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Abstract: In modern electrical grids, the number of nonlinear grid elements and actively controlled
loads is rising. Maintaining the power quality will therefore become a challenging task. This paper
presents a power quality mitigation method via smart demand-side management. The mitigation
method is based on a genetic algorithm guided optimization for smart operational planning of the
grid elements. The algorithm inherits the possibility to solve multiple, even competing, objectives.
The objective function uses and translates the fitness functions of the genetic algorithm into a
minimization or maximization problem, thus narrowing down the complexity of the addressed
high cardinality optimization problem. The NSGA-II algorithm is used to obtain feasible solutions
for the auto optimization of the demand-side management. A simplified industrial grid with five
different machines is used as a case study to showcase the minimization of the harmonic distortion
to normative limits for all time steps during a day at a specific grid node, while maintaining the
productivity of the underlying industrial process.

Keywords: power quality; genetic algorithm; operational planning; demand-side management; multi-
objective optimization; industry 4.0; fourth industrial revolution; artificial intelligence; smart grid

1. Introduction
1.1. Motivation and Idea

Industrial processes and industrial electrical grids have been increasingly automated
in recent years. Along with that, recent developments in the area of robotics have led to a
high potential of demand-side integration on industrial sites. Therefore, new possibilities
for a smart demand-side integration in the form of demand-side management (Smart DSM)
arise and have to be investigated.

This paper is investigating the possibility and potential of an active mitigation tech-
nique to handle the PQ degradation caused by nonlinear loads in future industrial, electrical
grids, without the need for conventional measures such as passive or active filtering.

The methodology follows an entirely new, user-centralized approach for an artificial
intelligence (AI) guided and optimized operation of industrial plants (applying Smart
DSM), based on evolutionary algorithms. Therefore, a genetic algorithm (GA) performs
an optimization of the scheduling for individual nonlinear loads to actively mitigate the
harmonic content in an electrical grid.

The user/plant operator first defines a schedule for the industrial process and all
associated machines. If there is no mandatory condition for certain machines caused by the
enclosing process, the plant operator is capable of choosing a flex option. The flex option
designates the machine as a flexibility for the denominated amount of time to the GA. The
GA then tries to find the global solution for the optimization problem, connected to the
electrical grid. To guarantee a flawless plant operation and to shape the algorithm the least
invasively, the plant operator retains the possibility to deterministically define the state of
the designated machines for all time steps. The GA therefore supports the plant operator in
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finding a low-interference operating point without taking away any of the administrative
options of the operator.

The optimization strategy allows different objective functions, e.g., aiming for the
minimization of the total harmonic distortion (THD) of the voltage. Other options would be
the mitigation of the total demand distortion (TDD) of the load current or the minimization
of specific harmonics. Additionally, even incommensurable or competing objectives may
be set, due to the chosen sophisticated selection scheme for the best individuals.

To sum it up, the implemented method is a proposal for deploying a possibility for an
AI supported DSM method for a smart, demand-side integrated factory operation, which
potentially provides a non-invasive and cost-efficient possibility of PQ mitigation without
the need for an additional installation of active or passive elements such as filters.

1.2. Literature Survey
1.2.1. Increasing Necessity for Power Quality Mitigation in (Industrial) Power Grids

The waveforms of current and voltage in an electrical power grid are ideally sinu-
soidal and continuous, with a constant frequency and amplitude [1]. However, distorted
sinusoidal waveforms of current and voltage could already be detected in the early days of
electrical energy grids with alternating current around 1900. These distorted trends turned
out to be a superposition of the fundamental oscillation, with multiples of this fundamental
oscillation. They were subsequently called harmonics. The main sources at this time were
synchronous machines, transformers and large smelting furnaces [2]. In the 1930s, interest
in harmonics grew. This was partly due to the increased installation of fluorescent lamps [2].
Secondly, there was inductive interference of transformer currents with the new types of
wireless telephone systems [3]. Studies of transmission grids showed that the power factor
of generators and loads was lower when harmonics were present. Furthermore, the third
harmonic content increased from 7% at the point of connection of an electrical machine
to 53% by the end of the line. This means that there was an amplification of the third
harmonics within the grid. Subsequently, when asynchronous machines were examined,
vibrations and scratching noises due to harmonics occurred regularly. As a result, over the
next few decades, turbines were designed to be more tolerant of harmonics. In addition,
a delta-star connection of the transformers prevented coupling between the transmission
grid and the subordinate grids. The existing harmonics circulate in the delta windings of
the transformer and are dissipated as heat loss. Due to low energy costs at the time, this
was not considered a major problem [4]. The problem of the low power factor was solved
from the 1950s onwards with the installation of shunt capacitors, which did not cause any
problems at the time [2].

Since the beginning of the 2000s, the increased installation of renewable energy systems
has also led to stability and power quality problems. These converters are equipped with
control systems of different time constants, which can result in frequency coupling with
the connected grid. This can lead to oscillations in a wide frequency range [5,6]. Such
instabilities are establishing themselves as one of the main problems in the integration of
renewable energy systems as well as in modern, power electronics-based industrial grid
architectures [7,8].

Thus far, most analyses only go up to 25th order harmonics. However, especially in the
case of low-power electronic equipment, interference can also occur above these orders [3].
Moreover, most investigations concentrate on the odd harmonics solely to downsize the
computational costs. Literature focussing on intermediate harmonics can be found in [9,10].

The impedance of the grid is decisive for the occurrence of harmonics, resulting
in resonances and instabilities. The three most important parameters in the study of
harmonics in electrical grids are frequency, amplitude and phase angle. These factors are
changing in modern grids mainly due to two reasons. First, the increasing installation
of nonlinear and distributed power electronics in the lower voltage levels leads to more
harmonic distortions and higher switching frequencies. This results in a broad frequency
band in which oscillations can occur, as presented in [11]. On the other hand, the number
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of conventional resistive loads is decreasing more and more, which leads to a reduced
damping of oscillations, as captured in [12,13]. These two effects indicate the need to
analyse oscillations, especially in low-voltage grids, and to avoid them with suitable control,
filtering methods or sophisticated, modern approaches such as the smart demand-side
management presented in the scope of this paper.

Nowadays, the increasing number of nonlinear loads is becoming a rising concern for
grid operators as well as on the consumer side, as can be understood from applied research
literature [14–18]. Traditionally, passive L-C or active filters have been used for mitigating
PQ problems. Disadvantages of that method are cost intensity on the one hand and the rise
of probability for resonance effects in the grid on the other [19,20].

State-of-the-art, custom power devices (CPD) such as active power filters (APFs) are
considered to be a superior solution to the conventional passive filters to fulfill reactive
power requirements and to compensate harmonics caused by nonlinear loads [21–23].

Regarding modern loads with nonlinear characteristics, light emitting diodes (LED)
are gaining an increasing market share in lighting devices [24]. Therefore, the authors
introduced a combination of the G1 group method and the entropy weight method to
deploy a practically applicable and objective harmonic evaluation approach of harmonic
emissions of LED lamps. The proposed methodology aims for a minimization of the
harmonic emissions and therefore a reduced risk for fires caused by these emissions. The
authors further note the transferability of the approach to other types of small commercial
applications.

A bottom-up stochastic model to assess harmonic emissions in low voltage grids is
presented in [25]. The model considers varying loads and their implications to the harmonic
spectrum in the grid, in contrast to conventional approaches applying only stable loads.
The bivariate methodology is applied to model the current harmonics via a probabilistic
approach, demonstrated in a case study for the lighting load of 60 houses.

In [26], the effect of harmonic currents’ cancellation on the aggregation of different load
currents is evaluated to measure its impact on the grid-side by presenting a comparison
between the measurement and mathematical aggregation of harmonics. Furthermore, the
harmonic cancellation is also qualified for multiple loads connected to the power supply.
The presented methodology was applied for an ideal sinusoidal supply voltage and odd
harmonics in the range of 3 to 19.

Furthermore, a harmonic load flow framework for calculation and analysis of the
propagation of harmonics in electrical grids is implemented and tested according to an
easily accessible case study by the authors of this paper in [27]. This investigation deploys
a simulation model for the whole PQ measurement chain, starting from a virtual PQ
measurement device, including the typical configuration parameters and their correlation
matrix, concluding with the propagation of the individual harmonics in the grid via a
harmonic load flow model.

Following the presented information on modern day challenges in electrical grids,
especially applicable for industry 4.0-bound communicative industrial grids, the detection
and mitigation of harmonics is a major tool for guaranteeing grid stability and smooth
operation of industrial processes. Therefore, a sophisticated AI based DSM algorithm is
presented in this paper.

1.2.2. Power Quality and Artificial Intelligence

In the field of power quality (PQ), publications are focussing on the classification and
prediction of power quality disturbances. In [28], an overview of artificial neural network
(ANN) based classifiers is given. The paper points out the excessive research in the appli-
cation of ANNs for power quality classification but also mentions the main drawbacks of
ANNs: the strong dependence on the training data and on the hyperparameter setting. [29]
investigates the effectiveness of various deep learning architectures for PQ disturbances’
characterization and classification, and recommends a hybrid architecture combining con-
volutional neural networks (CNNs) with long short-term memory networks (LSTM). [30]



Energies 2022, 15, 1492 4 of 24

integrates artificial intelligence techniques to forecast power quality parameters and keep
them within the limits, with the aim of controlling the power flows inside an off-grid
system operated under active DSM.

In [31–35], the authors of this paper conducted preliminary work on this investigation,
adding classification and forecasting of PQ events to the analysis toolbox. Established
machine learning approaches as well as modern methods such as LSTM were benchmarked
and considered for sensitivity analyses.

Another PQ monitoring approach based on self-organizing maps (SOM) for the detec-
tion of undesirable occurrences such as sag, swell and fluctuations in the grid is presented
in [36]. The authors highlight an advantage of the SOM modelling approach for preserving
the topology of the data as a key feature for the detection of novel disturbances. The
approach is tested by a limited, synthetic electrical signal database including four PQ
disturbances—normal, sag, swell and fluctuations.

The real time ability of monitoring systems is addressed in [37], deploying an event-
driven processing, analysis and detection of PQ disturbances. An automatic identification
of events is aimed for by the combination of two classifiers—the k-Nearest Neighbour
and the Naïve Bayes. In a case study, the authors found that this approach deployed a
benefit in the reduction of computational complexity as well as delays in processing and
categorization of four-class PQ disturbances.

1.2.3. Smart Grids and Reinforcement Learning

The most commonly used reinforcement learning (RL) algorithm in smart grid appli-
cations thus far is the Q-learning algorithm. Q-learning approximates for all states of an
environment how good the possible actions of an agent in each of these states are. These
values are commonly trained and stored in a look-up table that contains all state-action
combinations.

The appliance of Q-learning for controlling smart devices, resulting in an improvement
in power quality, has been already focussed on in literature. In [38], RL algorithms were
therefore applied in a four-machine power system to learn a closed-loop control law for
a dynamic brake controller and a thyristor-controlled series capacitor. The objective was
to avoid loss of synchronism and damp power system oscillations. The authors verified
that RL methods can work without any strong assumptions on the system dynamics and
learned robust closed-loop control laws. In [39], a Q-learning approach was introduced
to control heterogeneous thermostatically controlled loads in order to provide short term
ancillary services to the power grid. The Q-learning approach showed similar results as
conventional techniques, and the authors expect that the approach can be applied on more
complex extensions. In [40], the RL algorithm was suggested for usage as a secondary
controller for DSTATCOM to further enhance the power quality in microgrids.

The Q-learning approach was also analysed in DSM in [41]. Motivated by the lack
of an exact description of the system dynamics, a Q-learning approach was proposed for
controlling a cluster of domestic electric water heaters in order to reduce the electricity cost.
The RL approach is applied in [42] in a fully automated energy management system. A
Q-learning based algorithm controls devices such as dishwashers, washing machines and
battery controllers in order to reduce the peak load in electricity and natural gas networks
and to improve the residential customers’ satisfaction.

All mentioned methods fail for large-scale problems owing to the curse of dimension-
ality. Therefore, combining deep learning with reinforcement learning has recently had a
revival of interest. Thus, in [43], the use of deep Q-learning was introduced for storage
scheduling in microgrids. In [44], an online optimization of schedules for building energy
management systems was implemented, analysing the use of deep Q-learning and deep
policy gradient for online building energy optimization.
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1.2.4. Genetic Algorithm Optimization

Genetic algorithms are widely used for high complexity, global optimization prob-
lems [45–47] and even gained positive results in the field of DSM for peak demand re-
duction [48]. Therefore, the applicability of a GA-based PQ mitigation method shall be
investigated and described in this paper.

1.3. Contribution of the Paper

The main objective of the paper is to develop a new mitigation approach for improving
the power quality using AI-based coordination of industrial processes via Smart DSM.

The literature in Section 1.2 already confirms that AI approaches may be successfully
applied for controlling devices in power systems to achieve multiple optimization goals.
Despite detecting, classifying or predicting power quality disturbances, actively improving
the power quality using a smart and adaptive method is becoming increasingly important.
Integrating a control unit for power quality parameters in DSM by means of AI has, so far,
not been investigated.

Therefore, the scope of this paper deals with the analysis of whether GA supported DSM
may contribute to improving the power quality parameters in electrical, industrial grids. The
additional flexibilities used for the optimization of the grid state are, in this case, the system
inherent machines which are used for the industrial processing. Thus, the machine pool itself
bears added value to the grid state by cancelling out one another’s grid perturbations. With
this new methodology, the need for costly passive or active filtering measures is reduced or,
depending on the boundary conditions, even eliminated. Additionally, (physical) boundary
conditions are considered via patch functions for the gene pool in the GA based optimization
to increase the efficiency of the evolutionary process.

Furthermore, the proposed approach is validated using a field test-based case study in
a simplified modern industrial environment (Section 3.2).

1.4. Structure of the Paper

The introductory part in Section 1 is followed by the problem definition and the
description of the smart demand-side management methodology in Section 2. Section 2.1
characterises the industrial loads, including their load profile and their associated current
characteristic. In Section 2.2, the SQL database used in this investigation is portrayed. This
is followed by the introduction of the machine pool, used as flexibility in the optimization
part. The innovative demand-side management algorithm used for the improvement of
the grid state is described in Section 2.3. In respect to this, an HMI for the plant operator
that allows the scheduling and adds a manual flexibility designation option is presented
in Section 2.4. In Section 3, the results of the experiments are given. Section 3.1 shows the
results for an extensive database benchmark, to evaluate the performance of different data
stores for this data intensive task. Finally, Section 3.2 concludes with the validation of the
methodology via a field test, implementing a simplified industrial test grid.

2. Problem Definition and Methodology
2.1. Machine Pool—Virtual Twins of Industrial Loads

There are five different types of machines: an automated guided vehicle (AGV), two
industrial robots (Robot 1, Robot 2), a stacker crane and an accident proof electric saw.
Table 1 presents the number of identified operation states for each machine. The discrete
operation states Θ define the degrees of freedom of each machine for the optimization.

Table 1. Machines and respective number of discrete operation states Θ.

Machine AGV Robot 1 Robot 2 El. Saw St. Crane

Θ 0–4 0–11 0–6 0–7 0–5



Energies 2022, 15, 1492 6 of 24

As already stated, all machines were measured with a Class A PQ meter [49], capable
of recording (transient) data with a maximal sample rate of 409.6 kHz when triggering an
event. Besides the high-resolution recording, a continuous measurement of RMS values
for an averaged one second interval was conducted. All possible operating points of the
industrial loads have been pre-evaluated and considered in a dedicated measurement
schedule. Recorded values were the voltage U, the current I, the Power P/Q/S, the phase
angles φ and the harmonic spectrum. The length of a measurement period therefore varied
with the number of operating points and the time needed for a steady state to be established.

Harmonic phase angles are implemented, since they are crucial for harmonic miti-
gation, but the field study assumes a harmonic phase angle of 0◦ for all machines and
harmonic frequencies, resembling a worst-case scenario. Otherwise, mutual interdependen-
cies of the machines would lower the harmonic content due to harmonic cancellation and
wash out the visibility of the benefits of the optimization strategy. Nevertheless, the phase
angles for all harmonic currents of the loads are included. Since each harmonic phase angle
can be represented as a function of the line angle at nominal frequency, all phase angles are
corrected according to Equation (1) [50]:

θn = θn−spectrum + n·
(
θ1 − θ1−spectrum

)
(1)

where n = 1, 2, . . . represents the harmonic order, θn is the resulting phase angle of current
at the grid node for the nth harmonic, θn−spectrum is typical phase angle of the load current
for the nth harmonic, θ1 is the phase angle of the fundamental of current at the grid node
and θ1−spectrum is the typ. phase angle of the fundamental of the load current.

The two industrial robots and the electric saw work according to the state transition
diagram in Figure 1c. Each of these machines has an ‘off ’-mode (Θ = 0) and a ‘standby’-mode,
Θ = 1. The state transition diagrams show similar characteristics for Robot 1, Robot 2 and
the electric saw, with a varying number for Θ.

Figures 2–4 illustrate the differences in the operation modes for the AGV, the Stacker
Crane and Robot 2 via the trend line of the measured active power. Both robots can move at
different speed levels. A sequence of all its movements is considered for Robot 2 with five
different speed levels and for Robot 1 with ten, each as one separate operation mode. The
electric saw shows five levels, characterized by an increasing rotation speed and current
level. The power consumption increases with the operation modes for all machines.

Due to the change of movements within one mode for the robots, the data depict a
nonsteady power consumption.

For the AGV, the charging process is considered with a total of four operation modes:
the ‘off ’ mode: Θ = 0, an ‘idling’ mode: Θ = 1, ‘CV charging’: Θ = 2 and ‘CC charging’: Θ = 3.
Details for feasible and infeasible state transitions of the AGV are provided in Figure 1b.
Figure 2 shows the power consumption in each operation mode. It can be seen that if the
machine is connected to the charger Θ = 3, it consumes a large amount of power. In the
constant voltage part of the charging process Θ = 2, the power decreases before entering an
‘idling’ mode Θ = 1, which requires only little power.

Finally, the stacker crane works according to the state transition diagram provided
in Figure 1a. The characteristics of the crane depend also on the load it has to carry. Thus,
Θ = 3 − 5 were measured with 20%, 50% and 100% load. Before operating, the machine has
to wait for the user’s approval, which is represented by Θ = 2. The power characteristics of
the operation modes can be observed in Figure 3.

Additionally, to the depicted state transitions, a machine can always stay in its current
mode, if it is favourable for the grid state.

Before including the flexibilities into the optimization, measurements have to be made
to determine an electrical footprint of the available machine pool, thus implementing a
virtual twin of the machine. Selected, characteristic features of the examined industrial
loads are presented in this section.



Energies 2022, 15, 1492 7 of 24

Figure 1. (a) State transition diagram of the stacker crane including the decoding. To operate, the
machine must pass the ‘standby’ mode and wait for an approval before it can switch to the ‘operate’
mode. If the operation is completed, the machine switches back to the ‘wait for approval’ mode. If no
approval is given, it switches back to the ‘standby’ mode. (b) State transition diagram of the automated
guided vehicle. It is not allowed to switch from the ‘CV charging’ mode to the ‘CC charging’ mode.
Another infeasible transition is to switch from ‘idling’ mode to the ‘CV charging’ mode. Furthermore,
to reach the ‘CV charging’ mode starting from the ‘off ’ mode, first the ‘CC charging’ mode has to be
set. The ’off ’ mode can be accessed from all states. (c) Valid state transition diagram for the electrical
saw, Robot 1 and Robot 2. Starting with the operation mode ‘off ’, it is only allowed to switch to the
operation mode ‘standby’. From there, all other modes can be accessed. It is possible to jump to the
‘off ’ mode from any other operating mode.

Figure 2. Time series of the power during a charging process of the AGV. Θ 3 is the ‘CC charging’
mode, consuming the highest amount of power, Θ 2 decodes the ‘CV charging’ mode with reduced
power consumption and Θ 1 is the ‘idling’ mode.
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Figure 3. Time series of power for the RBG. Θ 1 is the ‘standby’ mode, Θ 2 resembles the ‘wait for
approval’ state. In Θ 3–5, the stacker crane carried 20%, 50% and 100% of its maximum load.

Figure 4. Time series of the sequence for the operation modes of Robot 1. During one mode, all
movements of the robot are performed twice. The operation modes differ in speed. Faster movements
require more power. Θ 1 is the ‘standby’ mode, in which the machine consumes only little power. Θ 0
resembles the ‘off ’ mode, in which the machine is switched off and does not consume any power.

2.1.1. Automated Guided Vehicle

The driverless carrier system can be charged during its operation intervals at a charging
station. For the measurement, the AGV was charged after five minutes of operation time.
The charging station has a total of four different states in which the characteristics of the
load differ. The measurements show standby losses of the charging station, even if the AGV
is not connected. If connected, the current increases fast for the first 6 s and continues with
a constant current (CC)/constant voltage (CV) characteristic until full charge. If the battery
of the AGV is fully charged, the charging station switches to standby mode. Figure 5 shows
the RMS values of the current trend of the charging process.

Figure 5. (a) Automated Guided Vehicle—Current trend of the AGV for a full charge cycle. (b) Rise
in the RMS Value of the current during start of the charging mode.
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2.1.2. Accident Proof Electrical Saw

The investigated accident-proof saw is a demonstrator with a special security feature.
During application, the saw blade is monitored by a camera, which immediately stops it
when an undesirable obstacle is detected. The saw blade has a total of eight adjustable
operating points. The measurement shows a nonlinear power consumption curve for the
operating points. This characteristic is based on the transmission ratio of the gearing. In
Figure 6a, a measurement cycle with the RMS values of the current signal for all three
phases is depicted, including the harmonic content of the lower frequency spectrum.

Figure 6. (a) Accident Proof Electrical Saw—Current trend of the saw for designated operation points.
(b) Harmonic currents of order 1–6 for different operating points of the accident-proof saw.

In Figure 6b, the trends of the RMS values of the lower harmonic orders are shown to
illustrate the distortion level of the measured current signal while the saw is in operation.

2.1.3. Industrial Robot

For the measurement of an industrial robot, a test program was written in which all
axes are initially operated individually and subsequently together. This process was carried
out at different speeds. The robot has a total of seven rotatable axes.

At the beginning of the test program, axis 1 rotates first in one direction, then in the
opposite direction. Figure 7a shows the current trend of the first ten periods, enlarged for
the first period in Figure 7b. It can be seen that the distortion of the current signal remains
constant throughout the movement, but the maximum amplitude varies with movement
speed and is up to 25% higher on average at full speed compared to a partial load of 40%.

Figure 7. (a) Industrial Robot—Currents during rotation of axis 5 at 40% and 100% speed. (b) Inrush
current signal of the industrial robot after activation with dominant harmonic components up to
10 kHz.
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2.1.4. Stacker Crane

The stacker crane has a total of three drive axes, each responsible for one direction. The
storage rack can also be switched off, suspended to standby mode or run in the program
sequence at normal operation. Each of the three drive axes may be controlled individually.
In Figure 8a, the current at the beginning of a movement in horizontal and vertical direction
is shown. The pattern of the current remains the same throughout the process, due to the
switching frequency of the inverter with only the maximum amplitude changing. All three
phases show the same current profile.

Figure 8. (a) Stacker Crane—Oscilloscope recording of the current waveform at the beginning of a
translational operation of the stacker crane. (b) Current waveform from the oscilloscope record in
comparison to the 1s RMS values to show the dependency of the resulting frequency spectrum in the
data post processing.

In Figure 8b, an enlarged section of this sequence is shown. In addition, the synthe-
sized signal from the measured 1s RMS intervals of the current harmonics is represented.
Significant differences can be observed, depending on the accumulation of the data. This il-
lustrates the need for measured high-resolution waveform data to prevent the measurement
series from being misinterpreted in the post processing steps.

2.2. Database

In this paper, five machines and their respective operating points are analysed, namely
an automated guided vehicle (AGV), an industrial robot, a stacker crane and an accident-
proof electrical saw. The measured data include the harmonic content of the signal, high
resolution samples (40.96/409.6 kHz) and 1s root mean square (RMS) values of voltage and
current as well as the power consumption of the device.

The data were measured with a certified Class A PQ meter. Three different types of
databases (DB) can be used to store the data:

1. Relational DB—PostgreSQL
2. NoSQL DB, document based—MongoDB
3. Time-Series DB—InfluxDB

Figure 9 shows the entity relationship model of the PostgreSQL DB. Each measurement
is connected to a machine via a one-to-one relation. Furthermore, contacts of the persons in
charge are stored and connected to the machine with an m–n relation [51]. The location of
the machine is stored as well and connected to the machine with an n–1 relation.
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Figure 9. (a) Entity relationship model of the PostgreSQL DB. (b) Entity relationship model of the
MongoDB.

Unlike relational database systems, MongoDB and document-oriented database man-
agement systems have different concepts for storing such relationships, i.e., the embedding
of further documents [52,53]. For the measurement series, metadata are needed and could
change. Thus, this additional machine information can be outsourced, for which reason a
separate table is to be created for each machine. Doing this, relationships are not found
by comparing a foreign and a primary key, rather, the documents are directly embedded
into another document. Embedding automatically results in fewer read operations than
outsourcing to extra documents or relationships—as in relational databases—because all
information is stored together in one object [54]. For the reason of all data being queried
together, the concept of embedding is used in this approach and can be seen in Figure 10.

InfluxDB does not support the storage of various metadata in version 1.5 and 1.6
(except for tags). A possible solution to address this problem is to outsource these data.
The proposed structure is to use parts of the PostgreSQL topology and combine it with the
measured time series data of InfluxDB, as shown in Figure 10.
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Figure 10. Combination of InfluxDB and PostgreSQL for data storage and capturing of the metadata
of the stored information.

2.3. Demand-Side Management Algorithm

The multi-objective optimization based on the genetic algorithm is performed by
invoking the evolutionary computation framework named DEAP in Python.

The Smart DSM method is a composite of three main function sets, aiming for en-
hanced harmonic cancellation, thus improving the PQ grid state:

(1) flexibility definition,
(2) operation optimization,
(3) feasibility check.

An HMI helps the operator to easily apply and configure the algorithm (Section 2.4). If
the flexibilities of all machines that are integrated into the system are defined, the operator
can perform the optimization. An overview of the simulated harmonic content and the
distortion level for the resulting schedule is then provided. The optimal operating plan,
harmonic contents, the power demand, the load currents and values for the THD as well as
the TDD can further be obtained, visualized and saved in the database.

2.3.1. Coding Scheme and Gene Pool for the Genetic Algorithm

Real-value encoding is implemented in this approach. The individuals inherit the
daily scheduling plans of all the machines that are integrated into the system. With 15 min
time slots, one day can be described by 96 time units, resembled by genes with a length
of 96 bytes per machine. The scheduling plan of each machine therefore can be extracted
from the gene sequence. Details are shown in Table 2. The value range for the genes in
each individual differs from one machine to another and varies according to the number of
operation points.
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Table 2. Parameters of the Real Value Coding Scheme.

Machine Operating Points Sequence in Gene Θ

AGV 4 0–95 0–3
Robot 1 12 96–191 0–11
Robot 2 7 192–287 0–6
El-Saw 8 288–383 0–7

St. Crane 6 384–479 0–5

2.3.2. Optimization Problem—Fitness Functions and Objective Function

The THDV , and the TDDI are implemented as fitness functions for the GA to ensure a
high PQ in the grid. The computation of the THDV/TDDI is conducted via (2). Besides the
max-value, the 95% percentile, i.e., the value that is not exceeded during 95% of the time
period, is used for the computation, considering the normative limits from EN 50160 [55]
and IEC 61000-2-2 [56]. The limits of the TDDI are set in IEEE 519 [57]. The fitness function
that was used to ensure a high utilization of the underlying industrial process is the drawn
energy during one day E96 (3). Nevertheless, other fitness functions can be added easily
due to the straightforward implementation of the target values for the optimization in
this approach. Positive tests were conducted for the minimization of specific harmonics,
as well.

THDV ni =

√√√√V2
2ni

+ V2
3ni

+ V2
4ni

+ · · ·+ V2
50ni

V2
1ni

× 100% =

√√√√∑50
k=2 V2

kni

V2
1ni

× 100% (1)

TDDI ni =

√
I2
2ni

+ I2
3ni

+ · · ·+ I2
50ni

ILni
× 100% =

√
∑50

k=2 I2
kni

ILni

× 100% (2)

where THDV ni is the total harmonic distortion of the voltage in phase n at time i, TDDI ni is
the total demand distortion of the current in phase n at time i, Vmni is the root mean square
of the voltage for harmonic order m in phase n at time i and Imni is the root mean square of
the current for harmonic order m in phase n at time i.

E96 = Eday =
T=96

∑
t=1

(PL1t + PL2t + PL3t) (3)

where Ek is the energy consumption for k time units during one day and Pni is the maximum
power consumption in phase n at time i.

The GA evaluates all fitness functions with respect to the objective function to find the
Pareto Optimal solutions for this multi-objective problem. Via weighting factors for the
fitness functions, the solutions can be shifted in the best case on the Pareto Frontier or at
any rate in the solution space to emphasize specific optimization objectives.

According to (4), the objective function σ translates the fitness functions into decision
variables for a minimization (THDV , TDDi), respectively, and maximization (En) problem.

σi(Γ) = min./max. ( ωiΓi )
s.t. Γ ε (THDV , TDDI , En)

(4)

where Γi represents the fitness/score values and ωi the weights to emphasize the objectives.

2.3.3. Selection Scheme

The NSGA-II—non-dominated sorting genetic algorithm II is used in this approach to
sort the solution space and determine the Pareto Frontier of the Pareto optimal solutions [58].
The selection operator used in NSGA-II is a binary tournament selector with the selection
criterion based on the crowded-comparison operator ≺n.

The crowded-comparison operator ≺n is defined as follows:
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Assume that every individual in the population has two attributes:

(1) Non-Dominated Rank,
(2) Crowding Distance.

Then a ≺n b is true, if (arank < brank) or (arank = brank and adistance > bdistance).
This means, in this case, the individual with the lower/better rank, which resembles

lower THD and higher power values, is preferred in the evolutionary process. The next
population will be selected following this principle. Therefore, the individual with the
better non-dominated rank (which corresponds to a smaller rank value with 0 as the
fittest) for THDV/TDDi and drawn energy En is decorated with a higher priority. If two
individuals share an identical non-dominated rank, those with a larger Crowding Distance
are chosen to preserve diversity of the solutions and a uniformly spread out Pareto Frontier.
To calculate the Crowding Distance, the distance between the fitness values in the solution
space is evaluated.

2.3.4. Mutation, Crossover and Validity Filter

Unique to the mutation and the crossover scheme used in this investigation is the imple-
mentation of an additional validity filter. This patch function ensures computational efficiency
because it prevents most invalid individuals from taking part in the evolutionary process.

The mutation scheme is based on the uniform mutation. Individuals are mutated by
replacing random genes with uniformly distributed integer values within the predefined
value range. In order to cover all the operation modes of each machine, the value range is
adapted according to the state transition diagram. The flow chart of the modified mutation
scheme including the patch function for validity check is represented in Figure 11a.

Figure 11. (a) Flow chart of the mutation scheme including the validity check and the patch function
for plan validity correction. (b) Flow chart of the crossover scheme including the validity filter for the
two initial and the two modified individuals.

The crossover scheme is based on the two-point crossover, which is applied by ran-
domly selecting two points in the gene sequence of two individuals, indicating start and
end point and exchanging these segments. The flow chart of the crossover scheme is
illustrated in Figure 11b.

A third validity filter is applied to the initialization of the individuals to sort out
invalids right at the beginning of the evolutionary process. This patch function follows a
two-step scheme, beginning with the plan validity correction, as shown in Figure 12a, fol-
lowed by a machine specific harmonic tuning function to further correct invalid individuals,
as outlined in Figure 12b.
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Figure 12. (a) Flow chart of the initialization operator for the first generation of individuals including
the patch functions for plan validity correction and harmonic tuning. (b) Flow chart of the patch
function for harmonic tuning.

2.3.5. Penalty Function

Due to the high cardinality of the individuals and the complexity of the boundary
constraints Ωk, there is a high probability for invalid generations of the individuals and
the options for invalidity filtering via the penalty function are limited. By adding a patch
function into the initial generation unit, as well as the mutation unit and the crossover unit,
it is ensured that most of the individuals taking part at the evolution process are feasible.
However, there are still some possibilities that some of the generated individuals cannot be
corrected. Therefore, the penalty function in this approach is mainly used as a secondary
detection of invalid individuals. The proposed penalty function ρ consists of two parts, the
validity detection and the harmonic violation detection.

ρ(Γ)
{

0 f or M = Γ | Ωk
∞ f or N = Γ /∈ M

(5)

where Ωk represents the boundary conditions or physical constraints,
According to Equation (5), the invalid individuals will be penalized with a bad fitness

value and, in this way, be sorted out in the next generations of the evolutionary process.
This further enhances the efficiency of the algorithm by filtering infeasible solutions,

which could not be corrected by the patch functions applied to the initialization and
mutation operator.

2.4. Human Machine Interface

A human machine interface (HMI) was implemented with PyQT to combine the
scheduling of the machines/designation of flexibilities by the plant operator with the
optimization algorithm of the AI in the backend. The goal of the development of the
HMI was therefore to integrate the interaction of the administrative plant operator and the
optimization algorithm into a graphical user interface. The following core elements were
considered in the development:

• Creation and adjustment of the operating plans,
• Configuration of the optimization,
• Visualization of the optimization result.

Schedules are created for each facility per day, with 96 (15 min) blocks per load.
This time segmentation is based on reasonable resource planning for operators as well as
providing an interface for the time schedule of the power exchange, at which the intra-day
market products are considered prospectively. The operator has access to the three options
’Off ’, ’On’ and ’Flexible’. The operating plans can be created arbitrarily far into the future
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and can be modified at any time until the optimization is started. Once the optimization has
been completed, the created schedules are displayed to the operator for final operational
adjustments and stored in the database. Basically, a specific system model is used for the
optimization phase, adaptable to any industrial process chain. It has to be stated that
adjustments to the digital twin of the physical system have to be made in this step for every
change in the system, which could, for instance, mean a change in the infrastructure of the
electrical grid.

Figure 13 shows two main windows of the HMI. The machine pool and the predefined
schedules can be overseen here. Figure 13a shows the planning scheme for the available in-
dustrial loads, Figure 13b the evaluation mask for the calculated grid state. Each load can be
included into the scheduling after an electrical footprint has been made by measurements.

Figure 13. (a) Human Machine Interface for the intelligent process planning scheme with flexibility
declaration. (b) Interface of the results for the simulated grid state including the designated, controlled
machine pool.

A main reason for implementing the HMI was the fact that, in real-life scenarios, not
all machines may be scheduled at all time steps. Practicability must be accounted for while
still allowing the (THDV/TDDi) to be lowered to allow the (human) plant operator to
set the flexibility options for each machine. If a machine cannot be scheduled, it may be
excluded from the optimization process by simply not declaring it as a flexibility. It still can
be considered as a harmonic source by setting it as fixed in operation at a certain operating
point for each time step.

3. Results
3.1. Benchmark of Data Stores

For a performance comparison of the DBs which hold the necessary data for the algo-
rithm, a container is created and filled with a total of 100,000,000 values, which corresponds
to a total of 1000 signals at a sampling rate of 500,000 samples per second and 10 periods
per signal. The benchmarked DBs were used in the following versions:

• MongoDB: Ver. 3.6
• InfluxDB: Ver. 1.5.2
• PostgreSQL: Ver. 10.3

The data were first generated with a Python script and stored in various file formats
for testing. The Python version in use was 3.4 with pickle protocol 0.

The pickle module saves the data compressed in files, depending in detail on the
protocol in use. The memory space of the file without time information and without further
tags is 78.2 MB. By choosing protocol 0, the data are saved in a readable format but need
about 62% more memory, thus occupying 127 MB. This also corresponds approximately
to the file size of a CSV file, which is also directly accessible by the user. However, all of
these files lack the time information which is later concatenated in a helper function, which
derives the time stamp from the information of the sample rate. If the data are saved with a
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time stamp and in a human readable format, this results in a file size of 200 MB, compared
to the pickle file, with a size of 123 MB.

After importing the data in MongoDB, the total size of the collection with the signals
is 353.6 MB without further information being stored besides the time stamp and the
signal values.

InfluxDB has a much higher compression and needs a total of 68.7 MB for the data.
Additional storage capacity is required for the metadata and the respective time stamp.
Thus, InfluxDB has a memory requirement of approximately 102 MB.

In contrast to the other two databases, PostgreSQL first has to create a new table
with a predefined structure. After storing the signals, the table occupies a disk space of
806 MB; the total database with this single table 1027 MB. PostgreSQL intrinsically causes
some overhead with varying table structures because all fields have to be filled with a value,
which occupies space without bearing additional information because of the predefined
structure of the tables.

InfluxDB thus requires the least storage capacity, as shown in Figure 14, and is best
suited for a very high volume of data.

Figure 14. Required disk space for the different storage types for a dataset with 106 data points plus
time stamp. InfluxDB shows the highest compression rate for those kinds of data.

For the test of maximum write operations, the data series is comparatively written
into the databases one by one and in batch packages. It can be observed that the batch
processing performs much faster. Yet, this option is not available for all databases. InfluxDB
offers a multi-point writing feature in the Python module, being up to 500 times faster than
writing each point individually. For individual processing, 1000 fields per second could be
written, or in case of batch processing, up to 503,000 fields per second.

PostgreSQL also offers a much faster way of storing data from files in the database
using the COPY method, which is suitable for multiple datasets. However, this method has
the disadvantage that the order of the files, e.g., for comma-separated values (CSV) files,
must be exactly the same as the table structure. Otherwise, the database stores the values
in a wrong topology or aborts the process with an error code. For this reason, the COPY
method is not suitable for the proposed use case. An example would be the displacement
of all data by a certain number of columns or rows, due to different lengths of the arrays of
the measurement data. Thus, each row of a data source has to be read out individually and
stored separately with a SQL command in the PostgreSQL database. This method ensures
that all data exist in the correct format and table size. In this test, MongoDB reaches the
highest score with up to 531,000 fields per second. When writing single points, MongoDB
was slightly slower than InfluxDB with 890 fields per second. Figure 15a,b show that several
measurement series should always be stored together and, therefore, be processed as
a batch.
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Figure 15. (a) Written fields per second for single field processing. (b) Written fields per second for
accumulated batch processing.

In conclusion, InfluxDB and MongoDB outperform PostgreSQL in the proposed use case
because of the intrinsic constraints, accompanying the concept of a relational DB. InfluxDB
shows advantages in compression rate and query speed and comes just a little short in
terms of writing speed.

3.2. Smart Demand-Side-Management

Two parameters—THDV and TDDi—are targeted as the objective minimization func-
tion for the GA to optimize the operational schedules for a lower harmonic distortion
in the industrial grid. The second optimization objective aims for a maximization of the
utilization in all 96 time units during the day, if no restricting boundary conditions are set.

Two scenarios were investigated to, first, provide a proof of concept for the proposed
methodology and, second, to demonstrate the applicability to a modern industrial envi-
ronment. Therefore, a simplified application for a synthesized test case with a predefined
optimal solution was designed. Following this, the methodology was extended to a small
industrial grid with five different machines.

3.2.1. Proof of Concept

A test case was synthesized to prove the validity of the developed algorithmic. There-
fore, the optimal scheduling of a virtual machine with a same state machine such as the
AGV (see Figure 1b) is investigated.

The mean voltage harmonics from 2nd to 50th degree, resulting from the virtual
machine in operation mode 3, are set to 1/5 of the limits, according to EN 50160-2015 and
IEC 61000-2-2. The permissible limits for this test case were set to 1/6 of the normative
limits, to be below the harmonic emission level of the machine at its highest operation
mode. This results in a permissible THDV value (2nd–50th harmonic) of 8.121 % × 1/6 =
1.354 % (combining the limits for individual harmonics of EN 50160 + IEC 61000-2-2 leads
to a THDV limit of 8.121%).

Virtual start-up harmonics that arise when switching from state ‘off ’ to ‘on ’ are
assigned to double the limits and are superimposed to the frequency spectrum of normal
operation. Consequently, if working correctly, the algorithm tries to avoid such switching
operations. The power of each state is varying and set to ten times the state number, i.e.,
0 W for state 0, 10 W for state 1, 20 W for state 2 and 30 W for state 3.

The boundary constraints are composed of two parts, the voltage harmonic limitations
and the physical constraints, according to the state machine.

The objectives for the optimization are maximization of power and minimization of
THDV for voltage in each phase. This definitions lead to a global optimum with a drawn
energy of 2.160 kWh and a maximal THDV of 1.354%. The results for a varied number of
generations and population sizes are shown in Table 3.
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Table 3. Results of the proof of concept for a virtual machine in a predefined scenario. Marked in
light-/green are the local respective global optima found by the algorithm.

Generations Pop. Size Eday THDV Runtime

100 1000 1.65 kWh 0.9329% 1469.50 s
100 5000 1.76 kWh 1.3254% 8279.53 s
100 10,000 1.82 kWh 1.3536% 13,172.46 s
100 20,000 1.93 kWh 1.3536% 26,431.36 s
500 1000 2.07 kWh 1.3536% 8100.78 s
800 1000 2.16 kWh 1.3536% 13,555.90 s

1000 1000 2.16 kWh 1.3536% 15,393.44 s
2000 1000 2.16 kWh 1.3536% 32,157.59 s

As can be derived from Table 3, with an increasing number of generations and popula-
tion size, the exploration range has been expanded, which results in better fitness values
closer to the global optimum. Having reached the vicinity of the global optimum, the
solutions do not diverge or deteriorate, due to the elitist selection strategy of the NSGA II.

Therefore, it can be assumed the proposed approach converges to the global optimum
if the exploration range is large enough. This gave confidence to apply the approach to a
more complex grid with different types of machines.

3.2.2. Case Study—Industry 4.0 Application

For the case study of a realistic industrial application, the five machines introduced
in Section 2.2 were all designated as flexibilities during a usual working day. This means
that the optimization algorithm may set the operating point for each machine, respecting
the implemented physical boundary conditions, defined by the respective state machine
(Section 2.1). For reference, the same setup was simulated with all machines in a fully
utilized mode over the same period. The schedule for the reference and the Smart DSM
showcase is shown in Table 4. The applied objective function aims for a minimization of
the THDV in all three phases whilst maximizing the utilization of the plant by increasing
the amount of drawn energy by the system. Figure 16 shows the results for phase one of
the industrial grid, measured at the point of common coupling of the industrial loads. The
results illustrate the improvement for the harmonic levels, superimposed on a virtual point
of common coupling (PCC), where all the machines are connected to the grid. Figure 16a
gives the results for the reference system, with all machines on full operation for the
whole working day. The working day starts at 07:00 a.m. and ends at 05:00 p.m. The
power trend shows a maximum power demand of about 30 kW with a small excitation at
07:00 a.m., resulting from inrush currents of the machines. The associated high frequency
components are not reflected in the THDV and the TDDI due to the averaging interval
of 15 min in this representation, resulting from the scheduling interval. Excitations of the
normative limits could be stated for several key factors, as listed in Table 5, especially the
THDV , the TDDI , the 5th, 7th, 27th and 33th harmonic. Figure 16b shows the results for
the optimized grid. The frequency spectrum for both cases points to the characteristic
harmonic weighting accompanying B6 bridge circuits. As can be concluded from Figure 16
and Table 5, the Smart DSM is capable of optimizing even complex structures with multiple
(physical) boundary constraints and conflicting objectives. Table 5 further illustrates the
improvement, particularly for THDV , which was designated as the primary optimization
objective. The timeline of the THDV as well as the maximum/95th percentile values found
good agreement with the configuration, allowing short termed excitation of the limits
(one time step) to further enhance the utilization factor. Despite this additional degree
of freedom, the algorithm found good solutions for the designated schedule, as all the
single harmonics met their normative limits for the whole period. The main objective
of lowering the THDV to normative limits was met in accordance with expectations,
with the convergence speed and degrees of freedom adjustable with the configuration of
the optimization.
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Table 4. Schedule for the reference case of the industrial grid with all loads in full operation mode
and the optimized case via the Smart DSM approach with all machines marked as flexibilities during
the working day. In ‘off ’ state all machines are switched off, in ‘on’ state all machines are turned on
and in ‘flex’ state the optimization algorithm decides, which operation state is to be chosen.

Reference Smart DSM

‘off ’ state from 00:00–07:00 ‘off ’ state from 00:00–07:00
‘on’ state from 07:00–17:00 ‘flex’ state from 07:00–17:00
‘off ’ state from 17:00–24:00 ‘off ’ state from 17:00–24:00
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Figure 16. (a) Results for the reference case for the industrial machine pool on full utilization during
the whole working day. (b) Results for the optimized utilization of the machine pool via the Smart
DSM algorithm. All machines are connected at a virtual point of common coupling to the grid. The
Smart DSM algorithm was allowed short excitations of the normative limits to further enhance the
convergence speed. All key indexes showed improvements, pointing towards the Pareto optimal
Frontier to maintain a safe grid state in accordance with the normative limits while still ensuring a
high utilization.
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Table 5. Excitations of the normative limits for the reference case and the optimized grid for the
industrial application. Marked in red are the normative limit violations (for harmonics and THDV

from EN 50160/61000-2-2, for TDDI from IEEE 519) for the 95th percentile of the values during the
time interval of one day, in yellow the limit violations only for the maximum values and in green the
values in accordance to their respective limits. The THDV was the main objective of the optimization.

Normative Excitations
Reference Smart DSM

THDV TDDI THDV TDDI95th Perc H5 H7 H27 H33 H5 H7 H27 H33
H11 H13 H15 H19 H11 H13 H15 H19

Max H21 H25 H39 H45 H21 H25 H39 H45

4. Conclusions

In this paper, a PQ mitigation method based on DSM and a GA is proposed. In a
proof of concept, it was shown that the NSGA-II algorithm is applicable for an optimal
scheduling of industrial processes. With the proposed optimization method, machines
can operate on a low harmonic distortion level, reducing extra losses while ensuring a
high productivity.

The proposed approach is implemented as a load management application with
complex boundary conditions to avoid critical grid states. Moreover, due to the possibility
of producing unqualified solutions in the evolutionary process restricted by the physical
boundary conditions, patch functions are added to each operation module of the algorithm.
This way, only feasible individuals are allowed to participate in the evolution process,
thereby improving the overall optimization efficiency and the grid state. Due to the
straightforward formulation of the fitness functions, the optimization is well designed for
extensibility for multiple objectives.

This optimization algorithm is specifically suitable for industrial grids as a tool for
high complexity problems such as intelligent determination of operational schedules for a
machine pool. An HMI links the site operator and the scheduling/optimization algorithm
for the demand side. It enables the operator to define the flexibility of different machines
according to their requirements. The plant operator therefore retains decision-making
sovereignty by defining the degrees of freedom of optimization. Based on the definition of
the flexibilities, the optimization of the state space of the machines can be performed by the
algorithm, thus mitigating the harmonic distortion and therefore improving the grid state.
Parameters evaluating the grid state such as active/reactive/apparent power, THDV and
TDDI may be used as fitness parameters to participate in the survival of the fittest during
the evolution process as selectable objective functions.

Further potential investigations resulting from this paper are the analysis of the
transferability of the approach to different grid structures, especially for the scaling effects
of the computational needs and the comparison with alternative approaches such as
sophisticated deep learning methods, handling the same environment.

The scaling potential of the algorithm is especially of interest for the optimization
of extended grid structures, such as large industrial sites with multiple machines of dif-
ferent types and applications. Since the GA algorithm is known for a high computa-
tional cost, these scaling effects have to be considered when projecting the methodology
to large real-life applications. Measures for software- and hardware-wise optimization
such as parallelization and an extended cluster structure bear huge potential for further
design optimizations.

Methodology-wise, the information and communication infrastructure may be addi-
tionally considered to map the influence of the signal runtime of sensors and actuators on
the mitigation of harmonics.
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