
����������
�������

Citation: Qu, J.-Q.; Xu, Q.-L.; Sun,

K.-X. Optimization of Indoor

Luminaire Layout for General

Lighting Scheme Using Improved

Particle Swarm Optimization.

Energies 2022, 15, 1482. https://

doi.org/10.3390/en15041482

Academic Editors: Katarzyna Antosz,

Jose Machado, Yi Ren, Rochdi

El Abdi, Dariusz Mazurkiewicz,

Marina Ranga, Pierluigi Rea, Vijaya

Kumar Manupati, Emilia Villani and

Erika Ottaviano

Received: 9 January 2022

Accepted: 11 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Optimization of Indoor Luminaire Layout for General Lighting
Scheme Using Improved Particle Swarm Optimization
Ji-Qing Qu 1, Qi-Lin Xu 1 and Ke-Xue Sun 1,2,*

1 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications,
Nanjing 210000, China; 1019020910@njupt.edu.cn (J.-Q.Q.); 1021020906@njupt.edu.cn (Q.-L.X.)

2 Nation-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing University of Posts
and Telecommunications, Nanjing 210000, China

* Correspondence: sunkx@njupt.edu.cn

Abstract: An improved mathematical model and an improved particle swarm optimization (IPSO)
are proposed for the complex design parameters and conflicting design goals of the indoor luminaire
layout (ILL) problem. The ILL problem is formulated as a nonlinear constrained mixed-variable
optimization problem that has four decision variables. For a general lighting scheme (GLS), the
number and location of luminaires can be uniquely determined by optimizing four decision variables,
which avoid using program loops to determine the number of luminaires. We improve the particle
swarm optimization (PSO) in three aspects: (1) up-down probabilistic rounding (UDPR) method
proposed to solve mixed integer, (2) improving the velocity of the best global particle, and (3) using
nonlinear inertia weights with random items. The IPSO has better optimization results in an office
study compared with the PSO and genetic algorithm (GA). The results are validated by DIALux
simulation software, and a maximum deviation of 2.2% is found. The validated results show that the
method using four decision variables increased the speed by 10.6% and the success rate by 23.33%.
Furthermore, Indoor Luminaire Layout System APP is designed to provide guidelines visually for
lighting designers and related researchers.

Keywords: luminaire layout; improved particle swarm algorithm; particle swarm optimization;
genetic algorithm; optimization; general lighting scheme; APP

1. Introduction

In the trend of semiconductor illumination technology development and application,
lighting plays a unique role in many aspects of sustainable development [1]. For indoor
lighting design (ILD), the first thing to consider is the amount of luminaire. The main
requirement for the amount of luminaire is the “right illuminance” (illuminance is an
indirect indicator of the brightness of an object). An excessive number of luminaires will
lead to energy waste and increase lighting power density (LPD) and luminaires’ costs. LPD
is an indicator to measure the energy efficiency of a lighting system [2]. Second, ILD could
improve lighting quality, and that directly affects the efficiency of work, physical health, and
psychological conditions and even affects the atmosphere and various effects in an indoor
room [3–5]. However, the diversity of indoor environments and the mutual exclusion of
lighting design parameters, including LDP, average illuminance (Emean), overall uniformity
(Uo), and maximum unified glare rating (UGR), pose difficulties for indoor luminaire layout
(ILL). Carli et al. [6] and Beccali et al. [7] proposed a decision support system considering
the quality of light, energy efficiency, and occupant comfort. The authors studied a street
lighting system, integrating ergonomic and economic aspects, which is important and
meaningful for large outdoor public lighting. The main emphasis of this paper is to design
an energy-efficient luminaire layout method for a general lighting scheme (GLS), which
maximizes or minimizes these design parameters within recommended limits.
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To solve the ILL problem, current research works are divided into two categories:
single-objective optimization and multiobjective optimization.

In 2013, Wang et al. [8] proposed an overall illumination control of a LED system based
on a holistic and scalable neural network model to meet the table illumination preference
of each office user and save energy consumption. However, when an ILL is changed, the
network model trained can no longer be used. In 2017, Mendes et al. [9] developed a new
bio-inspired optimization algorithm based on the competition over resources algorithm
(COR) in order to reduce both the energy consumption of indoor illumination and the
computational cost for the optimal lighting of a real-time system. Eventually, the feasibility
of the algorithm was verified by theoretical proofs of classical benchmark functions and
practical data in real-life optimal lighting. In 2017, Mattoni et al. [10] used a genetic
algorithm (GA) to optimize indoor luminous systems by considering energy efficiency,
Uo, and UGR. The number of luminaires is decided by the illuminance level in a satisfied
range. Moreover, UGR and the distance of luminaires are controlled by two penalties. This
method was limited to consider the same optimized mounting height for all the luminaires.
In 2019, Mandal et al. [11] applied the particle swarm optimization (PSO) algorithm to ILD.
They organized some conflicting objective parameters, such as average illuminance, overall
uniformity, UGR, cost, and LPD, weighting them into a single-objective optimization model.
This model consists of three decision variables (regular luminaire spacing along the length
and width and luminaire mounting height). Thus, the number of luminaires is determined
by a loop in the program, making the algorithm inefficient.

In 2016, Madias et al. [12] proposed an evolutionary multiobjective genetic algorithm
(nondominated sorting genetic algorithm II, NSGA-II) to optimize the two objectives of
reducing the energy consumption of buildings and improving the lighting uniformity of
LEDs in buildings. The case shows that the optimization model has significant advantages,
and significant energy savings in the range of 18% to 22% were reported. In 2017, Plebe
et al. [13] provided a more flexible approach to the interior lighting design by considering
Emean, Uo, and energy consumption. The solution integrates the 3D graphics software
Blender to reproduce architectural spaces and simulate lighting effects by using NSGA-II.

The ILL problem using single-objective optimization suffers from the difficulty of
parameter weights in the process of designing. Although this problem can be solved
by multiobjective optimization, it suffers from finding the Pareto optimal. In addition,
determining the location of the luminaires efficiently while determining the number of
luminaires is also a problem to be solved.

The PSO [14] is a kind of evolutionary algorithms that do not rely on the mathematical
characteristic of the problems. It has been ubiquitous in daily life and industrial engineering,
such as electricity [15], machine learning [16], and path planning [17]. To improve the PSO,
research studies have been conducted on the improvement of inertia weights, which are
mainly classified into linear adjusted inertia weight [18], fuzzy adjusted inertia weight [19],
nonlinear adjusted inertia weight [20–22], and random adjusted inertia weight [23].

In this paper, we improve the mathematical model of the ILL problem, designing
the weights among the parameters reasonably and formulating a mixed-integer single-
objective optimization problem. The objective function has a penalty parameter to check
compliance with minimum or maximum limits of design parameters and four decision
variables (regular luminaire spacing along length Lt and width Ll , number of luminaires
in a row Na and column Nb). To solve the model efficiently, this paper presents the IPSO,
using the up–down probabilistic rounding (UDPR) method to solve the mixed-integer
optimization problem. Moreover, we improve the velocity of the best global particle, which
is done by selecting two positions for updating randomly, increasing the probability of
jumping out of the local optimum, and using nonlinear inertia weights with random items.

As a whole, the main contributions of this study are summarized as follows:

(1) An IPSO was proposed to solve the ILL problem. It was improved in three aspects:
(1) Up–down probabilistic rounding (UDPR) method proposed to solve mixed integer,
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(2) improving the velocity of the best global particle, and (3) using nonlinear inertia
weights with random items.

(2) The ILL problem can use four mixed-variable decision variables to determine the
number and address of the luminaires.

(3) The performance of the proposed method, including the algorithm and mathematical
model, was improved in speed and success rate.

(4) The proposed method is expected to provide guidelines for lighting designers and
related researchers.

Our method is validated with an office study in two aspects. In the first aspect, three
algorithms are used in this study to investigate the effectiveness of the proposed algorithm,
including proposed improved particle swarm optimization (IPSO), PSO, and GA [24]. In the
second aspect, the optimal results obtained by the developed program are compared with
the professional lighting simulation software DIALux V5.9 [25]. We further demonstrated
that design parameters of the optimal luminaire layout are all improved when compared
with lighting standards. Finally, Indoor Luminaire Layout System APP V1.0 [26] was de-
signed by MATLAB App Designer V2019a [27] to provide guidelines visually for lighting
designers and related researchers. The rest of the paper is organized as follows: Sec-
tion 2 describes the scheme of the method and formulates the ILL problem. The proposed
mathematical model of ILL is considered in Section 3. Section 4 presents our proposed
IPSO. Section 5 shows case studies and their simulation results. Section 6 introduces our
developed APP. Finally, conclusion is drawn in Section 7.

2. Problem Statement

This section is focused on the statement of the optimization problem in order to
determine the ILL of an indoor lighting system for a general lighting scheme. The proposed
method works on the design of large lighting locations for GLS whose Na and Nb are
greater than 2 (e.g., office, meeting room, sports hall). In the test study, we used an office
using standard of GB 50034-2013 in China. However, for other international standards, we
need to change the constraints of the ILL problem. The scheme of the method is presented
in Figure 1. It can clearly be divided into three parts.
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Figure 1. Structure graph of the method.

The first part (mathematical model of the ILL) aims to improve the efficiency through
an improved mathematical model. At first, we select several design parameters from the
collection of data. Those design parameters determine the constraints of ILL the prob-
lem. Then, the ILL problem is formulated as a nonlinear constrained mixed-variable
optimization problem according to those design parameters. This model has two continu-
ous (Lt and Ll) and two discrete (Na and Nb) decision variables simultaneously with five
inequality constraints.
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The second part (algorithm design) aims to improve the speed and success rate in
three aspects, as shown in the IPSO part of Figure 1. The third part (visualization interface)
aims to provide guidelines for lighting designers and related researchers by designing
Indoor Luminaire Layout System APP. It can be a decision-making support APP integrating
professional lighting software (e.g., DIALux).

3. Mathematical Model of ILL
3.1. Selection of Design Parameters

To solve the ILL problem more reasonably and objectively, this paper uses NLPIR,
a big data semantic intelligent analysis system, to process the data of indoor lighting
design on web pages. NLPIR ICTCLAS (Institute of Computing Technology, Chinese
Lexical Analysis System) is a Chinese lexical analysis system developed by the Institute of
Computing Technology of the Chinese Academy of Sciences. The main functions of the
software include “Label”, “Word separation”, “Classification”, “Extracting high-frequency
keyword”, “Language statistics”, and other functions. The main process is as follows: first,
we crawled the web pages about “interior lighting design” and “interior lighting design
requirements” using the precise collection to obtain data and then used the word separation
function to separate the crawled data into words; finally, we used the wordclouds [28]
to analyze the word frequency. After separating these words, the meaningless word was
deleted and screened. The word frequency analysis results of the complete corpus are
arranged in descending order of weight, as shown in Table 1. Therefore, it can be seen that
designers and users are more concerned about average illuminance, overall uniformity,
PLD, color temperature [29], UGR, and cost. The next part of this paper will also focus on
these requirements for design.

Table 1. Word frequency.

Word Frequency (%) Rank

Lighting 7.65% 1
Average illuminance 4.97% 2

Environment 4.58% 3
Indoor 4.28% 4

Luminance 4.19% 5
Space 3.70% 6
Cost 3.51% 7

Uniformity 2.73% 8
Glare 2.63% 9
LPD 2.53% 10

Efficiency 2.14% 11
Color temperature 2.04% 12

3.2. The Quality of Lighting

Qlighting includes average illuminance, overall uniformity, and UGR.

(5) Average illuminance

The average illuminance can be calculated from the average of the grid points divided
on the working plane, as shown in Equation (1):

Emean =
1
G

G

∑
i=1

Ei
p (1)

where G is the total number of grid points, and Ei
p is the total illuminance in the ith

grid point, generated by all luminaires and lighting reflection, which is calculated by
reference [30].

(6) Overall uniformity
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Illuminance uniformity measures the distribution of illuminance in the horizontal
plane of the room. If the brightness changes too much in the indoor environment, the eyes
are forced to go through an adaptation process when human vision turns from one place
to another. If this adaptation process repeats too many times, it will cause visual fatigue.
The expression of uniformity is shown in Equation (2), which is the ratio of the minimum
illuminance to the average illuminance on the working plane:

Uo =
Emin

Emean
(2)

where Emin is the minimum illuminance value on the working plane (it is obtained by
dividing the working plane into a grid and then comparing the illuminance values with
that of each grid point).

(7) UGR

Glare is the high brightness formed in the field of view that interferes with vision
or causes visual fatigue and discomfort. According to the CIE 117 (1955) publication
“Discomfort Glare in Interior Lighting”, we have Equation (3):

UGR = 8 × lg
(

0.25
Lb

∑
L2

s · w
p2

)
(3)

where Lb is the background luminance, Ls is the luminance of the luminous part of each
luminaire in the direction of the observer, and w is the solid angle formed by the luminous
part of each luminaire at the eyes of the observer. P is the position index of each individual
luminaire, which is determined by Guth’s position index provided by CIE 117:1995.

3.3. Lighting Cost and Efficiency

(1) Lighting power density

Lighting power density is an indicator that must be considered in the lighting design.
LPD is the power of the luminaire required per square meter, as shown in Equation (4), to
promote the application of efficient luminaire. When achieving the same lighting effects,
the number of luminaires is minimized, or the power is lower to achieve the aim of
energy saving:

LPD =

N
∑

i=1
Pi

S
(4)

where Pi is the power of each luminaire, and S is the surface area of the room.

(2) Cost

When more than two kinds of lighting designs achieve the same lighting effect, just
the comparison of LPD to determine which one is better is far from enough. We also need
economic comparison of each lighting design. The lighting costs per unit of illumination
(cost) are used for lighting economic comparison because the illumination value of different
lighting designs is various, as expressed by Equation (5):

C =
NaNbCl
Emean

(5)

where C is the lighting cost per unit of illumination, and Cl is the cost of an individual
luminaire. The lighting fee omits materials and labor costs, such as the cleaning agents
used to clean the luminaires.

3.4. Single-Objective Optimization Model for Luminaire Layout

The evaluation of the indoor lighting environment depends on more than one as-
pect. Comfortable lighting must meet the requirements of Emean (Emean ≥ Emean_limit),
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Uo (Uo ≥ Uo_limit), UGR (UGR ≤ UGRlimit), LPD (LPD ≤ LPDlimit), and cost (C < Climit).
Under the premise of meeting these requirements, increasing or decreasing these design
parameters as much as possible can result in more comfortable lighting. Therefore, the
objective function F(X) designed by this paper is shown in Equation (6). Users can set the
value of α(0 ≤ α ≤ 10) (α represents the importance of Qlighting). The larger the value of α,
the higher Qlighting requires, and the power consumption and cost can be considered less.
The setting of α could meet the requirements of ILD with different levels. In addition, the
penalty function [31,32] is designed to penalize the solutions that do not meet the lighting
design requirements:

Max F(X) = (10 − α)
(

LPDlimit
LPD + Climit

C

)
+ α

(
Emean

Emean_limit
+ Uo

Uo_limit
+ UGRlimit

UGR

)
− λ

5
∑

i=1
Penaltyi

s.t. X = (Na, Nb, Lt, Ll)

2 ≤ Na < min( aLPDlimitS
(a+b)P , aClimit

(a+b)Cl
)

2 ≤ Nb < min( bLPDlimitS
(a+b)P , bClimit

(a+b)Cl
)

al ≤ Lt <
a

Na−1
bl ≤ Ll <

b
Nb−1

(6)

where λ is the penalty factor; a, b, and h are the length, width, and height of the room; and
Penaltyi is the penalty function. When the ith design parameter is satisfied, Penaltyi equals
0. Otherwise, Penaltyi is the distance between the design parameters and its corresponding
limit value; X = (Na, Nb, Lt, Ll) is the independent variable, as shown in Figure 2. hw,
hl , and hc are the height of the working plane, the luminaire mounting height above the
working plane, and the height of the luminaire below the ceiling, regular luminaire spacing
along length Lt and width Ll .
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Other limitations of design parameters can be determined in Table 1. However, the
limitation of cost is described in Equation (7):

Climit =
NmaxCl

Emean_limit
(7)

where Nmax is the maximum number of luminaires, described by the utilization factor
method [33], as shown in Equation (8):

Nmax =
SEmean

ΦµK
(8)
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where Φ is the luminous flux of each luminaire, µ is the utilization factor, and K is the
maintenance factor or light loss factor.

The position of luminaires can be uniquely determined by these four decision variables
(Equation (9)), and the coordinates of a luminaire refer to the coordinates of the center
of the luminaire. Because we work on the design of large lighting locations for a general
lighting scheme, Na and Nb are set as greater than 2.

(xi, yj) = ( b−(Nb−1)Ll
2 + (i − 1)Ll ,

a−(Na−1)Lt
2 + (j − 1)Lt),

i = 1, 2, · · · Nb, j = 1, 2, · · · Na
(9)

4. Algorithm Design
4.1. Basic Particle Swarm Algorithm

The PSO [14], also known as particle swarm algorithm, developed by Kennedy and
Eberhart, is an optimization algorithm based on population intelligence theory. The velocity
and position of the ith particle is manipulated according to Equations (10) and (11). Each
particle is influenced by its previous velocity and the distances of its current position
from its own best position and the group’s best position, constantly converging to the
optimal position:

vi(t + 1) = vi(t) + c1rand1(Pbesti(t)− xi(t)) + c2rand2(Gbest(t)− xi(t)) (10)

xi(t + 1) = xi(t) + vi(t) (11)

where i = 1, 2, 3 · · · N and N is the total number of particles of the population; vi(t) and
xi(t) are the velocity and position of the ith particle at tth generation, Pbesti is the historical
best position of the ith particle, Gbest is the position of the best global particle, c1 is the
cognitive learning factor and c2 is the social learning factor, and rand1 and rand2 are random
numbers uniformly distributed within the range of [0, 1].

Particles’ movement depends mainly on the velocity at different moments (Equation (10)).
However, when the velocity is too large, the capability of global search is stronger, and the
local search is weaker, so the optimal solution is easily skipped; when the velocity is too
small, it is easy to fall into the local optimum. In order to balance global search and local
search, Shi and Eberhart [19] first proposed a particle swarm optimization algorithm with
inertia weight, whose velocity update formula is shown in Equation (12):

vi(t + 1) = wvi(t) + c1rand1(Pbesti(t)− xi(t)) + c2rand2(Gbest(t)− xi(t)) (12)

w = wmax −
T(wmax − wmin)

Tmax
(13)

where wmax and wmin are the maximum and minimum of inertia weight, T is the current
number of iterations, and Tmax is the number of iterations.

4.2. Improved Particle Swarm Algorithm

Although the PSO has the advantages of rapid convergence speed, clear meaning,
and simple operation, some shortcomings still exist, such as lacking dynamic regulation
of speed, easy falling into local optima, and low convergence accuracy. To make the PSO
suitable for solving the ILL problem, we improved the PSO from in aspects.

(1) Up–Down Probabilistic Rounding (UDPR)

After updating the position of the particle according to Equation (11), design variable
x∗ is obtained. To ensure that x∗ is still an integer value, we need to perform an integer
operation. First, the downward and upward rounding operations are performed on x∗

to obtain x∗down and x∗up. Then the probability of taking x∗down and x∗up depends on the
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distance from x∗ to them, as shown in Equations (14) and (15). It maintains the diversity of
populations better and enhances the global search capability.

P(x∗down) =
1/(x∗ − x∗down)

1/(x∗ − x∗down)+ 1/(x∗up − x∗)
(14)

P(x∗up) =
1/(x∗ − x∗up)

1/(x∗ − x∗down)+ 1/(x∗up − x∗)
(15)

(2) Random velocity update for best global particle

When a particle becomes the best global particle, its velocity update formula becomes
Equation (16). The best global particle will keep moving at the velocity of the previous
generation until it hits the boundary, limiting the “talent” of the best global particle.
Inspired by Cai X et al. [34], we can use a random velocity update formula, as shown in
Equation (17). From Figure 3, we know that this method can increase the probability of
jumping out of the local optimum, thus increasing the capability of seeking global optimum:

vi(t + 1) = vi(t) (16)

vi(t + 1) = vi(t) + c2rand2(xm(t)− xu(t)) (17)

where xm(t) and xu(t) are the random positions of two particles in the range of deci-
sion variables.
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(3) Improved inertia weights

Considerable searches have been performed on the improvement of inertia weights,
which are mainly classified into linear adjusted inertia weight [18], fuzzy adjusted iner-
tia weight [19], nonlinear adjusted inertia weight [20–22], and random adjusted inertia
weight [23]. The purpose of adjusting inertia weight is to change the local and global
search capability of the algorithm [15]. A smaller inertia weight improves the local search
capability, and a larger inertia weight improves the global search capability. However,
just decreasing or randomly selecting the inertia weight increases the possibility of falling
into local optimum, and using a fuzzy adjusted inertia weight requires more parameters
to be designed. This paper proposes a nonlinear random inertia weight based on non-
linear decreasing and adding of random numbers to make different inertia weights for
different particles in the same generation, thus increasing particle diversity, as shown in
Equation (18):

w = wmax − (wmax − wmin)

(
T

Tmax

)γ

− λ ∗ rand3 (18)

where γ is a constant, 1 < γ ≤ N, and N is the number of populations. γ can control the
ratio of global search and local search, and if γ is larger, the inertia weight decreases more
slowly; otherwise, the inertia weights decrease more quickly. λ is the inertia deviation
factor, 0 < λ < wmin, and rand3 is a random number uniformly distributed within the
range of [0, 1].

The specific steps of the IPSO are as follows.
Step 1: Initialize the particle positions and velocities of the particle population ran-

domly and uniformly in the search range; set Pbest and Gbest as zero matrices when
T = 0.

Step 2: Calculate the fitness of each particle to get Pbest and Gbest.
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Step 3: Update velocity: the velocity is updated by Equation (17) for the best global
particle and Equation (12) for the other particles. If the velocity is out of bounds, the velocity
equals the boundary.

Step 4: Update position: for integer variables, the UDPR operation is performed on,
and if the position is out of bounds, the position equals the boundary.

Step 5: Update Pbest and Gbest.
Step 6: Stop criterion: the maximum number of generations.
If not exceeded, set T = T + 1 and jump back to Step 3.

5. Experiments and Tests
5.1. Experiments
5.1.1. Lighting Standards

There are many ways of lighting, including general lighting, local lighting, mixed
lighting, emergency lighting, and so on [35]. The method proposed in this paper is to
design for general lighting places, such as conference rooms and offices, which bases on
the lighting standard of GB 50034-2013 in China. Of course, other international standards
just modify lighting design parameters, and our method still works. Table 2 shows the
standard requirements for senior and general office lighting. Our design is based on the
whole room, not the working area, which gives convenience when a desk is moved.

Table 2. Office lighting standards 1.

Codes Emean (lx) Uo UGR LPD
(W/m2)

General Color Rendering Index
(CRI)

Senior office ≥500 ≥0.7 ≤19 ≤15 ≥80
General office ≥300 ≥0.7 ≤19 ≤9 ≥80

1 Based on GB 50034-2013 in China.

The Emean and LPD requirements of senior and general offices are different, and the
former is higher than the latter. Since senior offices need higher-quality lighting, LPD
should be higher. According to different places, the requirements of UGR are also different;
for example, offices and conference rooms have high requirements. The value of Uo is
mainly determined by the location of the luminaire. If the uniformity is not high enough,
it may cause visual fatigue and affect work efficiency. With the improvement of people’s
living standards, the CRI is no less than 80. What is more, in the indoor office, the luminaires
need to be wiped at least two times a year, and K takes 0.80 according to GB 50034-2013.
Finally, Climit takes 3.26. Because the CRI is mainly determined by the type of luminaire
selected, the color of indoor walls and homes, and so forth, it is not considered in the ILL.

5.1.2. Room Type

In order to test the mathematical model (Equation (6)) and algorithm proposed in this
paper, we will design a luminaire layout for a hypothetical senior office. Assuming that
the indoor surfaces are all diffuse surface, the average reflectance of each wall, floor, and
ceiling is considered. The height of the working plane is 0.75 m above the floor (hw), and
the installation of luminaires occupies a height of 0.1 m (hc), which means that the height
of the luminaire above the working plane is 2.15 m (hl) (Figure 2). The specific details of
the room are shown in Table 3.

Table 3. Details of senior office room.

Item Values

Dimension 6 × 8 × 3 m
Average reflectance Ceiling: 0.8; wall: 0.8; floor: 0.2

Working plane height 0.75 m
Installation occupancy height 0.1 m
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5.1.3. Luminaire Type

Here we choose a recessed luminaire, and the style of the luminaire is shown in
Figure 4A. Figure 4B is the light intensity distribution curve of the luminaire, which is
similar to the Lambert model. The cost per luminaire is RMB 78. The light intensity
distribution information of the luminaire can be obtained by the IES file provided by the
manufacturer. The details of the luminaire selected in this paper are shown in Table 4. The
color temperature of the luminaire is 4000 K, which is an intermediate color and is suitable
for an office and conference room.
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Table 4. Details of the luminaire.

Item Values

Dimension 500 × 500 × 100 mm
Power 29.3 W

Power factor (η) 0.94
Efficacy 97.9 lm/W

Color temperature 4000 K
Color rendering RA > 80

Total luminous flux of luminaire 2868 lm

5.1.4. Experimental Process

The experiments of this paper were run on a laptop with i5-10210U CPU, 16G RAM,
and MX250 GPU. All algorithms were run on a MATLAB 2019a platform and validated
by DIALux V5.9 (DIALux evo 2021). Here, the IPSO was compared with the PSO and the
GA. To ensure fairness, each algorithm was run 30 times independently, with a population
size of 30 and an iteration number of 30, and all used UDPR. In order to test the mathe-
matical model (Equation (6)) and algorithm proposed in this paper, many different room
configurations and luminaire configurations were tested. We will only provide results for
some representative room configurations and luminaire configurations. The optimization
process of the IPSO is shown in Figure 5. Finally, we will get the optimal (Na, Nb, Lt, Ll).
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5.2. Data Analyses and Results
5.2.1. ILL Problem Using IPSO-Based Method

The iterative motion of the particles is shown in Figure 6. Since the design variables
are four-dimensional, different colors are used to represent different combinations of Na
and Nb for visualization purposes. After 30 iterations of the IPSO, the particles basically
gather to a point, so this paper sets the algorithm to iterate 30 times.
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Furthermore, the optimal luminaire layout position obtained each time was recorded,
as shown in Figure 7. The optimal luminaire layout position was almost unchanged.
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5.2.2. Comparison of the Proposed Method and Previous Methods

The performance of the proposed IPSO-based method was further compared with
the PSO and GA. After each algorithm was run 30 times independently, changes in the
average best fitness for each algorithm are shown in Figure 8. Average best fitness means
the average of the best fitness values for each generation over 30 trials. The IPSO has a fast
convergence speed and the best performance of finding the optimization. The GA has the
slowest convergence speed and the worst performance of finding the optimization.
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Qlighting as a performance indicator is used for comparison, as shown in Equation (19).

Qlighting =
Emean − Emean_limit

Emean_limit
+

Uo − Uo_limit

Uo_limit
+

UGRlimit − UGR
UGRlimit

(19)

The best fitness value (BFV), the worst fitness value (WFV), the mean value (MV),
and the standard deviation (STDEV) were selected to further evaluate the optimization
ability. As shown in Table 5, both the IPSO and PSO can find the BFV after 30 trials, but the
IPSO outperforms the PSO in all other respects. The optimal results of the GA get a worse
layout of luminaires, which can be seen by the value of Qlighting in Table 6. To validate the
advantage of four decision variables that this paper proposed, we compared the runtime
and success rate with the method proposed in the paper [11]. The programs were run
30 times separately in the same environment. The proposed method was 10.6% faster than
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that in the paper [11] on average and had an additional 23.33% success rate. Finally, Emean
was 528 lx (recommended minimum is 500 lx), Uo was 0.89 (recommended minimum is 0.7),
UGR was 17 (recommended maximum is 19), and LPD 7.325 was W/m2 (recommended
maximum is 15 W/m2), as shown in Table 6. In other words, the proposed method can
increase Emean by 5.6% and Uo by 27.1% and decrease UGR by 10.5% and LPD by 51.2%
compared with the lighting standard.

Table 5. Experimental results of each algorithm.

Algorithm BFV WFV MV STDEV

IPSO 36.677 35.351 36.589 0.331
PSO 36.677 33.541 35.645 1.150
GA 36.097 32.952 34.786 1.332

Table 6. Comparison of optimal results of different algorithms.

Type Na Nb Lt (m) Ll (m) Emean (lx) Uo UGR LPD (W/m2) Qlighting Success Rate

IPSO 3 4 2.488 2.326 528 0.89 17 7.325 0.43 93.33%
PSO 3 4 2.488 2.326 528 0.89 17 7.325 0.43 70.00%
GA 3 4 2.418 2.316 520 0.82 17 7.325 0.32 -

5.2.3. Validation

To validate the optimized layout from the IPSO, the same room parameters are used
in the DIALux. Figure 9 shows a comparison of the illuminance distribution of the working
plane, which sets a grid of 7 × 9 to show the point illuminance, and the contours only
show the values of 460 lx, 475 lx, 500 lx, 525 lx and 550 lx, obtained by the developed
program and DIALux. The maximum difference in illuminance is 50 lx, which is hardly
perceptible by the human eye. Figure 10 is a pseudo-color graph of spatial illuminance. The
black rectangle is a window, where no illuminance calculation was performed; therefore, it
appears black. Figure 10 shows that the colors on the working plane are green, indicating a
uniform distribution of illuminance on the working plane.
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UGR is computed with a grid of 7 × 9 on a horizontal plane of 1.2 m (the height of the
human eyes when sitting down) from 0◦ to 360◦, step 15◦. First, we use DIALux to calculate
the UGR. The results show that the maximum UGR value occurs in the direction of 30◦.
Therefore, a view angle of 30◦ is chosen to observe the results of the developed program
and the DIALux simulation. As shown in Figure 11, both have the maximum UGR value of
17. UGR values are greater in the lower-left corner because the angle of observation is 30◦.
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by the (A) developed program and (B) DIALux.

LPD has no variation since both use the same luminaires and number of luminaires. A
detailed comparison of the design parameters is shown in Table 7. The deviation of Emean
and Uo is about 0.4% and 2.2%, which explains the difference of illuminance distribution in
Figure 9 and proves the effectiveness of the algorithm and model proposed in this paper.

Table 7. Values of design parameters obtained from the developed program and DIALux.

Solution Emean (lx) Uo UGR LPD (W/m2) CRI

Developed program 528 0.89 17 7.325 ≥80
DIALux 530 0.91 17 7.325 ≥80

6. Applications

In order to make it visual for lighting design engineers and related researchers to
use the method proposed by this paper, we design an Indoor Luminaire Layout System
APP using MATLAB APP Designer. As shown in Figure 12A, the beginning interface is
divided into two parts: the left one is the input area, and the right one is the output area.
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The input area includes room information and luminaire information. Clicking “Select” to
select the IES file in the folder. After inputting the information, click “Begin” to get the
optimization result, as shown in Figure 12B. The coordinates of the luminaires are displayed
in the coordinate system, and the values of the optimal decision variables (Na, Nb, Lt, Ll)
are displayed simultaneously.
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7. Conclusions

In order to address complex design parameters and conflicting design goals of the ILL
problem, an improved mathematical model and an improved particle swarm algorithm
are proposed. The proposed method works on the design of large lighting locations for
GLS whose Na and Nb are greater than 2 (e.g., office, meeting room, sports hall). In the
aspect of the mathematical model, the ILL problem is formulated as a nonlinear constrained
optimization problem, considering five mutually conflicting design parameters: Emean, U,
LPD, UGR, and cost. For GLS, the number and location of luminaires can be uniquely
determined by optimizing four decision variables (Na, Nb, Lt, Ll), which have been avoided
using program loops to determine the number of luminaires. In the aspect of algorithm,
since there exist integers and consecutive numbers of decision variables, UDPR is proposed,
which improves the robustness compared with the traditional rounding method. The
velocity of the best global particle is improved by randomly selecting two positions for
updating, increasing the probability of jumping out of the local optimum. What is more,
we use nonlinear inertia weights with random items to increase particle diversity.

In the case study, a typical senior office is taken to verify our method. Design parame-
ters’ limiting values are recommended by a Chinese lighting standard (GB 50034-2013). By
comparing the IPSO with the PSO and GA, the results show that the IPSO has better con-
vergence speed and optimization performance. Then we analyze the IPSO results, which
show that the parameters that are optimized are improved compared with their limiting
values. What is more, four decision variables this paper proposed in mathematical models
contribute the speed of the program. Emean is 528 lx (recommended minimum is 500 lx),
Uo is 0.89 (recommended minimum is 0.7), UGR is 17 (recommended maximum is 19),
and LPD is 7.325 W/m2 (recommended maximum is 15 W/m2). Further, our method was
validated by DIALux. It shows that the deviation of Emean and U is about 0.4% and 2.2%,
and other parameters have no deviation, which shows the effectiveness of the algorithm
and model proposed in this paper. Finally, we design an APP to facilitate the use of lighting
design engineers and other related researchers, which is not considered an alternative to
commercial lighting design. Lighting designers need to fill in the room details, select the
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illuminance IES file, and enter the price to get the recommended illuminance layout as a
reference. Just by changing the illumination standards and luminaire information, it can be
widely applied to GLS.

However, this study has some limitations and problems that need to be addressed
and overcome in future research. On the one hand, lighting design parameters not only
are those considered in this paper, but also include the contribution of daylight into the
room, human preferences, and the spatial distribution of colors in the environment. On
the other hand, the minimum illuminance values tend to occur in the corners of the room,
which are generally not working areas. However, in order to improve Uo, it is necessary to
increase the brightness in this area. Further, it will affect the distribution of luminaires and
waste energy.

Under this research, it is efficient to study daylight-responsive indoor smart lighting
control systems in future research, because our research promises a high quality of lighting
when there is no daylight. Altogether, the method proposed in this paper provides some
new facets to the ILL that deserve more research and investigation in the future.
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Nomenclature

APP application
cost lighting costs per unit of illumination
CRI general color rendering index
Emean average illuminance
GA genetic algorithm
GLS general lighting scheme
ILD indoor lighting design
ILL indoor luminaire layout
IPSO improved particle swarm optimization
LED light-emitting diode
Na number of luminaires in a row
Nb number of luminaires in a column
Lt regular luminaire spacing along length
Ll regular luminaire spacing along width
PSO particle swarm optimization
Qlighting quality of lighting
Uo overall uniformity
UDPR up–down probabilistic rounding
UGR unified glare rating
lm/W lumen per watt
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Lm lumen
m meter
W watt
W/m2 watt per square meter
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