPPT
control at the unity power factor. The active and reactive power references are recomputed
as soon as the DSC detects the fault. Typically, in direct-quadrature equivalent for the
three-phase grid parameters, p and Q are computed as:

P = 3
2
(
vdid + vqiq

)
Q = 3

2
(
vqid − vdiq

) (23)

The corresponding direct-quadrature grid currents are:[
id
iq

]
=

2

3
(

v2
d + v2

q

)[ vd vq
vq −vd

][
P
Q

]
(24)

According to Equation (25) and with
(

v2
d + v2

q

)
= v2

gN , the reference grid current as
the active power and reactive power are required to be modified under FRT mode.

i∗g = i∗d =
2

3
(

v2
d + v2

q

) [ vd vq ] ·
[

GP(s)(P∗ − P)
GQ(s)(Q∗ − Q)

]
(25)

where the current reference I*g is the direct-quadrature equivalent of the three-phase AC
grid current, and GP(s) and GQ(s) are the p and Q, proportional-integral controller.

The DERs are permitted to feed in active power during the voltage sags, although
limited to the grid. For this purpose, the inverter injects a smaller amount of power into
the grid for the duration of voltage sag, unlike the pre-fault condition capacity while
sidestepping DC-link overvoltage. Figure 7 depicts the p−V curve of a solar module where
PMPP and VMPP represent the maximum power point power and voltage of the PV source,
which is assumed to be the pre-fault values at the MPP.
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FRT mode adjustments are applied to limit this active power injection under grid
voltage sag caused by faults [68]. The proposed technique matches the DC generated power
with the AC grid injected to preserve a moderately constant DC-link voltage. The DC
and AC power balance is maintained at a value other than zero. As a result, the AC grid
receives a simultaneous injection of active power and reactive power.

The DC-DC converter’s goal under the proposed method is no longer to enforce MPP
operations but to control power produced by the PV system to match the instantaneous
permissible active power. The converter is regulated to determine the optimal VPV value
that attains power balance. Therefore, the operating point could also shift from point X
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in Figure 7 to a lower control point, i.e., be it point Y or point Z. Thus, a negative voltage
value ∆VPV is added to the pre-fault VMPP value, as follows:

VFRT = VMPP − ∆VPV (26)

The strategy proposed will enable the controller to achieve FRT using the current
reference directly derived from the active and reactive power references, according to
Equation (25). The linear droop is used in determining the voltage value ∆VPV. This
droop relationship implements the FRT, which involves a curve-programmed active power
decrease during the FRT operation. Hence, the characteristic linear droop relationship
between PV voltage and PV power, according to Figure 2, is approached by:

VPV ≈ VMPP + kPV(PPV − PMPP) (27)

where kPV is the constant factor of p-V droop, and this relationship is irradiance- and
temperature-dependent.

The FRT strategy requires that the depth of the grid voltage drop is commensurate to
the level of regulated active power injection into the AC grid to make way for the injection
of reactive power in supporting the voltage drop. Consequently, another droop-based
correlation in the active power generated with respect to the grid voltage VG is proposed as:

VG − V∗
G = −kd(PG − P∗

G) (28)

where VG is the grid voltage magnitude, PG is the grid injected active power, kd shows the
droop coefficient of the relationship, and V*

G and p*
G are the corresponding initial values

for grid voltage and active power just before transients. In a lossless DC-AC conversion
system, the MPPT extracted power is equal to the injected AC power. Consequently:

PPV = PG (29)

Thus, applying the relation in Equation (29) to Equations (27) and (28) and combining the
two equations yields Equation (30), which indicates an inverse proportionality between the
voltage grid changes and PV voltage changes as:

kd(VPV − VMPP) = −kPV(VG − VMPP) (30)

Hence, the PV voltage is maintained at maximum power point voltage with the nominal
grid voltage under normal grid conditions. However, the PV voltage is systematically
adjusted by Equation (29) under fault. This occurs as a result of grid voltage drop lower
than the grid nominal voltage. Consequently, a smooth switch is ensured between MPP
and FRT operating modes and vice versa. The FRT voltage for the PV is dependent on
the depth of the grid voltage sag, as shown in Equation (20), where ratio kPV: kd is the
proportional control gain:

VFRT = VMPP − kPV
kd

(VG − V∗
G) (31)

Hence, voltage value ∆VPV is given as:

∆VPV =
kPV
kd

(VG − V∗
G) (32)

Therefore, the implementation of the FRT scheme, as depicted in Equation (31) depicted in
the DC-DC control of Figure 7 with the maximum power point tracking control gain.
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3. Results

In this work, grid support is required to aid grid voltage recovery by the reactive
power injection, especially during faults in the grid. Furthermore, this injection will,
in turn, contribute to the overall stability and reliability of the system. The mandatory
reactive power injection (dynamic grid support) in meeting the grid code requirements is
summarized in Equation (22), according to the Spanish network code [6]. Consequently,
the required reactive current injection under fault in the AC grid is guided by the given
expression. Once the PCC voltage sequence components are obtained in direct-quadrature
coordinates when grid failure occurs using Equation (18), broken down into Equations
(19) and (20), the two PCC voltage-independent control systems restore normal sequence
references. Positive sequence control aims to bring the PCC voltage’s positive sequence
level back to its rated value. Therefore, the error is used to regulate the reactive power Qp
injected into the grid while considering the electronic power switch thresholds. Likewise,
the PCC voltage’s negative sequence regulation restores the quadrature portion to zero
normal condition references. This balances and buffers the further unbalance in PCC
voltage introduced by reactive power injection into the grid.

The monitoring of grid voltage is crucial to the FRT operation of grid-supporting
systems. The DSC algorithm accurately tracks the grid voltage level and promptly activates
immediately fault is detected. The DSC detects the grid restoration after fault clearance, and
the system switches back to the normal MPPT operating condition, as shown in Figure 8,
compared with the other fast Fourier transform, synchronous rotating techniques reference
frame, peak, and root means square (RMS) technique. The dynamic grid-supporting
regulation is primarily linked to prompt reactive power injection control. The responses of
the detection schemes and the proposed DSC at the inception of fault and fault clearance
are presented in Figure 8a,b, respectively.
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Figure 8. (a) DSC sag detection compared to FFT, SRRF, PEAK, and RMS methods at fault inception,
and (b) DSC sag detection compared to FFT, SRRF, PEAK, and RMS methods at fault clearance.

At the inception of fault, the time taken for the various techniques to reach the voltage
sag’s actual depth is given in Table 1. Similarly, the time taken for these methods to recover
to the nominal system voltage value is also shown in Table 1. The DSC method showed
superior performance in early detection of fault and the quality of value signal evaluation
at the fault instance. The SRRF method also displayed a faster detection in a way similar to
DSC; however, the sag detection went beyond the actual system sag, and the overshoot is
experienced with a longer settling time of 0.0699 s after the fault instance and 0.071 s after
fault clearance. Moreover, the FFT, PEAK, and RMS methods have similar performance
with a significant delay in identifying the fault inception and fault clearance.
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Table 1. Sag Detection.

Techniques Detection Time of Fault
Inception (S)

Detection Time of Fault
Clearance (S)

DSC 1.3001522 1.80015210
FFT 1.3167960 1.82308800

PEAK 1.3169960 1.82274000
RMS 1.3169840 1.82309200
SRRF 1.3012721 1.81606000

Under substantial balanced fault at the time of 1.3 s, as shown in Figure 9 with a
50% sag in the grid voltage, the fault is cleared in 1.8 s. The corresponding product of the
output of the delayed signal cancellation and a typical pulse generator generates positive
and negative pulses. Ordinarily, the Pulse Generator generates square wave pulses at
regular intervals in which waveform parameters, such as the amplitude, phase delays, and
pulse duration, determine the pulse output. These pulses generated are cancelled out by
multiplying them with the DSC output in Figure 8. Consequently, Figures 10–12 show
the pulses generated in the three-phase system with all the faults detected in less than
0.1515 ms. In addition, the corresponding sag detection is shown for the pulses generated in
each phase. These show that the fault is detected within 0.1515 ms in all phases to activate
the FRT scheme for reactive power compensation and active power curtailment.
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The FRT approach proposed is simulated on a grid supporting the inverter-based
microgrid model with a DC-DC converter. A typical example of this is a double-stage PV
system with DC-DC and DC-AC converters. Therefore, the grid code FRT compliance of
the system is evaluated while simultaneously solving the unique challenges introduced as
a result of a PV source. Table 2 gives the PV and DC-DC Converter Simulation Parameters.
Table 3 gives the critical system parameters at uniform 25 ◦C temperature and 1000 W/m2

irradiance. The system is connected to a medium voltage level with a nominal voltage of
11 kV. The system consists of PV-based DERs and local load, as depicted in Figure 2—the
grid-connected inverter-based microgrid with DC-DC converter interfacing the PV. The
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fault is simulated on the main grid to cause 50%, 60%, and 70% voltage sags at the PCC,
switched at time t = 1.3 s and assumed to be automatically cleared at t = 1.8 s.

Table 2. PV and DC-DC Converter Simulation Parameters.

Parameters Descriptions Values

PMPP PV system maximum power 20 kW
Q* PV reactive power reference 0 kVAr
Ee Maximum irradiance 1000 W/m2

Te Temperature 25 ◦C
V*dc Reference DC link voltage 1000 V

E AC single phase voltage
amplitude 330 V

CDC DC link capacitor 2400 µF
CPV PV side capacitor 10 µF

L DC link inductor 5 mH
Cf LC filter capacitance 2.31 µF
Lf LC filter inductance 11 mH

Kp cl
proportional current control

loop gain 0.3

Ki cl
integral current control loop

gain 20

Kp dc
proportional DC link voltage

loop gain 7

Ki dc
integral DC link voltage loop

gain 800

Table 3. PV Inverter primary and secondary control parameters.

Parameters Descriptions Values

ωcut Cut-off angular frequency 100π
E Single-phase voltage reference 330 V

Kp I
Direct-quadrature current

loop p gain 100

Ki I
Direct-quadrature current

loop I gain 1000

Kp VDC Outer loop DC voltage p gain 5
Ki VDC Outer loop DC voltage I gain 800

Kp PCC + -
Positive sequence and

negative sequence p gain 0.0125

Ki PCC + -
Positive sequence and

negative sequence I gain 2

fPWM
DC-AC inverter PWM
switching frequency 10 kHz

3.1. DC Side Analysis

The drop in the PCC voltage due to a fault caused the proposed secondary control
to re-evaluate the primary control references provided the voltage drop is within the FRT
curve envelope. As a result of this drop, the PV power generated, power in the DC link,
and power delivered to the AC grid is unbalanced. Consequently, this imbalance portends
an unwarranted transient voltage at the PV side and DC link while excessive current is
witnessed at the AC side, as shown in Figures 13–15 and interpreted in Tables 4–6. The
exponential increment in the voltage at the DC link is due to the capacitor’s energy build-
up [69]. Figure 13a–c show the PV voltage, DC link voltage, and average DC link current
flow under fault without and with the proposed secondary control under 50% voltage sags.
The corresponding values of the PV Voltage under normal conditions and 50%, 60% and
70% voltage sags are given in Table 4. The corresponding values of the DC-link Voltage
under normal conditions and 50%, 60% and 70% voltage sags are given in Table 5. The
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corresponding values of the Average DC Current under normal conditions and 50%, 60%
and 70% voltage sags are given in Table 6.
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Figure 14. (a) PV voltage under 60% grid voltage sag, (b) DC-link voltage under 60% grid voltage
sag, and (c) Average DC link current under 60% grid voltage sag.
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Figure 15. (a) PV voltage under 70% grid voltage sag, (b) DC link voltage under 70% grid voltage
sag, and (c) Average DC link current under 70% grid voltage sag.

Table 4. PV Voltage under 50%, 60%, and 70% voltage sags.

. 50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Time
(s)

Proposed
Secondary

Control

Proposed
Secondary

Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 532.1 534.0 548.0 548.0 548.0 532.7
1.34 536.6 571.8 540.1 565.1 548.5 548.3
1.38 542.2 570.5 536.9 556.8 548.0 548.2
1.42 534.0 576.4 538.6 575.7 536.6 536.4
1.46 547.5 601.7 547.6 584.9 548.0 548.1
1.50 536.2 581.4 534.1 572.1 548.0 548.3
1.54 537.6 567.4 537.6 566.9 537.5 537.7
1.58 545.6 607.2 545.7 588.9 548.0 548.2
1.62 533.1 553.7 532.9 552.5 532.8 536.4
1.66 542.8 587.5 532.8 547.3 548.0 555.3
1.70 534.4 566.6 547.7 554.0 543.8 551.4
1.74 534.2 570.5 532.8 533.2 548.0 538.6
1.78 547.3 577.1 532.8 551.9 547.6 555.2
1.82 553.5 553.2 541.4 538.4 548.0 544.8
1.86 534.0 537.0 547.9 518.0 534.5 486.7
1.90 547.8 495.7 532.6 442.0 548.0 545.4
1.94 536.6 415.2 548.1 392.4 548.0 545.5
1.98 540.1 361.7 547.9 343.1 537.4 538.3
2.02 546.2 296.8 533.7 283.1 548.0 548.1
2.06 532.9 233.7 547.9 307.5 548.0 548.0
2.10 543.8 251.7 548.0 300.4 547.9 548.0
2.14 546.1 276.1 545.4 312.2 543.9 543.9
2.18 532.9 268.7 547.9 324.4 533.0 533.0
2.22 543.8 288.0 548.0 586.7 546.1 546.2
2.26 540.2 297.9 536.4 517.4 543.0 543.0
2.30 533.2 307.9 546.9 514.8 534.6 534.5
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Table 5. DC Link Voltage under 50%, 60%, and 70% voltage sags.

50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Time
(s)

Proposed
Secondary

Control

Proposed
Secondary

Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 998.8 998.8 1000.5 1000.5 1000.4 1000.5
1.34 985.4 985.4 985.5 1039.4 999.9 1001.0
1.38 1005.2 1005.2 1004.3 1086.3 1000.4 1000.0
1.42 998.3 998.3 999.2 1107.5 1000.5 999.8
1.46 1000.1 1000.1 999.9 1130.4 1000.6 1000.3
1.50 1000.0 1000.0 1000.2 1168.6 999.6 1000.9
1.54 1000.1 1000.1 1000.0 1186.8 1000.6 999.1
1.58 999.7 999.7 999.7 1217.9 1000.5 999.9
1.62 1000.1 1000.1 1000.4 1193.1 1000.6 1005.5
1.66 999.8 999.8 999.7 1241.3 999.6 1013.6
1.70 999.9 999.9 1000.3 1225.5 999.6 1017.7
1.74 1000.2 1000.2 1000.3 1281.0 999.5 1025.7
1.78 999.9 999.9 1000.3 1279.5 1000.6 1012.6
1.82 1021.6 1021.6 1013.7 1254.5 1000.2 989.6
1.86 998.9 998.9 1001.0 1115.9 1000.5 904.1
1.90 999.0 999.0 999.6 977.0 1000.5 1024.7
1.94 1000.5 1000.5 1000.0 853.8 1000.5 996.4
1.98 999.9 999.9 1000.5 709.3 1000.4 1001.4
2.02 999.9 999.9 1000.5 566.5 1000.5 1000.6
2.06 1000.4 1000.4 999.6 568.9 999.5 999.7
2.10 1000.0 1000.0 1000.6 569.9 1000.5 999.8
2.14 1000.0 1000.0 1000.5 572.6 1000.6 1000.6
2.18 1000.1 1000.1 999.5 576.4 1000.5 1000.5
2.22 999.7 999.7 1000.5 1100.2 999.5 1000.5
2.26 1000.2 1000.2 1000.5 982.1 1000.4 1000.4
2.30 1000.1 1000.1 1000.5 1002.3 1000.5 1000.5

The MPPT function is deactivated, and the operating point is transitioned to the
FRT mode, as seen in Figures 13c, 14c and 15c when a disturbance is sensed in the grid.
Immediately upon the fault detection, the PV system starts reactive power injection into the
grid per the voltage sag demands and grid code requirements. Similarly, the active power
generation is limited in compliance with the ratings and complex power requirements
imposed. Furthermore, Figure 14 shows that the PV voltage, DC bus voltage, and average
DC link current flow under fault with and without the proposed secondary control under
60% voltage sags.

The limitation of active power is not necessarily the requirement of grid codes; how-
ever, it is done out of concern in simultaneously fulfilling the critical objective of the
grid-supporting schemes of fault ride-through (by remaining in grid connection mode),
providing grid support services to expedite grid recovery. Thus, reactive power injection
without a commensurate drop in the active power generation triggers the system to activate
overcurrent protection for safe disconnection. As a result, the active power is limited under
FRT operation, as shown in the average DC flow in the DC link.

The fault is cleared under the Spanish grid code as soon as the voltage level rises to
90% of the nominal grid voltage value. Hence, the system is recognized to have returned
to the normal operation mode. Consequently, the PV system immediately returned to its
MPPT mode and tracked the PV panels’ maximum output power. However, it took a short
period for the incremental conductance MPPT to adjust to the transients caused by the AC
grid fault, which is evident in the responses reported. Furthermore, PV module voltage and
current, PV diode current, DC link voltage, average DC link current, and DC-link power
require a considerable period to regain the pre-fault stable value. However, the proposed
secondary control significantly mitigated the increase in voltage at the DC link.
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Table 6. Average DC Current under 50%, 60%, and 70% voltage sags.

50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Time
(s)

Proposed
Secondary

Control

Proposed
Secondary

Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 20.7 20.7 20.7 20.7 20.7 20.7
1.34 9.8 9.8 13.3 20.1 20.6 20.7
1.38 9.1 9.1 12.7 19.3 20.5 20.5
1.42 9.2 9.2 12.7 17.6 20.7 20.7
1.46 9.2 9.2 12.7 17.8 20.5 20.5
1.50 9.2 9.2 12.6 16.6 20.7 20.7
1.54 9.2 9.2 12.7 17.2 20.7 20.7
1.58 9.2 9.2 12.7 16.3 20.7 20.7
1.62 9.2 9.2 12.6 16.5 20.7 20.6
1.66 9.1 9.1 12.7 16.4 20.7 20.5
1.70 9.1 9.1 12.7 15.8 20.7 20.4
1.74 9.1 9.1 12.6 15.3 20.7 20.3
1.78 9.1 9.1 12.7 16.1 20.7 20.3
1.82 14.5 14.5 17.1 16.0 20.7 20.5
1.86 20.3 20.3 20.4 17.8 20.7 21.3
1.90 20.7 20.7 20.7 18.3 20.7 20.4
1.94 20.5 20.5 20.6 18.2 20.7 20.7
1.98 20.7 20.7 20.7 19.2 20.7 20.7
2.02 20.6 20.6 20.7 19.7 20.7 20.7
2.06 20.5 20.5 20.7 20.3 20.7 20.7
2.10 20.7 20.7 20.7 20.9 20.7 20.7
2.14 20.7 20.7 20.7 21.7 20.7 20.7
2.18 20.5 20.5 20.7 22.5 20.7 20.7
2.22 20.6 20.6 20.7 18.8 20.7 20.7
2.26 20.5 20.5 20.7 20.4 20.7 20.7
2.30 20.7 20.7 20.7 20.3 20.7 20.7

The developed models and the FRT control have demonstrated that the active power
and reactive power regulation can facilitate the FRT capability of the three-phase grid-
supporting converter when the operating mode of MPPT is shifted to minimize the gener-
ation of active power throughout the fault period. The secondary control developed for
the system shifted the operating point hinge on the voltage-sag depth, reducing the PV
power generated and DC power delivered at the DC link. This, in the long run, provided
adequate protection for the inverter/converter switches from potential damage, which
could be caused by the excessive AC grid current and hike in DC voltage. Without the
proposed secondary control, the increasing DC link voltage causes the operating point to
shift and limit DC link current. As a result, the DC bus voltage failed to be maintained at
the reference even after fault clearance, thereby hampering power delivery.

Furthermore, the control of DC generated power by the PV, and, by extension, the
AC grid active power transmitted is associated with the depth of voltage dip the AC grid.
Therefore, the active power control is based on a droop relationship between these two
parameters, and the inverse proportionate relationship and requirements are exploited to
develop the proposed strategy. Hence, the AC grid voltage was closely monitored with the
DSC algorithm. The information obtained is directly utilized in the converter’s MPPT for
alternation between the MPP and FRT operations.

3.2. AC Side Analysis
3.2.1. AC Grid and Microgrid Voltage

Figure 16 illustrates the voltage drop’s depth on the main grid, which also compels a
consequent rise in the current magnitude as in Figure 17. The immediate current magni-
tude limitation is created by the secondary power reference integrated into the proposed
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secondary control FRT scheme of the DC-AC inverter and DC-DC Converter, as shown
in Figure 17. At fault inception, the active and reactive current references are changed
instantly. Correspondingly, all references are preserved automatically after fault clearance
with suitable tuning. Figure 16 demonstrates a seamless transition from pre-fault to a fault
and then from fault to post-fault. Therefore, the LC filter’s current output from the PV
system is adequately constrained, as seen in Figure 17. The 50% voltage drop rate detected
at the PCC to the grid is enhanced within 93.32% of the microgrid. The grid voltage sag
is detected at 0.1515 ms at the PCC, less than half of the first fault incidence cycle. This
indicates that the fault is observed in 1.3001515 s as revealed in the positive half cycle and
in the negative half cycle 1300 on the point. Consequently, the FRT scheme fault mode
operation is activated with simultaneous switching of the IGBT-diode switched reactor in
series with all the phases for balanced transient conditions and series with only the affected
phase in unbalanced conditions. Implementing the FRT solutions for PV source in the
microgrid application meant that the microgrid voltage would be compensated for in the
microgrid’s efficient operation independent of the specific transient grid state.
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Figure 16. (a) Voltages in the grid and microgrid at grid voltage sag of 50% produced by L-L-L-G
fault, (b) Voltages in the grid and microgrid at grid voltage sag of 60% produced by L-L-L-G fault,
and (c) Voltages in the grid and microgrid at grid voltage sag of 70% produced by L-L-L-G fault.
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3.2.2. AC Grid and Microgrid Current

Based on its kVA rated values, the fault current restricting this secondary control’s po-
tential contributes to the main grid voltage support using reactive power injected. Figure 17
illustrates the corresponding PV based DER current output waveforms with and without
the secondary control under 50% voltage sags at the PCC. The current output within the
microgrid is appropriately constrained with no substantial distortion in the PV-DER current
signals than when the proposed secondary control is not present. Thus, it is clear that the
inverter currents are appropriately limited in the first cycle after fault inception at 1.3 s.
Consequently, the inverter currents are at 1.3 s, adequately constrained within the first
cycle after fault commencement. The 0.00016 delay after the proposed control activation
fault is small and negligible. Nevertheless, the inverter semiconductor switches cannot be
affected by overcurrent generated between 1.30000 and 1.30016 s. In particular, grid faults
occur practically around the filter capacitor, and the transient current peak at fault com-
mencement disappears almost immediately and thus is overlooked. It should be stated that
the excess current in the event of transient interruption is absolutely attenuated where the
converters are connected to an electrically weak grid far from the inverter stem placement.

3.2.3. PV Inverter Current and Voltage Harmonics

Following the EN50160 standard for all the phases, the THD of any generating unit’s
output voltage waveforms shall not exceed 8% [70]. Subsequently, the THDs (before fault,
during the fault, and after fault clearance for different fault types causing 50% and 60%
voltage sags) of PV voltage signals and output current waveforms are revealed in Table 7
and Figure 18. The THD is evaluated in MATLAB using a quick analysis of the fast Fourier
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transformation. As reflected in the low THDs of the PV system output current and voltages,
the excellent signal quality confirms the satisfactory performance of the FRT strategy. As
examined, the microgrid voltage display significant-quality waveforms, PV system voltage
output, and current. Regarding the output current harmonics, the voltage harmonics are
relatively negligible. The reported low THD indicates high efficiency, significant power
factor, and low peak current. Tshis demonstrates the efficacy of this proposed FRT approach
for secondary control and IEC 61000-3-2 standard compliance [71]:

Table 7. Average (THD) of voltage and current waveforms of the DERs.

Voltage
Sag Signal

Total Harmonic Distortion (%)
Pre-Fault Fault Post-Fault

L1 L2 L3 L1 L2 L3 L1 L2 L3

50%
Voltage 0.329 0.321 0.327 1.165 1.160 1.169 0.327 0.322 0.325
Current 2.007 2.001 2.009 2.149 2.142 2.140 1.982 1.983 1.987

60%
Voltage 0.314 0.312 0.313 1.190 1.192 1.191 0.328 0.320 0.323
Current 2.059 2.054 2.058 2.056 2.057 2.050 2.083 2.085 2.082

70%
Voltage 0.310 0.315 0.311 1.243 1.249 1.249 0.321 0.328 0.329
Current 2.052 2.053 2.056 2.045 2.046 2.043 2.099 2.079 2.067
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3.2.4. Power Generation and Delivery

Following the grid codes, the FRT control structures ensure that comparable reactive
power is delivered to support grid voltage sag, thus performing a PV system ride through
disturbances. Therefore, the system seamless switch from grid synchronous to an isolated
service mode is prevented. The rise in reactive power requirement restricts active power
generation for the PV inverters to comply with the FRT approach’s apparent power thresh-
old and inverter ratings. The active power curtailment under 50%, 60%, and 70% voltage
sag are shown in Figures 19a, 20a and 21a. The reactive power injected supports the voltage
recovery within the microgrid and at the PCC through the active power generation and
reactive power injection per the depth of voltage sag at the PCC. The improved reactive
power production ensures the microgrid voltage is controlled to an appropriate voltage
magnitude during the fault duration. At the moment t = 1.8 s, the FRT system automatically
detects the rise in the main grid voltage to an allowable point of 0.90–1.10 at the PCC. The
reactive power injection is thus limited according to the extent of voltage increase, as shown
in Figures 19b, 20b and 21b. Figures 19–21 indicate the rise in injected reactive capacity and
a sharp proportional decrease in active power. This FRT regulation’s deployment with the
DSC algorithms monitors the main grid disruption using the voltage sag sensed at the PCC.
The FRT technique restricts active and reactive references in the PV system as needed to
trigger microgrid voltage change without major distortion to the DER output current and
voltage waveforms. The active power generated by the PV system under 50%, 60%, and
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70% voltage sags are summarized in Table 8. Similarly, the PV’s reactive power under 50%,
60%, and 70% voltage sags are shown in Table 9.
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Table 8. Active Power p Generation under voltage sag.

Time
(s)

Active Power p (kW)
50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 20.590 20.590 20.600 20.600 20.590 20.590
1.34 07.222 14.580 10.600 16.700 14.380 20.480
1.38 07.101 14.070 09.870 17.100 13.870 20.540
1.42 07.498 15.160 10.400 17.900 14.240 20.530
1.46 07.274 15.030 10.200 18.000 14.080 20.500
1.50 07.364 15.930 10.300 17.700 14.140 20.470
1.54 07.347 16.090 10.200 18.300 14.120 20.450
1.58 07.343 15.930 10.200 17.800 14.120 20.400
1.62 07.356 16.130 10.200 19.000 14.110 20.210
1.66 07.364 16.420 10.200 17.800 14.130 20.320
1.70 07.341 16.640 10.300 17.900 14.120 20.320
1.74 07.339 16.790 10.200 18.100 14.130 19.970
1.78 07.337 16.580 10.200 19.500 14.120 20.890
1.82 09.493 24.990 12.300 27.900 15.470 25.060
1.86 22.960 31.700 22.600 30.300 21.810 24.290
1.90 19.960 31.020 20.100 26.900 20.230 14.120
1.94 20.700 30.440 20.700 23.500 20.680 22.500
1.98 30.560 26.030 20.500 20.100 20.560 19.940
2.02 20.580 21.010 20.600 16.200 20.600 20.770
2.06 20.590 15.840 20.600 10.600 20.590 20.540
2.10 20.590 09.482 20.600 11.700 20.600 20.620
2.14 20.600 10.400 20.600 12.400 20.590 20.590
2.18 20.590 11.030 20.600 12.800 20.590 20.590
2.22 20.600 11.550 20.600 17.600 20.590 20.580
2.26 20.580 12.020 20.600 28.400 20.570 20.570
2.30 20.590 12.280 20.600 17.500 20.590 20.580

As a result of the voltage sag induced by grid fault, the PV system’s total active power
supply is reduced. The PV system is controlled to initially inject an active power quantity
that satisfies local load demand and thus lessens the active power injection into the faulty
main grid, as shown in Figures 22a, 23a and 24a. The amplitude of the system voltage
declined during voltage sags. The fault current’s intensity is reduced, and the microgrid
voltage is enhanced to transmit the active power to the local load. The active power
generated is limited to the rated value of the local load under severe voltage sag. Each time
an over-generation happens, the excess is transmitted to the failed system. Nevertheless,
no active power can be generated for the local microgrid and main grid loads in the severe
occurrence voltage sag. Subsequently, according to Spanish grid codes, the PV system
reactive power output maximizes host system voltage. The microgrid voltage is regulated
within the operating range (0.9–1.1 Spanish grid code) to ensure continuous active power
delivery to local sensitive loads, as seen in Figures 22–24.
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Table 9. Reactive Power Q Generation under voltage sag.

Time
(s)

Reactive Power Q (kVAr)
50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 −0.259 −0.279 −02.59 −0.279 −0.026 −0.029
1.34 12.300 15.100 9.470 17.700 5.920 3.030
1.38 12.400 16.000 09.58 18.500 6.003 6.870
1.42 12.500 15.700 09.74 18.700 6.130 9.840
1.46 12.600 17.300 09.81 18.800 6.130 12.100
1.50 12.600 17.000 09.88 20.000 6.160 14.500
1.54 12.700 12.700 09.89 21.100 6.180 17.400
1.58 12.700 17.800 09.91 20.300 6.190 19.900
1.62 12.700 17.800 09.92 20.400 6.200 20.800
1.66 12.700 18.300 09.96 21.000 6.200 20.900
1.70 12.700 18.900 09.94 21.000 6.230 21.200
1.74 12.700 18.600 09.90 21.000 6.220 20.900
1.78 12.400 19.800 09.940 21.200 6.210 21.400
1.82 02.870 08.100 03.150 25.800 −0.040 24.100
1.86 0.684 00.06 00.509 26.100 0.269 20.100
1.90 0.272 00.06 00.249 27.200 0.083 −0.657
1.94 0.274 03.010 00.155 18.500 0.118 0.003
1.98 0.182 22.500 00.127 10.900 0.034 −0.180
2.02 0.142 13.100 00.044 00.636 0.012 0.089
2.06 0.102 01.470 −00.525 00.002 0.004 −0.078
2.10 0.244 −06.27 0.008 −0.297 −0.008 −0.049
2.14 0.004 −03.50 0.005 −0.142 −0.007 −0.053
2.18 −0.005 −01.88 0.005 −0.056 0.039 0.001
2.22 −0.007 −00.83 −0.015 −0.423 −0.002 −0.004
2.26 −0.015 −00.17 −0.027 17.306 −0.026 −0.034
2.30 0.020 00.420 −0.022 −0.588 0.035 0.020
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power supply to local microgrid load under voltage sag of 50%.
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The active and reactive power consumptions in the local load are summarized in
Tables 10 and 11, respectively.

Table 10. Active Power (kW) Consumption in the Load.

Time
(s)

50% Voltage Sag 60% Voltage Sag 70% Voltage Sag
Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 9.944 9.944 9.944 9.944 9.944 9.944
1.31 8.277 5.921 8.748 6.456 9.182 7.251
1.32 6.917 2.176 7.792 3.316 8.586 4.934
1.33 7.188 2.396 8.008 3.605 8.734 5.260
1.80 7.188 2.395 8.007 3.606 8.734 5.261
1.81 8.288 4.842 8.801 5.803 9.241 7.007
1.82 9.655 8.613 9.761 8.963 9.840 9.336
1.83 9.944 9.945 9.944 9.947 9.944 9.947
1.84 9.944 9.945 9.944 9.947 9.944 9.947
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Table 11. Reactive Power (VAr) Consumption in the Load.

50% Voltage Sag 60% Voltage Sag 70% Voltage Sag

Time
(s)

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

Proposed
Secondary

Control

Conventional
Control

1.30 497.2 497.2 497.2 497.2 497.2 497.2
1.31 421.1 311.1 442.6 336.9 462.5 374.0
1.32 349.1 106.2 392.5 165.7 431.5 249.1
1.33 359.4 119.7 400.4 180.2 436.7 263.0
1.80 359.4 119.8 400.4 180.3 436.7 263.1
1.81 387.3 162.9 421.1 225.2 450.3 303.4
1.82 483.6 483.3 488.4 453.8 492.1 469.8
1.83 497.3 497.5 497.3 497.6 497.3 497.5
1.84 497.1 497.0 497.1 497.2 497.2 497.2

To summarize the proposition implemented in this work, Figure 25 appropriately
depicts a grid-supporting solar PV system’s trajectories interfaced with the main grid via
DC-DC and DC-AC converters during a fault in the grid. Seamlessly switching is achieved
between the MPPT (normal operating condition) and FRT (fault operating condition)
operating modes with fast dynamics.
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The primary and the proposed secondary control for the double stage PV sourced
microgrid implements an FRT using the DSC fault detection algorithm. Strategic amend-
ments to the traditional primary control system of a grid-supporting system are made.
This controller is designed as per the Spanish grid codes stipulations for reactive power
injection to achieve a secondary voltage control with a valid and significant operation in
the transient fault period. The injected reactive power complies with the required reactive
currents based on the percentage voltage drop specified in the emerging grid codes under
different voltage sags caused by faults. This scheme prevents the transient AC overcurrent
in the microgrid and DC link overvoltage during the AC grid fault. Simultaneously, the DC
side over-voltage and AC side over-current are mitigated through active power decrease
and current amplitude curtailing strategies in compliance with the complex/apparent
power ratings. The DSC algorithms allow for separating the sequence components for dual
control at the PCC of the positive-sequence and negative-sequence components during the
primary grid disturbance.

The continuous supply to microgrid local sensitive load is ensured while meeting
the grid code FRT requirement. Furthermore, the control of DC generated power and, by
extension, the AC grid active power transmitted is linked to the depth of voltage dip the
AC grid. The active power control is based on a droop relationship between these two
parameters, and the inverse proportionate relationship and requirements are exploited
in developing the proposed shift in the operating point of the MPPT from MPP to FRT
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operation. To identify negative sequences and instances of fault in 0.1515 ms, the DSC’s
sequence identification algorithm is applied to enable the proposed secondary FRT scheme
to conform to the grid code stipulations. The DSC detects the grid restoration after fault
clearance, and the system switches back to the normal MPPT operating condition.

4. Conclusions

The secondary control developed involves the calculation of active and reactive power
references to determine the amount to generate and inject. The injected reactive power
must comply with the required reactive currents based on the percentage voltage drop
stipulated in the emerging grid codes under different voltage sags caused by faults. This
scheme prevents the transient AC overcurrent in the microgrid and DC link overvoltage
during the grid fault. Simultaneously, the active power decrease and current amplitude
limiting strategies in compliance with the complex/apparent power ratings mitigate the
DC side overvoltage and AC side overcurrent. The DSC algorithms allow for separating the
sequence components for dual control at the PCC of the positive-sequence and negative-
sequence components during a disturbance in the main grid. The developed scheme
guarantees inverter protection by ensuring that the current does not exceed the inverter
current rating under grid fault conditions. Thus, the converter-based system operates in
two non-switching modes of transient and steady-state FRT. The simulation results affirm
the good performance of the proposed strategy and its effectiveness. The monitoring of
grid voltage is crucial to the FRT operation of the grid-supporting systems. The DSC
algorithm accurately tracks the grid voltage level and promptly activates immediately fault
is detected. However, the reference current generated at any time, especially under the
FRT operation, does not comprise the inverter system protections for both overvoltage
and overcurrent by incessant triggering. The DSC detects the grid restoration after fault
clearance, and the system switches back to the normal MPPT operating condition.

This active power curtailment is implemented on a PV system assuming uniform
irradiance and temperature. Future work is recommended on applying the proposed
strategy to a double-stage PV inverter system operating under a variation of irradiance and
temperature. Thus, several characteristic linear droop relationships between PV voltage
and PV power at different values of irradiance and temperature are created within which
the operating points of the system could be shifted.
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