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Abstract: Microgrids are essential elements of the energy transition because they allow optimal use
of renewable energy sources (photovoltaic panels, wind turbines) and storage devices (batteries,
supercapacitors) by connecting them to consumption poles (e.g., buildings, charging stations of
electric vehicles). Lithium-ion batteries and supercapacitors are the main electrical storage devices
usually used by microgrids for energy and power transient management. In the present paper,
microgrid simulations have been performed. Electrothermal and aging models of storage components
are presented. Strategies and scenarios for the batteries are presented either based on the state of
charge limitation or hybrid association with supercapacitors. The contribution of this study is
to provide a management strategy which considers the aging of storage systems in the real-time
management of the microgrid in order to extend their life, while minimizing installation costs. The
first approach for a techno-economic study provided in that study enables us to improve the strategies
by optimizing the use of the battery. The results obtained in this paper demonstrate the key role of
the techno-economic approach and knowledge of the aging processes of storage devices in improving
the energy management and global feedback costs of microgrids. The simulation results show that
battery life can be improved by 2.2 years. The improvement in battery life leads to a reduction in the
total cost of the installation by reducing the cost of the batteries.

Keywords: techno-economic analysis; microgrids; lithium-ion batteries; supercapacitors; aging
modelling

1. Introduction

The security and reliability of large-scale grids are becoming increasingly problematic
due to profound changes in the sector such as market liberalization, increased intercon-
nections, and economic and environmental constraints [1]. One of the solutions to these
problems is the decentralization of production sites based on renewable energy. Decen-
tralized power generation will, on the one hand, reduce the investment costs of electricity
transmission and distribution. On the other hand, it will facilitate the integration of renew-
able energies into the public grid via microgrids. The final objective is to achieve optimized
local production-consumption controlled in real time by an intelligent electricity network.
The microgrid framework provides a means of harnessing diverse energy sources, e.g.,
photovoltaic (PV) panels, wind turbines, and engines, in a decentralized manner, while
reducing the load on the grid by generating power close to the consumer [2]. Microgrid
aggregates local power production, consumption, and storage together [3]. Storage systems
provide security of supply to the microgrid and address fluctuations of renewable energy
sources in the grid (e.g., intermittency and randomness of the power generated by PV) [1].
Lithium-ion batteries and supercapacitors (SCs) are the main electrical storage devices
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usually used in microgrids for energy and power transient management. Optimized energy
management is a key issue for the deployment of microgrids, which will require specific
modelling and management tools. In order to improve or reinforce management strategies,
the knowledge of a techno-economic study among different operating cases for the storage
components is mandatory. To achieve such techno-economic analysis, accurate models for
the electrical storage components are first required. In particular, aging models should
bring key indicators on how to optimize the state of health (SoH) of the storage components,
predict possible fluctuations, and act to preserve the battery lifetime. For the lithium-ion
batteries, combined calendar-cycling aging simulations have been performed. For SCs,
calendar aging, as well as a degradation model according to the SoH are investigated. In
addition, strategies and scenarios for the batteries are presented either based on state of
charge (SOC) limitation or hybrid association with SCs in order to extend their lifetime in
a microgrid operation, while in the meantime searching for a method of minimizing the
installation costs. The techno-economic study approach provided in this study allows us to
improve the classical energy management strategy of microgrids, called strategy 1 in this
manuscript, by optimizing the use of the battery. First, results for the real-time management
of microgrids is achieved by adapting aging models, outputs of the techno-economic study
for the battery, and SCs towards real-time implementation. This article is based on the
conference paper [4] that was extended to the electro-thermal models of the batteries and
the supercapacitor improving, and therefore, the aging aspect of the hybrid storage.

The rest of the paper is organized as follows: Section 2 presents the studied micro-
grid. The modelling of the hybrid energy storage system (HESS) elements, composed
by a lithium-ion battery and supercapacitors, is presented as well as the PV panels and
the connection to the utility grid. Then, the three management strategies used are de-
fined. Section 3 presents the simulation results. A comparison is performed between
strategies 1 and 2 in different SOC scenarios. A techno-economic study is conducted in this
section. The simulation results in the case of HESS are presented. Finally, Section 4 presents
the conclusion and perspectives.

2. Energy Management Strategies in Microgrids

The production of PV energy, like other renewable energy production, is intermittent
and its injection into the public grid without any control can lead to increased vulnerabilities
of the public grid such as voltage and frequency fluctuations [1,2]. Nevertheless, through
energy management system, integrating intermittent renewable energy sources into a
microgrid avoids most of these vulnerabilities.

A microgrid grid-connected is able to manage, at different time scales, the power flows
according to strategies implemented in order to maximize PV energy use and to minimize
the energy cost as well as the negative impact concerning the grid. The management of
power flows in real-time is carried out either in a simple way, based on rules such as
a simple multi-agent system [5] or those of fuzzy logic [6,7], or algorithmically, based
on mathematical optimization approaches carried out with an objective function and
constraints. Due to its simplicity and efficiency, in this study the rule-based management
strategy is applied.

2.1. Presentation of the Microgrid

Microgrids are essential elements of the energy transition as they allow the optimal use
of renewable energy sources (e.g., PV panels, wind turbines) by connecting them to loads
(buildings, electric vehicle charging stations) or storage systems (batteries, SCs). There are
AC, DC, and hybrid AC/DC microgrid structures depending on the usage of AC or DC
common bus for coupling different elements within a microgrid. The microgrid combines
local power generation and local consumption and can operate in grid-connected or in
islanded operation mode [3]. A microgrid controller allows for the connection to the public
grid and provides voltage control, energy and power flow, load sharing, load shedding
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during islanding, and considers the constraints of the public grid transmitted through a
communication bus [1]. Figure 1 shows the studied DC microgrid.
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Figure 1. DC microgrid.

2.1.1. Definition of the Hybrid Energy Storage System

Microgrid storage devices are necessary to manage electric grid peak demand, im-
prove reliability and outage mitigation, compensate for intermittent power generation
from distributed generation, provide ancillary services specified in an islanded mode of
operation, and increase electric grid load factor and utilization via the smart grid [2]. The
studied HESS is composed of a lithium-ion battery and SCs. The aging of these storage
systems due to various stress factors (e.g., operating temperature, SOC, current amplitude)
is a major problem in microgrids. As the price per kWh of batteries and SCs is still high
today (a few hundred euros depending on the technology), it is essential to extend their life
span as much as possible in order to reduce the total cost of the installation. To achieve this
objective, better sizing and management are the only solutions. The size of the battery has
an impact on the cost of the system and its performances (power and energy availability);
optimal energy management can also improve the power and energy availability leading
to lower operation costs. Both battery sizing and energy management are strongly related
and mutually dependent. This work focuses on the management part.

Lithium-ion batteries: in this section, the electrothermal and aging models of the
lithium-ion batteries are presented. The electrical model of the battery is a Thevenin
model mainly composed of an OCV (open circuit voltage) source in series with the internal
resistance as presented in Figure 2. The dynamic behavior (RC, CPE . . . ) is not considered
in this model. The cells used for models and simulations are Samsung commercial cells
with a nominal capacity of 26 Ah and the chemistry of NMC (Nickel, Manganese, Cobalt)
in the positive electrode and graphite in the negative electrode.



Energies 2022, 15, 1556 4 of 15Energies 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

 

Figure 2. Battery electric model. 

The battery thermal model: energy balance for the battery can be written as presented 

in Equation (1) [8]: 

𝐶𝑇ℎ
𝜕𝑇

𝜕𝑡 
= 𝑃𝐶𝑜𝑛𝑣 + 𝑃𝑅𝑎𝑑 + 𝑃𝐻𝑒𝑎𝑡 (1) 

where 𝐶𝑇ℎ is the heat capacity, and 𝑃𝐻𝑒𝑎𝑡 is the heat generation. The thermal power is 

assumed to come only from the Joule effect due to the internal resistance of the battery 𝑅, 

as defined in Equation (2). The heat exchange rate is transferred by convection 𝑃𝐶𝑜𝑛𝑣 and 

radiation 𝑃𝑅𝑎𝑑. 

𝑃𝐻𝑒𝑎𝑡 = 𝑅 × 𝐼𝐵𝑎𝑡
2 (2) 

In this work, the thermal model proposed by [9] is employed. This model simplifies 

Equation (1) into Equation (3). The following assumptions have been considered: the heat 

capacity of the cell surface is neglected due to the fact that its packaging is very light com-

pared to the core [10]. The heat transfer between the core and the surface (conduction) and 

between the surface and the air (convection) is represented by the thermal resistance 𝑅𝑇ℎ 

[10]. 𝑇𝐵𝑎𝑡 is the internal battery temperature, and 𝑇𝑎𝑚𝑏 is the ambient temperature. 

𝑑𝑇𝐵𝑎𝑡
𝑑𝑡 

=
𝑇𝑎𝑚𝑏 − 𝑇𝐵𝑎𝑡
𝐶𝑇ℎ × 𝑅𝑇ℎ

+
𝑃𝐻𝑒𝑎𝑡
𝐶𝑇ℎ

 (3) 

An equivalent thermal circuit is illustrated in Figure 3. 𝑃𝐻𝑒𝑎𝑡  is represented as a 

source of current, and 𝐶𝑇ℎ allows it to store energy like a capacitor. Internal battery tem-

perature 𝑇𝐵𝑎𝑡 can be determined as well. 

 

Figure 3. Battery thermal model. 

Figure 2. Battery electric model.

The battery thermal model: energy balance for the battery can be written as presented
in Equation (1) [8]:

CTh
∂T
∂t

= PConv + PRad + PHeat (1)

where CTh is the heat capacity, and PHeat is the heat generation. The thermal power is
assumed to come only from the Joule effect due to the internal resistance of the battery R,
as defined in Equation (2). The heat exchange rate is transferred by convection PConv and
radiation PRad.

PHeat = R× IBat
2 (2)

In this work, the thermal model proposed by [9] is employed. This model simplifies
Equation (1) into Equation (3). The following assumptions have been considered: the
heat capacity of the cell surface is neglected due to the fact that its packaging is very light
compared to the core [10]. The heat transfer between the core and the surface (conduction)
and between the surface and the air (convection) is represented by the thermal resistance
RTh [10]. TBat is the internal battery temperature, and Tamb is the ambient temperature.

dTBat
dt

=
Tamb − TBat
CTh × RTh

+
PHeat
CTh

(3)

An equivalent thermal circuit is illustrated in Figure 3. PHeat is represented as a source
of current, and CTh allows it to store energy like a capacitor. Internal battery temperature
TBat can be determined as well.
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Thermal parameters calibration method: with the battery current in the microgrid
being very low (Imax = C/10), the maximum temperature variation should not exceed 2 ◦C
at a current of C/5. In the permanent state, Equation (3) becomes Equation (4). RTh can be



Energies 2022, 15, 1556 5 of 15

obtained as shown in Equation (5). PHeat_max is determined by Equation (2) with a current
value of C/5.

Tamb − TBat
RTh

+ PHeat_max = 0 (4)

⇒ RTh =
−PHeat_max
Tamb − TBat

(5)

With the thermal time constant τTh defined in Equation (6), the thermal capacity can
be calculated (7):

τTh = CTh × RTh (6)

CTh =
τTh
RTh

(7)

The battery aging model employed is developed in [11]. Based on Eyring’s law, this
semi-empirical model combines calendar and cycled aging and considers the accumulation
of three aging mechanisms (calendar, cold cycling, and hot cycling) in an independent way.
More details on the development of the model can be found in [11]. The Eyring law for an
“i” cycling aging mechanism is presented in Equation (8).

dqloss,i

dt
= Ai × eBi×SOC × e

Ea,i−Ci×I
R×(Tbat−Tr) × I ×

(
1

1 + b× qloss
c

)
(8)

where qloss,i is the battery capacity loss (p.u), Ai is the pre-exponential factor (p.u./day),
Ea,i is the activation energy (J. mol−1), R is the gas constant (J.mol−1.K−1), I is the battery
charging current expressed in C-rate, TBat is the battery temperature (K), Bi is the SOC
influence coefficient, and Ci is the current influence coefficient expressed in (h. p.u−1). Tr
is the reference temperature where the “i” aging mechanism influence is assumed to be
zero (typically Tr = 0 K for calendar and hot cycling aging). b and c are unitless model
parameters. C-rate is a measure of charging or discharging current, expressed as a ratio of
the rated capacity to the time required to fully charge an energy storage system.

To calibrate the model, a current of I0 = C-rate/12 is chosen. Any cycling at a current
less than or equal to this is considered to be calendar aging. Equation (9) gives the variation
of the capacity loss of the complete aging model, where qloss−cal is the capacity loss due
to calendar aging (10), qloss−cycl−hot is the capacity loss during hot cycling aging (11), and
qloss−cycl−cold is the capacity loss during cold cycling aging (12).

dqloss
dt

=
dqloss−cal

dt
+

dqloss−cycl−hot

dt
+

dqloss−cycl−cold

dt
(9)

dqloss−cal
dt

= Acal × eB×SOC × e
−Ea,cal+Ccal×I0

R×Tbat ×
(

1
1 + b× qloss

c

)
︸ ︷︷ ︸

calendar aging

(10)

dqloss−cycl−hot

dt
= Ac × eB×SOC × e

−Ea,c+Cc×I
R×Tbat × I ×

(
1

1 + b× qloss
c

)
︸ ︷︷ ︸

hot aging

(11)

dqloss−cycl−cold

dt
= A f × eB×SOC × e

Ea, f −C f ×I

R×(Tbat−Tr) × I ×
(

1
1 + b× qloss

c

)
︸ ︷︷ ︸

cold aging

(12)

The coupling of the electrothermal and aging model of the battery is presented in Figure 4.
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Figure 4. Coupling of the battery electrothermal and aging model.

The Supercapacitors (SCs), also known as Electrochemical Double-Layer Capacitors
or ultra-capacitors are less performant than electrochemical batteries in terms of energy
density [12]. However, their cycling lifetimes, power densities and operating tempera-
ture ranges make them a storage technology used in many applications, whether vehicle
or stationary.

In a microgrid involving a HESS composed of batteries and SCs, the SCs allow the
lifetime of batteries to be improved. The high-power density of SCs allows transient
currents to be absorbed due to the numerous power fluxes of the panels. The management
of the power flow for these storage components with the other elements of the microgrid is
a key point.

In order to ensure performance over the life of the system, the reliability of SCs has
to be quantified through accelerated aging tests and/or the use of aging models. To this
purpose, manufacturers and several laboratories have conducted numerous calendar and
cycling aging tests.

The electrical model basically consists of Thevenin model with a capacitor C in series
with the internal resistance (ESR equivalent series resistance) in the function of time (t), as
shown in Figure 5.
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The SCs thermal model: the thermal model of SCs is a standard thermal model in the
form of equivalent electrical circuits as presented in [13]. The equivalent electrical circuit is
the same as that of the battery (Figure 3). The thermal resistance RTh_SC and the thermal
capacity CTh_SC are given in [14].



Energies 2022, 15, 1556 7 of 15

The SCs aging model: the classical aging model of SC concerns only calendar effects;
it is based on the use of Eyring’s law, which gives the lifetime [12]. The SoH variation is
then given by Equation (13), where θ0 is the temperature of the case and V the voltage at
the terminals of the component. V0 and θ0 correspond, respectively, to the voltage and
temperature drop required to double the lifetime. tLi f e_Re f is the reference lifetime in hours,
for a reference package temperature θc−Re f (here, the maximum operating temperature is
65 ◦C) and a reference voltage VRe f (here, the nominal voltage is 2.7 V).

dSoH
dt

=
1

tLi f e−Re f
× eln (2)

θc−θc−Re f
θ0 ×

[
eln(2)

V −VRe f
V0 + K

]
(13)

The coefficient K enables us to consider the aging in high temperatures and low
voltages [12]. The electrical parameters, the capacitor C and ESR, vary as a function of
aging. According to [15], two different phases can be observed during SC aging: an initial
burning phase and a linear degradation phase. The model presented in [12] considers
only the latter phase considering a linear variation of the capacitance and conductance
parameters. Hence, the capacity is equal to 95% of the initial capacity at SoH = 1, as
in Equation (14). Equation (15) gives the conductance (i.e., the inverse of the ESR) as a
function of SoH. C0 and ESR0 are the initial values of C and ESR, respectively (see [12,16]
for more details).

C = C0 × (0.8 + 0.15× SoH) (14)

ESR−1 = ESR−1
0 × (0.7 + SoH) (15)

2.1.2. Photovoltaic Panel System

The renewable energy source in a microgrid can be PV panels, wind turbines, or both
combined. In this study, the renewable energy source considered is based on PV panels.
The solar irradiation data used in the simulation are from the PV installation of the Centre
Pierre Guillaumat of the Université de Technologie de Compiègne (UTC), which consists of
16 panels in series of 130 W nominal (reference SolarFabrik SF 130/2), as shown in Figure 6.
Regarding the experimental platform including the PV installation of the Centre Pierre
Guillaumat of UTC, more details can be found in [17].
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Figure 6. Photovoltaic installation of the Centre Pierre Guillaumat of UTC [17].

2.1.3. Connection to the Utility Grid

The connection to the public grid is a security element that ensures the safety of the
system in case of insufficient power transferable to the load, or excess power [1]. It is
assumed that there are no constraints to connect to the grid.
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2.2. Development of Control Strategies

The objective of this section is to present the energy management strategies of the
microgrid that allow us to extend the battery lifetime and, consequently, to lower the cost
of the installation. First, the classical microgrid management strategy is presented. In a
second step, two management strategies that allow for the reduction of battery aging are
presented. Simulation results are given and discussed.

2.2.1. Strategy 1: Classical Microgrid Energy Management

In this part, the strategy is defined to distribute the extra power between the battery
and the public grid considering the SOC of the battery. It is assumed that the extra power
can be drained to the grid at any time. The extra power, Ptot, is the difference between the
generated power and the required power to supply the load, as given in Equation (16).

Ptot = Pc − Ppv (16)

with Pc the power of the load and Ppv the power of the PV panels.
To distribute the extra power between the grid and the battery, a distribution coefficient

KD is defined, as shown in Equations (17) and (18):

Pbat = KD × Ptot (17)

PG = Ptot − Pbat = (1− KD)× Ptot (18)

With:
{

KD = 1 ⇒ Pbat = Ptot
KD = 0 ⇒ Pbat = 0

PG is utility grid power. The flowchart of this strategy is presented in Figure 7.
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2.2.2. Control Strategy Considering Battery Aging

Strategy 2: improvement of strategy 1 considering battery aging: the classical strategy
is improved. If the generated power is insufficient, the battery is not automatically used
to supply the load. The price per kWh from the grid is compared to the price per kWh
from the battery. A cost related to the use of the battery is defined. This price includes the
cost of the battery, power electronics, cost of installation, step-up transformer, smart-grid
communication and controls, grid interconnection to utility [2], the replacement costs,
repair and maintenance costs, and the discounted purchase price of the battery [3]. To
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simplify the calculations, the price per kWh battery (CBat) is chosen arbitrarily [3]. The grid
kWh price (CG) varies by time of day:

1. During peak hours, the price per kWh from the grid is higher than the battery’s one.
The load is supplied from the battery;

2. During off-peak hours, the grid kWh cost is cheaper than the battery’s one. Extra
power is purchased from the grid. Table 1 shows the prices per kWh for the grid
and battery.

Table 1. Price per kWh for grid and battery.

Grid Battery

Peak hours 0.7 0.3
Off-peak hours 0.1 0.3

The flowchart for strategy 2 is shown in Figure 8. The influence of the maximum SOC,
SOCmax, on the battery life is also considered.
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Hybrid energy storage system (HESS): as mentioned above, the HESS consists of a
lithium-ion battery coupled with an SC. The strategy used to distribute energy between the
battery and the SC is presented along with the simulation results. The energy management
between the battery and SC is a filtering-based strategy.

To distribute the power between the battery and the SC, the filtering-based strategy
was used as shown in Figure 9. The strategy based on filtering consists of distributing the
power between the low and high frequency dynamics using a low pass filter [18]. The
battery power PBat is the low frequency part of the PHESS power, which is the total power
of the hybrid storage system, while the high frequency part is the SCs power PSC.

The battery power is the output of the low pass filter, and its value is directly related
to the cut-off frequency of the low pass filter f0 [19]. The value of this frequency is chosen
so as to minimize the battery current. Figure 9 shows the filtering-based strategy principle.
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3. Simulation Results

Simulations were carried out with each of the strategies defined above. The simu-
lations last for 10 days with a time step of one minute. The generated power profile is a
real profile of the UTC PV panel platform, from 1st to 10th June 2019. The load profile
is a profile of the lighting consumption of a floor of the Laboratory for Analysis and Ar-
chitecture of Systems (LAAS) building in Toulouse, from 1st to 10th June 2017. The load
profile is assumed to be constant between 2017 and 2019. The temperature is constant at
25 ◦C for all simulations presented in this section. Two scenarios of SOC are considered:
SOCmax = 100% and SOCmax = 80%.

Models for the components of the microgrid have been developed using the Mat-
lab/Simulink software (Simulink models). Analytical models are based on common prede-
fined HESS component’s blocks selected on the Simulink interface, for which the internal
and input parameters for aging and dynamic behavior models are calculated using analyti-
cal equations and routines implemented on the Matlab Workspace.

3.1. Comparison of Strategies 1 and 2 Regarding Battery Aging

The loss of battery capacity is much greater for strategy 1 as shown in Figure 10 (the
values are presented in the following Table 2). In the first case, where the SOCmax is set to
100%, the lifetime is equal to 7 years for strategy 2 against 5.5 years for strategy 1, i.e., one
and a half years longer (see Table 2). Other simulations were carried out with a maximum
SOC of 80%. These simulation results show that the gap increases to 2.2 years when the
SOCmax is set to 80%. The higher the SOC, the greater the capacity loss [20,21]. According
to the model chosen in Equations (2)–(5), extreme temperatures (very cold or very hot) and
high SOCs favor battery degradation.

In Figure 10, it can be seen that strategy 2 tends towards higher SOCs than strategy 1.
This would normally lead to more aging for strategy 2. On the other hand, we observe a very
high SOC recharge (from 70 to 100%) for strategy 1 on day 1 that does not exist in strategy
2. This recharge is reflected in the aging curves and is responsible for the main difference in
aging between strategy 1 and strategy 2. These simulations were done with a temperature
of 25 ◦C (northern France in June), with other more extreme scenarios, for example 0 or
40 ◦C, the differences between strategy 1 and 2 could become even more important.
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Table 2. Total cost of strategies 1 and 2 for a 20-year microgrid project with SOCmax = 100 and T = 25 ◦C.

Strategy 1 Strategy 2

qloss (p.u. × 10−4) 10 7.84
Battery life (years) 5.5 7

Total cost of energy purchased for 20 years (EUR) 720 2380
Number of battery replacements over 20 years 4 3

Battery cost over 10 years (EUR) 18,201 14,308
Total project cost over 10 years (EUR) 18,921 16,688

3.2. Techno-Economic Study

Table 2 above shows the total cost (battery price + cost of energy purchased from the
utility grid) in a 20-year microgrid project. The total cost of energy purchased from the
utility grid over a year is higher in strategy 2. This is due to the fact that strategy 2 favors
the purchase of energy over the use of the battery (especially when the cost of grid energy
is cheaper) to improve the lifetime of the battery. However, the total cost over the life of
the project (here, 20 years), including the price of the batteries multiplied by the number of
times they are replaced, for each strategy, means that strategy 2 becomes much cheaper. At
the end of the project, strategy 2 will have cost EUR 16,688 compared to EUR 18,921 for
strategy 1. The batteries are replaced three times in strategy 2 against four times in strategy
1. In conclusion, strategy 2 is much more advantageous than strategy 1. Considering the
aging aspect in real-time management, this allowed the life of the batteries to be extended
and the total cost of the installation to be reduced by reducing the cost of the batteries.

3.3. Simulation Results of the HESS

The total power of the HESS, PHESS, the powers of battery PBat, and SCs PSC are
presented in Figure 11 below. One notes that the coupling between the battery and the
SCs through filtering has resulted in a much smoother current at the battery. The HESS
avoids applying high frequency currents directly to the battery. These currents are largely
responsible for the premature aging of batteries.
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In Figure 12 below, it can be seen that filtering the current has a positive influence on
the capacity loss of the battery.
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Figure 12. Battery capacity loss in HESS versus classical strategy 1.

The loss of battery capacity increased from 0.1% for 10 days of simulation with the
battery alone to 0.085% with the hybrid storage system. This corresponds to a gain of
10 months in battery life. Figure 13 shows the capacitor C and ESR of the SCs. The capacity
of the SCs lost over the 10 days simulation is 0.0119% corresponding to a theoretical lifetime
(by extrapolation) of “34 years”. This large value could be explained by the low values
of currents flowing through the SCs. A comparative cost study is not performed in this
section. This is one of the perspectives of this work.

3.4. Simulation Results under Extreme Temperature Conditions

The capacity loss at very low and very high temperatures can be estimated by the
battery aging model presented in Section 2. In this section, the battery is decoupled from
the supercapacitors and simulated under extreme temperature conditions (−20 ◦C, 0 ◦C,
45 ◦C, and 60 ◦C). The capacity loss under these conditions is compared to that obtained in
simulation at a temperature of 25 ◦C. The simulation results are shown in Figure 14. At
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45 ◦C and 60 ◦C, the capacity fade is higher than that at 25 ◦C. At 60 ◦C an accelerating effect
of the temperature is clearly identified. After 10 days of simulation at this temperature,
qloss has tripled compared to 25 ◦C. It can be concluded that high temperatures accelerate
lithium-ion battery aging. On the other hand, at a low temperature (0 ◦C), the capacity loss
is almost the same or even lower than that at 25 ◦C. This could be explained by the fact
that the charge and discharge current is low (<C/10). Therefore, there is no formation of
lithium plating at 0 ◦C. However, at −20 ◦C, there is a degradation of performance with a
higher capacity loss than that at 25 ◦C.
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4. Conclusions and Perspectives

Strategies and scenarios for the batteries are presented either based on SOC limitation
or hybrid association with SCs in order to extend their lifetime in microgrid operation,
while in the meantime searching for a method of minimizing the installation costs. In
the first part, the strategy consists of improving conventional energy management by
considering battery aging. The results show that energy management allows us to extend
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the lifetime of the batteries and to lower the costs of the microgrid project depending on the
chosen strategy. In the second part, the battery is coupled with SCs. The filtering strategy
is used to distribute the energy between the battery and the SCs. Results show that high
frequency currents are eliminated and battery life is improved. The results obtained in
this paper demonstrate the key role of the techno-economic approach and knowledge of
the aging processes of storage devices for improving the energy management and global
feedback costs of microgrids. In the future, other scenarios will be considered, such as
longer simulations over time. The power performance degradation due to the battery aging
will be considered. The SCs will be dimensioned to further the techno-economic study in
the case of the hybrid energy storage system. This study would allow us to know if it is
advantageous or not to couple the batteries with SCs. Finally, energy management will be
improved through more elaborate optimization algorithms.
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