
����������
�������

Citation: Okulski, M.; Ławryńczuk,

M. How Much Energy Do We Need

to Fly with Greater Agility? Energy

Consumption and Performance of an

Attitude Stabilization Controller in a

Quadcopter Drone: A Modified MPC

vs. PID. Energies 2022, 15, 1380.

https://doi.org/10.3390/en15041380

Academic Editors: José María

Maestre, Carlos Bordons and Juan

Manuel Escaño

Received: 10 December 2021

Accepted: 11 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

How Much Energy Do We Need to Fly with Greater Agility?
Energy Consumption and Performance of an Attitude
Stabilization Controller in a Quadcopter Drone: A Modified
MPC vs. PID
Michał Okulski * and Maciej Ławryńczuk
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Abstract: Increasing demand for faster and more agile Unmanned Aerial Vehicles (UAVs, drones) is
observed in many scenarios, including but not limited to medical supply or Search-and-Rescue (SAR)
missions. Exceptional maneuverability is critical for robust obstacle avoidance during autonomous
flights. A novel modification to the Model Predictive Controller (MPC) is proposed, which drastically
improves the speed of the attitude controller of our quadcopter drone. The modified MPC is suitable
for the onboard microcontroller and the 400 Hz main control loop. The peak and total energy
consumption and the performance of the attitude controllers are assessed: the modified MPC and the
default Proportional-Integral-Derivative (PID). The tests were conducted in a custom-implemented
Flight Mode in the ArduCopter software stack, securing the drone in a test harness, which guarantees
the experiments are repetitive. The ultimate MPC greatly increases maneuverability of the drone
and may inspire more research related to faster obstacle avoidance and new types of hybrid attitude
controllers to balance the agility and the power consumption.

Keywords: UAV; quadcopter; attitude controller; MPC; GPC; energy consumption; Model Predictive
Control; PID

1. Introduction

The popularity of flying Unmanned Aerial Vehicles (UAVs, drones) is growing rapidly—
mostly due to a wide range of success stories, including both civilian and military applica-
tions, e.g., remote inspection [1], disaster recovery [2,3], parcel delivery [4], photogramme-
try [5], etc. UAVs for time-critical missions, such medical supply [6] or Search-and-Rescue
(SAR) operations [7,8], must be especially fast, agile, and reliable. Flying through an un-
known post-disaster environment (e.g., full of collapsed buildings) or in an urban area (e.g.,
to defeat the COVID-19 pandemic [9,10]) requires the best obstacle avoidance algorithms
along with the highest possible maneuverability for the drones.

In this paper, we make the following contribution: we propose a significant improve-
ment of a drone’s maneuverability, without any hardware changes, just by introducing
a novel modification to the MPC [11,12], which we implemented as the high-frequency
onboard Attitude Controller, replacing the default PID Controller [13]. We compare and
discuss both controllers’ energy consumption, delay, and accuracy, based on a series of
experiments with the actual drone we built [14].

Currently, these two types of drones are most commonly used: a fixed-wing and a
multi-rotor (multi-copter) [15]. This research focuses on multi-copter drones only. The most
common configuration of a multi-copter drone is: a quadcopter or a hexacopter [15],
having, respectively, four or six propellers. The most important features of a multi-copter
are Vertical-Take-Off-and-Landing (VTOL) and hovering, similar to a full-scale helicopter.
However, the control system of a multi-copter is quite different—there are no complex
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mechanical solutions such as swashplate, etc. Instead, it entirely relies on a rapid, precise,
and accurate Attitude Controller, which slightly adjusts the peak power of each electric
motor [14,16,17]. The main control loop typically runs at 400–500 Hz. The controller
requires high-quality onboard sensors: accelerometers, gyroscopes, and magnetometers,
typically deployed together in an Inertial Measurement Unit (IMU). To fly in the desired
direction (and to maintain the flight speed), a multi-copter drone has to precisely (and
continuously) adjust its attitude in the air [16,17]. The PID Controller [13] is the most
commonly used one, mainly due to its simplicity and robustness. On the other hand,
the simplicity of drone’s PID leads to either a reaction that is too slow or some overshooting
when tuned too aggresively (see Figure 5). The better the attitude controller implemented
onboard is, the more agile maneuvers a drone can perform. Newton’s mechanics state
that for a given (fixed) drone’s mass, a faster maneuver (i.e., a higher angular acceleration)
requires a larger force. The force, however, is generated by a spinning propeller driven by
an electric motor. To conclude, taking all of these points together, aggressive maneuvers
require more electric energy.

Related Work

Controllers (other than PID) are described, e.g., in [18] (a neural-network-based con-
troller), [19] (sliding mode controller), and [20] (reinforcement learning techniques used).
The MPC controllers implemented in a drone are discussed in [21] (fixed-wing drone,
though), [22] (simulation only), and [23] (authors struggled with MPC implementation on
resource-limited hardware which resulted in a degraded MPC performance compared to
PID). A great, comprehensive review of many controllers applied to multicopters can be
found in [24]. However, most of the reviewed papers mentioned their focus on applying
more advanced controllers, such as an MPC, to the higher control level only (i.e., the po-
sition control), leaving the low-level attitude controller ’as is’ (usually just a PID or PD).
A minimal amount of research presents actual experimental results—most of them are
simulations only.

Outstanding results of an aggressive trajectory tracking by a quadcopter have been
described in [25]. The authors proposed a multi-layer control structure: a combination
of Proportional-Derivative (PD) Controllers, Incremental Nonlinear Dynamic Inversion
(INDI) Controllers, and exploitation of the Differential Flatness of the quadcopter dynamics.
The complete control system tracked position and yaw angle and their derivatives of up to
fourth order, specifically velocity, acceleration, jerk, snap, and yaw rate and yaw acceler-
ation. That required, however, a significant hardware modification of the drone: adding
four high-resolution optical encoders (read at 5 kHz) for each of the four electric motors.

Looking for the best (e.g., the fastest) flight trajectory could be considered another
approach to the agile flight problem. The method described in [26] can significantly optimize
the flight trajectory, but it still relies on the original low-level controllers (including the attitude
controller). We think that combining both methods, i.e., improving the Attitude Controller
for better maneuverability, along with the best possible trajectory generation method, could
drastically increase the overall drone’s agility in applicable scenarios.

2. Materials and Methods
2.1. The Elka1Q Drone

We designed and built the Elka1Q drone shown in Figure 1. Besides some additional
features, such as wings, it can fly like a regular quadcopter. The four main propulsion sys-
tems are optimized for long hovering and lifting a heavy payload: we mounted 4× T-Motor
MN3110 KV470 with 12 × 4 carbon-fiber propellers. The main power source is a Li-Ion
battery (6S3P). The drone’s flight controller uses an STM32F7 microcontroller running at
216 MHz. More technical details of the drone are described in [14,27]. The total weight of
the drone depends on the selected sensor set but typically is ca. 3200 g.
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Figure 1. The Elka1Q drone.

2.2. On-Board Sensors’ Issues

The onboard IMU provides tilt angle measurements with great precision and accuracy—
this has been tested prior to this research [28]. The IMU resolution, however, is an issue.
The tilt angle measurements are read up to a centidegree (0.01◦). According to the phys-
ical model of a quadcopter, [17,25], the angular speed (first derivative of the tilt angle)
measurements are crucial to predict the drone state in subsequent time steps correctly.

We experimentally tested many smoothing techniques: low-pass filters, moving aver-
age filter, moving median filter, and many more. The key here is to balance the smoothing
capabilities of the chosen filter and introduce as little signal delay as possible. Computa-
tional efficiency is essential as well—the filter is calculated ca. 20,000 times per second.
The final filtering algorithm is described in the Appendix A.1. Figure 2 shows the filtering
results. The filtered signal is smooth, and the introduced signal delay is acceptable (i.e.,
the attitude controller is stable in the whole range of tilt angle during the experiments with
the drone’s hardware).
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Figure 2. The raw tilt angle signal (from the IMU) and the results of the Smoothing Algorithm.
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2.3. The Attitude Controller

The complete quadcopter’s dynamic equations are presented in [25], as well as the entire
control stack. The attitude controller is just one of the controllers required by a quadcopter
for flying. However, we claim it is the most important one. Any flight is impossible without
that controller, including autonomous and fully manual flight scenarios. This is because
of the unstable nature of such a flying vehicle. Many research works focus on an efficient
trajectory planning or a high-level controller, assuming the attitude controller ’as is’. We
insist that a poor attitude controller can slow down or even lead to missing the desired
trajectory while performing an autonomous flight. As described in [14,27], the quadcopter’s
attitude control task can be decomposed into three parallel controllers. Indeed, the most
common implementation consists of three independent PID (or even just PD) controllers,
one for each axis: roll, pitch, and yaw. The roll and pitch controllers are usually the same
type, sometimes having just slightly different values of the tuning parameters. Yaw control,
however, is usually much slower and is not critical because a multicopter can actually fly
in any direction, regardless of heading control. Usually, a slower PID or a Proportional (P)
controller is good enough for the yaw axis stabilization. To simplify further considerations,
we consider the pitch controller only in this paper.

2.4. A Novel Improvement for the Generalized Predictive Controller (GPC)

The GPC is an implementation of the MPC concept [11,12]. The key features of the
GPC can be summarized as follows:

• It relies on a linear model of a plant;
• It works in a closed-loop (feedback);
• It computes an optimal control signal for the whole control horizon (fixed number

of discrete time steps), but only the very first control signal value is applied, and the
others are discarded; in the next iteration of the control loop, the optimal control
values are computed again (against the latest measurements);

• The GPC is robust: even if the linear model does not match the real plant well, it can
still control the system efficiently.

The control law of the classic (analytical) GPC is formulated:

∆U(k) = K[Yt(k + 1)−Y0(k + 1)], (1)

where ∆U(k) is a vector of predicted control signal updates, K is the (fixed) control matrix
which depends on the linear model of the object, and it is calculated off-line (only once).
The Yt(k) is the target (desired) trajectory at the moment k, and the Y0(k) is the free trajectory
which depends on the linear model of the object and the past values of the real object:
measurements and applied (past) control signal values. The linear model used in our
experiments is described in the Appendix A.2. Sizes of matrices in Equation (1) depend on
the fixed properties of the GPC: the prediction horizon N and the control horizon Nu:

∆U(k) =


∆u(k|k)

∆u(k + 1|k)
...

∆u(k + Nu|k)


Nu×1

=

= KNu×N




yt(k + 1|k)
yt(k + 2|k)

...
yt(k + N + 1|k)


N×1

−


y0(k + 1|k) + d(k)
y0(k + 2|k) + d(k)

...
y0(k + N + 1|k) + d(k)


N×1

,

(2)
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where d(k) is the modeling error: a difference between the latest measurement and the
model prediction computed in the previous iteration:

d(k) = y(k)− ŷ(k|k− 1). (3)

Typically, the future target trajectory Yt is unknown; thus, the values are constant:

Yt(k + 1) =


yt(k + 1|k)
yt(k + 1|k)

...
yt(k + 1|k)


N×1

. (4)

This approach works well for a GPC designed to keep the object at a fixed setpoint for a
long time. The drones, however, continuously adjust the target attitude to maintain the
hover position or to follow the flight trajectory. The drone dynamics restrict the range of
feasible flight trajectories—if one is too aggressive, it will be simply physically impossible
for a drone to follow it.

Known past values of the target attitude trajectory (and therefore its changes) and
the intuition described above inspired us to propose a modification to the classic GPC: the
Trajectory Guessing Algorithm.

2.5. The Trajectory Guessing Algorithm

The target trajectory is a discrete signal. Let us define more differentiation equations
(similarly to the Equation (A1)):

ÿt(k) = ẏt(k)− ẏt(k− 1),
ẏt(k) = yt(k)− yt(k− 1) = ẏt(k− 1) + ÿt(k),

(5)

where yt(k) is the target trajectory value at the moment k. We define the bound (cut-off)
function as follows:

b(x, xmin, xmax) =


xmax, if x ≥ xmax,

xmin, if x ≤ xmin,

x, otherwise,

(6)

and the bounds:

{l1, l2} =

{
{ẏt(k), βẏt(k)}, if sgn(ẏt(k)) = sgn(ÿt(k)),

{−βẏt(k), ẏt(k)}, otherwise,

ẏmin
t = min{l1, l2},

ẏmax
t = max{l1, l2},

(7)

where the β = 1.5 was found experimentally. The final bound function formula looks as
follows:

by(yt) = b(yt, ẏmin
t , ẏmax

t ). (8)

The following recurrent equations describe the Trajectory Guessing Algorithm:

ˆ̇yt(k + 1|k) = by(ẏt(k|k) + ÿt(k)),
ˆ̇yt(k + 2|k) = by

(
ˆ̇yt(k + 1|k) + ÿt(k)

)
,

...
ˆ̇yt(k + N|k) = by

(
ˆ̇yt(k + N − 1|k) + ÿt(k)

)
,

(9)
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and, consequently,

yt(k + 1|k) = yt(k|k) + ˆ̇yt(k|k),
yt(k + 2|k) = yt(k + 1|k) + ˆ̇yt(k + 1|k),
...
yt(k + N|k) = yt(k + N − 1|k) + ˆ̇yt(k + N|k).

(10)

Please note that the predicted second derivative of the target trajectory is constant:

ÿt(k + 1|k) = ÿt(k + 2|k) = . . . = ÿt(k + N|k) = ÿt(k). (11)

The above Equations (5)–(11) explain how the prediction of the future target trajec-
tory relies on the past discrete derivative values (namely, first and second derivative).
The method has two main assumptions: the second derivative remains constant over the
prediction horizon (in our case: 30 steps); the changing (predicted) first derivative values
are limited to some bounds, calculated for the most recent target trajectory values.

The Trajectory Guessing Algorithm results are presented in Figure 3, where an artificial
target trajectory is used to visualize the concept better.
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Figure 3. An example of results of the Trajectory Guessing Algorithm.

2.6. Assessment Methods

It is important to compare subsequent attitude controller implementations in the
same, well-controlled conditions. To address that need, we implemented a custom Flight
Mode [29] for the ArduCopter software: the Fixed Trajectory Mode. We took a 30-second-
long part of telemetry data from one of the real flight experiments. The extracted target
pitch angle trajectory has been hardcoded into the new Fixed Trajectory Mode, overriding
any incoming target pitch angle signals. We turned off the roll and the yaw attitude
controllers because the drone was locked in a well-balanced harness that allows tilting
the drone over a single axis only (pitch). We designed the harness in such a way that the
drone rotates exactly over its center of mass—as in an actual hover flight (see Figure 1).
Additionally, the harness is tall enough to minimize undesired air gusts caused by the
airflow (from the main propellers) bounced back by the floor.

The idea behind the Trajectory Guessing Algorithm was simple: make the attitude
controller as quick and as accurate as possible. Therefore, we used Matlab’s finddelay [30]
function as the metric of the overall delay of the controller.

We used the drone’s onboard current and voltage sensors to measure the total energy
consumption. The sensors were able to produce ca. 200 readings per second.
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The controller’s delay and the total electric power consumption are compared below
while discussing the final results of a series of experiments based on the Fixed Trajec-
tory Mode.

3. Results

The Fixed Trajectory Mode (described in Section 2.6) was necessary to perform a
repetitive, precise comparison of all the attitude controllers mentioned in this paper: PID,
the original MPC, and the MPC with novel modification: the Trajectory Guessing Algorithm.
The overall results are shown in Figure 4. More details of controllers’ delay and accuracy can
be observed in a zoomed part of the experiment in Figure 5. The total energy consumption
of all the controllers (during the Fixed Trajectory experiment) is shown in Figure 6. The total
energy consumption difference, where PID Controller is taken as the baseline, is presented
in Figure 7. The total peak power usage is shown in Figures 8 and 9. Please note that the
average power needed for the drone to hover is about 270 W, but it can use even up to three
times higher peak power (ca. 1 kW) to aggressively tilt the drone to the desired position.

0 5 10 15 20 25

Time [s]

-30

-20

-10

0

10

20

30

T
ilt

 A
n

g
le

 [
d

e
g

re
e

s
]

Target y

Figure 4. The Fixed Trajectory Experiment: complete target trajectory and the highlighted part of
the experiment.
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Figure 5. Performance of all the controllers for a selected part of the Fixed Trajectory Experiment.
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Figure 6. Total energy consumption during the Fixed Trajectory Experiment for all the controllers.
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Figure 7. Total energy consumption during the Fixed Trajectory Experiment: MPC compared to PID.
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Figure 8. Power usage during the selected part of the Fixed Trajectory Experiment: MPC (with
Trajectory Guessing) compared to PID.

Figure 9. The peak power usage histogram during the Fixed Trajectory Experiment: MPC (with
Trajectory Guessing) compared to PID.
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We summarized the final results (a median from five experiment runs) in Table 1.

Table 1. Comparison of the attitude controllers.

Controller Delay Energy Consumption

PID 24 3.50 Wh
MPC 74 3.35 Wh

MPC with Trajectory Guessing 6 4.05 Wh

4. Discussion

Modern flying UAVs have to be more agile as they operate in more demanding environ-
ments, e.g., urban or post-disaster areas. For example, speed and agility are critical for robust
obstacle avoidance in medical supply or SAR missions. Without using extra-long range
sensors, the only way to let them fly faster (but still safely) is to increase the maneuverability.
We were sure it was still possible to achieve that without extra hardware modifications.
Therefore, we focused on finding possible flight controller improvements and estimating the
total energetic cost of such agility.

First, we selected a simple assessment metric to compare the software improvements:
the delay introduced by an attitude controller. Then, we had to be sure that the subsequent
experiments were comparable. We implemented a new Flight Mode in the ArduCopter
software to repeat a fixed (hardcoded) trajectory. Then we mounted the drone in a harness,
which locks all its degrees of freedom but pitch.

Prior to this research, we ensured the PID was well tuned (manually and via the
Auto-Tune Mode). We studied the telemetry data and found that the PID controller works
fine but is not as fast and accurate as we thought it should be in a genuinely agile drone.
The MPC was the next natural choice to test. We implemented the GPC variant, based on a
linear Neural Network model found in our previous research [14]. The results, however,
were not satisfying. Although the MPC was accurate, it was even slower than the original
PID—it can be observed in Figure 5. Tuning the MPC’s horizons and delta parameter leads
to unstable controller behavior, most likely due to modeling errors.

Based on the observed phenomena, we proposed a novel modification to the original
MPC: the Trajectory Guessing Algorithm. This modification was simple enough to be
implemented in the high-frequency onboard attitude controller (running at 400 Hz, keeping
in mind the limited resources of the drone’s flight controller hardware). Achieved speed-
up of the stable MPC was impressive; however, as expected, the outstanding agility
comes with a higher total energy consumption: about 15.7% more than the default PID.
The results are presented in Figure 5 and in Table 1.

We have an idea of how to maximize the benefits of the implemented Attitude Con-
troller, despite its higher power consumption. The drone could have a hybrid (or multi-
level) attitude controller: a slow one, e.g., the default PID, when it flies through an environ-
ment where not many obstacles are expected (high-altitude flights), and it could switch
to the agile controller when it approaches a more demanding environment such as flying
through an urban area at low altitude.

One may argue that the energetic cost for the achieved agility is too high, and similar
results, i.e., increasing the average flight speed, could be solved simply by installing
better range sensors for improved obstacle avoidance. Better range sensors could give the
drone more time for more efficient path planning so that the drone could start a sufficient
maneuver sooner. However, having such (better) sensors implies that the drone could fly
even faster if it just has better maneuverability, thus having a rapid attitude controller,
which brings us again to the fundamental concept of this research.

The above considerations suggest an interesting idea for future research: to check how
much faster a drone could fly through a fixed, non-trivial path with a more agile attitude
controller. It could be either simulated or a real flight experiment. The answer is not easy
to predict: a sharper attitude controller consumes more energy but allows the drone to fly
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faster, which reduces the total flight time to the target destination. Will the shorter (but
faster) flight consume less or actually more energy?

Another future research topic may focus on finding a different way to improve the
drone’s maneuverability with lower energetic cost, which could be through software,
hardware, or aerodynamic modification. An exciting example of such a modification is
described in [25] (a combination of hardware and control system modifications), but the
energetic cost is not discussed there.

5. Conclusions

The drones market is increasing rapidly. This has inspired researchers to develop
better drones: ones that are smarter and fly longer, faster, and farther away. Critically, agile
drones are necessary for many scenarios, including but not limited to medical supply and
SAR missions. We state that a drone can fly faster and with greater agility if it has a more
aggressive attitude controller onboard. We focused on improving the attitude controller
algorithm and assumed no other hardware modifications of the drone. Ultimately, we
proposed a novel modification to the MPC controller: the Trajectory Guessing Algorithm,
which drastically improved the drone’s maneuverability. We assessed the new attitude
controller against the most common implementation (PID) in a custom-implemented Flight
Mode (Fixed Trajectory Mode) in the ArduCopter software stack. We found that our
modified MPC is much faster than PID. The total increase in power demand is higher by
15.7% over PID.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
SAR Search-and-Rescue
PID Proportional-Integral-Derivative
PD Proportional-Derivative
IMU Inertial Measurement Unit
MPC Model Predictive Controller
GPC Generalized Predictive Controller

Appendix A

Appendix A.1. The Trajectory Smoothing Algorithm

The tilt angle is a discrete signal. Let us define the following differentiation equations:

ẏ(k) = y(k)− y(k− 1) (A1)
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The final formula of the implemented filter looks as follows:

s = (n− 1) 1.1 + 0.9,

y1 =
[
y f (k− n) y f (k− n + 1) . . . y f (k− 2) y f (k− 1)

]
,

y2 =
[
y1 y(k)

]
,

(A2)

and according to the differentiation Equation (A1):

ẏ2 =
[
y f (k− n + 1)− y f (k− n) . . . y f (k− 1)− y f (k− 2) y(k)− y f (k− 1)

]
,

y f (k) = y f (k− 1) + 1
s

[
n−1
∑

i=1
(1.1 ẏ2(i)) + 0.9 ẏ2(n)

]
,

(A3)

where n = 7, y f (k) is the filtered (smoothed) tilt angle value, y(k) is the latest (measured)
tilt angle value (noised), y2 is a helper vector containing smoothed tilt angle values (except
the last one), and ẏ2 is a helper vector with angular speed values (the first derivative of the
discrete signal y2 using the Equation (A1)).

The fundamental concept of the proposed algorithm is to predict the smoothed dif-
ference value (the first derivative) of the latest signal sample. The prediction is made on
the weighted first derivative values of a few past (smoothed) samples and the single, most
recent, unfiltered (raw) sample. The algorithm comprises a good smoothing performance
with the introduction of a minimal signal delay.

See Figure 2 for the filtering results.

Appendix A.2. The Neural-Network-Based Linear Model

We identified and tested a wide variety of linear and non-linear models [14,27]. Next,
we selected the most promising subset to be implemented onboard. After a series of
experiments, we rejected the most complex ones and focused on a few fastest and most
reliable neural-based linear models. Further experiments proved that the simple One-
Step-Forward neural linear model works well as a base model for the GPC. We found the
tuning parameters of the model structure experimentally. The final model structure looks
as follows:

y0(k + 1|k) = w · x(k), (A4)

where w is the neuron’s weight vector:

w =
[
w1 w2 . . . w7

]
, (A5)

and x is the vector of input values:

x(k) =
[
ẏ(k) ÿ(k) u(k− 1) u(k− 2) . . . u(k− 5)

]
, (A6)

where we have the first and second derivative of the tilt angle, see Equation (5), and later
on the last five control signal values.

Further predictions of the model are computed recurrently: a given predicted value is
used to calculate the tilt angle derivatives, and then to calculate the next model output:



Energies 2022, 15, 1380 12 of 13

ẏ(k) = y(k)− y(k− 1),
ẏ(k− 1) = y(k− 1)− y(k− 2),
ÿ(k) = ẏ(k)− ẏ(k− 1),
y0(k + 1|k) = w ·

[
ẏ(k) ÿ(k) u(k− 1) . . . u(k− 5)

]
,

ẏ(k + 1) = y0(k + 1|k)− y(k),
ẏ(k) = y(k)− y(k− 1),
ÿ(k + 1) = ẏ(k + 1)− ẏ(k),
y0(k + 2|k) = w ·

[
ẏ(k + 1) ÿ(k + 1) u(k− 1) u(k− 1) . . . u(k− 4)

]
,

ẏ(k + 2) = y0(k + 2|k)− y0(k + 1|k),
ẏ(k + 1) = y0(k + 1|k)− y(k),
ÿ(k + 2) = ẏ(k + 2)− ẏ(k + 1),
y0(k + 3|k) = w ·

[
ẏ(k + 2) ÿ(k + 2) u(k− 1) u(k− 1) u(k− 1) . . . u(k− 3)

]
,

(A7)

and so on. Please note the future control signals u(k), u(k + 1), etc., are unknown; therefore,
only past control signals are used: from the oldest: u(k− 5) up to the latest known value:
u(k− 1).

There is at least one important benefit of representing such a simple linear model as a
neural network (in fact: as a single linear neuron, with no bias input). We can use modern
GPU-optimized libraries, such as Tensorflow 2 [31] and Keras [32] for training the neuron,
i.e., for finding the weight vector.
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