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Abstract: Heat pumps coupled with thermal energy storage (TES) systems are seen as a promising
technology for load management that can be used to shift peak loads to off-peak hours. Most of the
existing model predictive control (MPC) studies on tariff-based load shifting deploying hot water
tanks use simplified tank models. In this study, an MPC framework that accounts for transient
thermal behavior (i.e., mixing and stratification) by applying energy (EMPC) and exergy (XMPC)
analysis is proposed. A case study for an office building equipped with an air handling unit (AHU)
revealed that the MPC strategy had a high load-shifting capacity: over 80% of the energy consumption
took place during off-peak hours when there was an electricity surplus in the grid. An analysis of a
typical day showed that the XMPC method was able to provide more appropriate stratification within
the TES for all load characteristics. An annual exergy analysis demonstrated that, during cold months,
energy degradation in the TES is mainly caused by exergy destruction due to irreversibility, while,
during the transition to milder months, exergy loss dominates. Compared to the EMPC approach,
the XMPC strategy achieves additional reductions of 18% in annual electricity consumption, 13% in
operating costs, and almost 17% in emissions.

Keywords: energy flexibility; active demand response; stratified hot water storage tank; exergy
analysis; model predictive control

1. Introduction

The building sector accounts for around 40% of the total energy consumption in the
EU and is an important source of greenhouse gas emissions. To improve energy efficiency
and sustainable energy supply, the share of renewable energy sources in the EU’s energy
supply has increased significantly in recent years [1]. Nevertheless, an increase in elec-
tricity generation from renewable energy sources is necessary to further reduce emissions
and to achieve climate targets [2]. For this reason, an analysis of energy flexibility and,
in particular, the design of control strategies required to exploit the flexibility potentials
are of great importance for future grid operations.

The basic idea of how load management methods match the differences in electric-
ity generation and demand-side consumption are described in the work of Gellings and
Smith [3]. The work of Ulbig and Anderson [4] described a general method for quantifying
flexibility in power systems, which has been consistently applied by many authors to
quantify the flexibility potential, for example, by using building mass as thermal energy
storage (TES) [5-7]. In Lund et al. [8], the available potentials for common loads in the
residential, industrial, and commercial sectors in Germany are investigated. In particular,
the conversion of electricity into thermal energy via water storage is highlighted, among
other storage options, as a future-oriented technology for a sustainable heating and cooling
supply in buildings. This is due to its relatively low cost [9], simple installation, and ability
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to be deployed for heating and cooling systems in buildings—even in environments with
poor infrastructure [10]. For water storage systems, it has been proven that the appropri-
ate stratification can largely increase system performance [9,11-14]. To characterize the
operational efficiency and to evaluate the performance of water storage systems, analyses
based on the first law of thermodynamics (energy) and the second law of thermodynamics
(exergy) are frequently carried out [14]. Energy and exergy analysis is used to evaluate
the dynamic behavior of TES systems in different operation modes (heating and cool-
ing) [12,15,16], for different system scales (single building or district [17,18]), and within
various time frames. According to previous studies [13,19-21], pure energy analysis is not
able to characterize the mixing between different temperature layers nor reflect the really
useful part of the energy stored in the tank, while exergy analysis provides more insight into
the temperature distribution and thermodynamic efficiency. Accordingly, TES stratification
and exergy analysis should be considered during system design and evaluation to improve
energy efficiency when TES is implemented for the demand response.

One of the main challenges is that implementing TES systems in buildings raises the
complexity of the building’s energy system. Effective control of the Building Energy System
(BES) is, therefore, necessary to optimally manage the charging, discharging, or standby
operation of the TES. Recent studies have noted that model predictive control (MPC) is
capable of achieving certain control goals effectively with the presence of disturbances and
constraints in the prediction interval [22,23]. Many studies show the effective application
of MPC application in the optimal scheduling of BES coupled with TES to increase the
load-shifting potential [24-27], improve energy efficiency [28,29], and reduce operating
costs or greenhouse gas emissions [24,26,27,30]. Nevertheless, most MPC applications are
usually based on energy analysis without adequate analysis for TES operation. Only very
limited studies have been carried out on the control of building energy systems. Reddy [31]
designed an exergy-based model predictive control (XMPC) framework to minimize the
grid electricity consumption of HVAC systems when combined with a micro-scale concen-
trated solar power system (Micro-CSP). A two-tank direct system was adopted. The results
demonstrated that the XMPC framework provided a 17% reduction in the exergy destruc-
tion of the Micro-CSP when it was combined with the HVAC system and a 45% reduction in
the electrical energy consumption of the grid compared to the applied rule-based controller.
The limitation of this study was that the fluid temperature in the hot tank was idealized in
the range of 140-180 °C and that its specific control was omitted. Jonin et al. [32] tried to
determine the optimal volume of a seasonal thermal energy storage (STES) system to supply
heat to a building using an exergy-based MPC scheme incorporating long-horizon (seasonal
features) knowledge into the current short-horizon (daily cycle) optimization problem.
The TES was discretized into different subvolumes and the self-mixing phenomena were
considered via relaxed forced convection. The results showed that the exergy-based MPC
was capable of maintaining an appropriate stratification that could be used to determine
the minimum volume of the tank. However, the building model was simplified and a
constant required supply temperature of 60 °C was assumed. Baranski et al. [33] developed
a model-based distributed control algorithm for the energy supply chain, which aimed to
minimize exergy destruction while maintaining thermal comfort. A stepped temperature
TES model was used in the study. The proposed control algorithm was tested on a real
decentralized ventilation system in a subsequent study [34]. The results showed that the
algorithm was able to correct the control decisions according to the change in the mixed
water temperature, and the mass flow rates in the consumer circuits were relatively stable.
The study highlights that exergy-based control can enable a decrease in operating costs
(13%), reduce the mismatch between energy supply and demand, and minimize exergy
destruction. Nevertheless, no detailed evaluation of the hot water storage during the oper-
ation of the system was provided in the analyses. Razmara et al. [35] developed an MPC
strategy to minimize the exergy destruction of the heating and cooling supply of a build-
ing. A conventional on—off controller (rule-based control), energy-based MPC (EMPC),
and the proposed exergy-based MPC were adopted and compared. In this case study,



Energies 2022, 15,1793

3 0f 31

the MPC outperformed the rule-based control. The XMPC demonstrated its supremacy
by consuming 12% less energy and causing 4% less exergy destruction compared to the
conventional EMPC strategy. This study also highlighted the application feasibility of the
exergy-based control to minimize exergy destruction. However, the study does not address
flexible operation with TES implementation.

In order to increase the building operation flexibility and to integrate more renewable
energy into the grid, TES and the corresponding control strategy must be integrated into
the building energy system. Previous studies on the optimal scheduling of heat generators
coupled with TES mainly discussed energy-based control strategies. In the few papers
dealing with the exergy-based control of HVAC systems, the results indicated that exergy-
based control outperforms conventional energy-based control from the perspective of
energy efficiency. Nevertheless, the objective in such studies was often to minimize the
exergy destruction or energy consumption/operating costs, while the design of an exergy-
based control strategy for ADR operation needs to be further investigated. Additionally,
TES modelling and the building model are often idealized due to computational efforts or
the target of the research. Furthermore, the specific stratification as well as the efficiency of
the TES during operation with an exergy-based control strategy is rarely discussed in the
aforementioned studies. Since the TES is an important component for ADR applications
in the building sector and because its transient thermal behavior can significantly affect
performance, its stratification and efficiency should be considered when developing optimal
control strategies and when evaluating the operation process. To the authors’” knowledge,
this is the first study to comparatively examine energy-based (EMPC) and exergy-based
(XMPC) control to optimize the scheduling for ADR operation when deploying a TES.
The main contributions of this methodology lie in (1) the design of an MPC strategy in the
context of ADR, based on the transient energy and an exergy analysis of a stratified hot
water storage tank to optimize the flexible operation of HVAC systems; (2) the application
of the MPC control strategy in a case study (office building) in which the HVAC system
and water storage tank are simulated with high fidelity. Real-time data from the German
electricity market (price and emission) and corresponding weather data are used; (3) an
analysis and in-depth evaluation of the methodology using the key performance indicators
(KPIs) for the energy flexibility, efficiency, and stratification of TES during ADR operation
are performed.

2. Fundamentals of Energy and Exergy Analysis

The energy balance (1) of the TES describes the changes in the energy quantity AE
(energy accumulation) within a time interval T as follows [16,36]:

Ein — (Erec + Eloss) =AE (1)

Energy input Ej,, recovery Ere., and the losses Ejq are included in the balance.
Ein (2) represents the energy supplied by the heat generator (charging), and Eec (3) in-
dicates the energy consumed by the HVAC system. The overall energy efficiency n is
defined as (5).

Ein = Qgen'T = Ihge11'Cp,w'(7~9s,ge11 - ﬂr,gen)'T ()
Erec = QH‘T = 1’i'lst'cp,w'(ﬁs,st - ﬁr,st)'T (©)]
N N
Ejoss = Z Qsur T = ZU'Ai'(ﬁi - 190)'T 4
i=1 i=1
E
N = =5 x100% 5)
Ein

The energy that is supplied and recovered is calculated by the supply temperatures 9
and the return temperatures ¢, of the heat generator and TES with the corresponding mass
flows m. The temperature variables in the equations are given in Kelvin. The losses (4) are
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calculated using the heat transfer coefficient U, surface area A; of the storage tank, and the
temperature of each layer ¢; as well as the ambient temperature ¢). The energy stored in
the TES at a given time can be evaluated using Equation (6) [37].

N
Est = Z p'Vs,i'Cp,w'(ﬁi - ﬁr,st) (6)
i=1

In thermodynamics, the exergy of a system is the useful work done during a process
that brings the system into equilibrium with a heat reservoir, allowing it to reach maximum
entropy [38]. Rosen et al. [16,18,36] describe exergy analysis as a tool to evaluate and
improve the energy system, which is different from ordinary energy analysis because
exergy provides more information about the temperature level and the real thermodynamic
losses due to the irreversibility as well as thermocline degradation. Using exergy analysis,
a general TES exergy balance during a time step T can be described with (7).

Ein — (Erec + Eloss) — Bdes = AE @)

In the exergy balance (7), Ein, Erec, and Hjyg are similar to the energy balance (1),
but the exergy destruction due to irreversibility Hgeq (€.g., mixing of different water layers
in TES) is an additional component. AE indicates the change in the exergy quantity in the
TES during the observed period, and the overall exergy efficiency 1 is given by (8) [16,36].

—
(=)
—

P = == % 100% 8)

H
—1n

The amount of exergy supplied from the heat generator to the stratified storage tank
can be calculated according to (9) and the exergy delivered from the storage tank to the
HVAC system can be calculated with (10) [16].

. ) 0.
‘Ein = Egen-’[' = mgen-cp,w |:(l9$,gen — ﬂr,gen) _ 190‘ In ( l;/gen ):| T (9)
T,gen
— & o ﬁs,st
Srec = =H'T = Mgt Cp,w (ﬂs,st - l9r,st) —t%p-In ( 9 t) T (10)
TS

Exergy loss is caused by heat loss (4), which is the sum of the exergy losses of the
individual layers in the stratified storage tank (11) [16].

- a %
Zloss = Z (1- y)'Eloss,i (11)
i

i
The exergy accumulation represents the difference in the stored exergy in the tank
within a period of time. In the case of a stepwise temperature distribution, the stored

exergy in the stratified storage tank can be described as a function of the height H and the
temperature distribution at each time (12) [16].

H
M H 9 . dh
St—o/ex~Hdh—M/0 Gpue-(0= 80— 00 In () (12)

[1]

Mg refers to the total mass of the water in the TES. An equal temperature distribution
is assumed for each layer and all of the layers N are identical in size according to (13).

dh 1

(13)

H N
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Using the assumptions made before, the equation for momentary stored exergy (12)
can be expressed with the temperature distribution by (14).

YN

9 N
Est = Ms-cpw-( — 09 + Yo In (%) — NO' In]#) (14)
1

The temperature of each individual layer within the TES is computed numerically
using a differential Equation (15) [39], accounting for the relevant heat fluxes and the
storage capacity C;.

% _ Qin,i - Qrec,i - qur,i - th,i - CQmix,i (1 5)
ot G

The heat fluxes that are considered for each layer are the heat supply Qin,i/ recovery
Qrec’i, loss to the ambient qur/i, heat conduction th,i of the adjacent layers, and the mixing

effects caused by the flow momentum Q,y.; ;.
The exergy destruction that takes place due to irreversibility Eges cannot be calculated
separately but is instead obtained from the exergy balance (7).

3. Methodology
3.1. Overview of the ADR Control Strategy

The methodology of the ADR control strategy, its inputs, and the coupling with the
BES is schematically illustrated in Figure 1. Principally, the ADR control strategy involves
two consecutive steps: (1) the computation of an initial 24-h charging schedule and (2) the
repetitive revision of the schedule during real-time operation. The first step is initiated for
each day at 0:00 and repeated every 24 h. In the second step, the heat generator is controlled
and operated in a closed-loop manner. The control strategy, therefore, represents a hybrid
model of MPC and rule-based control.

Model Input
Grid Signal Weathenr Generator data v Load Prediction
€/KWh oc C,§<§= kW | _— T oHhe.
—.. [ L)
888 e *7e .
t L
G(Y O Qiess cop Quprea BES
. t

ADR Control Strategy

Initial charging table :
(at 0:00)

Est/Est

[ 8] [ GomtZoen | | Qurzn | Time

Potential checking:
(every time step t)

Eq /St =
EH,rest/:H,rest

EH,T‘ES!/;H,T'ESt

i |

| i Qgen @é
[ Qon—Qgenn ] [ Qgen = Qn ] [ Qgen=0 ] Generator

Figure 1. Schematic of the methodology.
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In order to create optimal charging schedules and to perform real-time MPC simula-
tions, the following inputs were provided: a grid-supportive signal, ambient temperature
based on the weather forecast, and heat generator performance data as well as a data-based
load prediction (black-box model). The grid-supportive signal was based on German
electricity market data and the weather data were provided by the German Weather Service.
These data are usually provided with a time step T of 1 h. The prediction horizon of the
MPC was set to 24 h since this study focused on the daily operation cycle of the BES. Further
details can be found in Section 4.6. The BES time step was 5 min due to the agile control
required by HVAC systems (Sections 4.1-4.5).

3.2. Step 1: Creation of the Initial Schedule for ADR Operation

First, the energy/exergy quantity required to charge the storage tank for the following
day Ep 4/ Ep q is determined based on the predicted heating power, while the potential

energy/exergy supply Qgen / igen is estimated at each time step in accordance with the
performance data of the heat generator. The time-varying exergy Zy (16) and energy

Qy (17) heating loads are calculated using the predicted hourly heating power QH Preds
as forecasted by the load prediction.

. QH,Pred Myt-Cp,w B In ( 7o) Mg g
gy = al My i (16)
Mt ~
QH QH JPred M mst (17)
Mt

Considering the total energy or exergy heating demand alone does not guarantee that
sufficient heating power is provided in every case, since a stepped temperature stratification
model is assumed. This can be overcome by calibrating the energy and exergy per unit

mass. The transient exergy supply capability Egen is similarly computed as follows (18):

| 8,
Egen = Qgen n mgen,n'Cp,w‘ﬂO‘ In (71; i ) (18)
T,gen

Qgen,n represents the transient energy supply capability of the heat generator. When
the operation is performed according to the estimated schedule, it is assumed that the TES

is charged by the heat generator with nominal power Qgen,n and the design mass flow rate
Mgenn in order to fully exploit the intervals with an electricity surplus. Following (17),

the hourly heating energy demand QH,pred is the only parameter required for the further
computation of the initial charging schedule with the energy-based control strategy. For the
exergy-based control strategy, both the supply temperature as well as the return tempera-
ture of the heat generator and HVAC system must be estimated separately because they
are involved in the calculation of the exergy heating load (16) and the exergy provided by
the heat generator (18). An adequate exergy estimation requires reasonable simplifications
and assumptions based on the specific BES system. The assumptions for the case study in
this paper are stated in Section 4.7.

The initial charging schedule of the heat generator is expressed in the form of a binary

=
vector X.
—
X =(x1,X2, -, %n) (19)
Here, x1, ... ,Xn map the numerical charging schedule of the heat generator, with x = 1

representing charging and x = 0 representing the shutdown. The value of % is 24 (n =24)
since the sampling time is one hour. The goal is to use as little electricity from the grid
during peak hours as possible and to optimally use the surplus of renewable electricity.
Thus, the object function is given by Equation (20), where P¢j gen(t) denotes the electrical
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power of the heat generator, Pejpyq (t) is the electrical power of the hydraulic system,
and g(t) is the grid-supportive signal.

min ] = Y2 Py sen ()X (1) + Perpya (t))-g(t) T (20)

The detailed formulation of the object function is case specific. Accordingly, the method

5
to create the initial charging schedule X may also differ.

3.3. Step 2: Operation and Checking

After the initialization and creation of the optimal charging schedule, the building
and the HVAC system enter daily real-time ADR operation. Essentially, three operating

modes (21) are distinguished as being in flexible operation: nominal power Qgep, , Operation
(Mode 1), demand-based operation (Mode 2), and shutdown (Mode 3).

Mode 1 : Qgen = Qgen,n (nominal heating operation)
Mode 2 : Qgen = QH (demand-based operation) (21)
Mode 3 : Qgen = 0 (off)

In demand-based operation, Qgen corresponds to the actual heating power Qy of the
HVAC system. At each time step during the daily real-time operation t*, a closed-loop
control algorithm (Figure 1) estimates whether the energy or exergy quantity Eg;/Zs; stored
in the TES is sufficient to cover the remaining load of the HVAC Ep yest/ EH rest for that day.
The remaining thermal energy demand Ep est(t) (EMPC) and exergy demand Epy rest (t)
(XMPC) are estimated by (22) and (23).

Eff rest(t*) = (1 + SF) Y Qu(t)-t (22)
<<
G(t) # Go

Enpest(t’) = (1+SF) Y ZEu(t)= (23)
tr<t<
G(t) # Go

If the stored energy or exergy is too low, the control algorithm identifies appropriate
time durations to recharge the TES during the day based on the discrete grid signal G(t).
The process for determining G(t) is explained in Section 4.6.1. Gy represents the lowest
grid signal during the day. The estimation of Ep rest(t) /Ep rest(t) mainly accounts for
time durations during the middle and high grid signal levels (G(t) # Gp). Following the
control algorithm in Figure 1, three different conditions are defined in accordance with the
operation modes (21).

e  Condition (1): The TES should be charged with nominal power (>_(>(t) = 1) according
to the schedule, and the feedback loop reveals that there is not enough energy/exergy
(Efirest/ Exirest < Est/Est) stored in TES for flexible operation, thereby causing the
heat generator to run on nominal power (Mode 1); however, if enough energy/exergy
can be provided, the operation mode corresponds to Condition (3).

e Condition (2): If no initial charging is suggested based on the charging schedule

(; (t) = 0) and there is indeed enough energy /exergy stored (Eg rest/ Zf rest = Est/Zst),
then the heat generator is shut down (Mode 3); operation proceeds according to
Condition (3).

e  Condition (3): In order to exploit the ADR potential as much as possible, the operation
mode is determined by a grid-supportive signal. If the grid signal is G(t) =1, then the
flexibility potential is fully utilized, and the generator charges the TES at nominal
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power (Mode 1), while, for grid signal G(t) = II, the generator runs in the demand-
based operation mode (Mode 2), and, for signal G(t) = III, a shutdown is performed
(Mode 3).

4. Case Study
4.1. System Overview

The BES consists of a heat pump, thermal storage tank, air conditioning system,
and the building model (Figure 2). The model was created using TRNSYS [39], and its
development is explained in the following sections.

PP r— - PP Trneeeinn: PPr—
i Generation { Storage i Air handling unit } i Zone
19 ﬂs.st
s.gen /\ QAHU QOH
EHA I F ETA
QHP Qs I | N
ODA SUP
— L[] -
j— 19r.gen Vst Is.any 9yanv

Figure 2. Schematics of the BES.

4.2. Building Model

The building model represents an office. In addition to the individual and group
offices, the model contains meeting rooms, sanitary rooms, and traffic areas and has a
total area of 569 m? (Figure 3). The building insulation meets the requirements of the
German Standard EnEV 2016 [40]. User behavior, internal heat emissions caused by people
and devices, moisture, and pollutant emissions are defined in accordance with DIN EN
16798 [41]. The set heating temperature was assumed to be 20 °C in zones where occupants
are frequently present (i.e., offices and meeting rooms), and a lower temperature standard
(16 °C) was set in zones with occasional occupancy (i.e., hallways). The lower temperature
standard also applied to time outside of open hours and on weekends. On weekends,
no optimal ADR operation schedule was considered. The climatic boundary conditions
correspond to the location of Stuttgart, Germany, which are represented by data from the
German Weather Service. Under these conditions, the nominal heating load of the building

is QO,H = 34 kW, according to DIN EN 12831 [42].

01/ 08 hallway 04/ 05 meeting room
02 large open office 06/ 07 sanitary room
03 single office 09 tea kitchen

Figure 3. Floor plan of the studied office building model.

4.3. Air Handling Unit Model

The studied air conditioning system was a decentralized air-handling unit (AHU) that
uses a PI controller to control the supply air temperature and airflow rate in each individual
zone. During heating, recirculated air is used since it is more energetically efficient in terms
of covering the thermal loads. The efficiency of the heat recovery was assumed as 80% and
the system could be controlled by a bypass for frost protection. The outdoor air fraction
was controlled based on the CO, concentration, with a limit of 600 ppm above the outside
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concentration [41]. The temperature difference in the heating coil in the nominal case was
AP = 20 K, with the HVAC system having a supply temperature of ¢ = 60 °C and a
return temperature of 95 = 40 °C. To create the initial charging schedule, it was assumed
that the temperature spread A6 drops from 20 °C to 5 °C as the supply temperature
decreases from 60 °C to 40 °C. Each AHU has a nominal air volume flow rate of 400 m?/h,
and the number of units in each zone depends on the floor area as well as on the nominal
heating load.

4.4. Heat Pump Model

The air-to-water heat pump system was designed in bivalent operation using an
auxiliary heating unit with an efficiency of ng = 0.9. The minimal heating power and
maximal heating power limit the working range of the heat pump, with the bivalence point
at around —5 °C (Figure 4).

— QHP.?nax_._ QH.P,miu"'*" QU,H
50 -
= 45 4
X
< 40 -
= 35
230 -
8_25 -
= 20 -
£ 15 4
@ 10 - :
< pPapar——— 1

= 5

-15 -5 5 15 25
Outside temperature in °C

Figure 4. The thermal power of the heat pump depending on the outside temperature
(bivalent operation).

The supply temperature of the heat generator ¥ gen corresponds to the design temper-
ature of the heating coil and is controlled depending on the ambient temperature. If the
outdoor temperature is extremely cold (85, < —12 °C), the supply temperature is set
to ¥s,gen = 60 °C. For the upper temperature limit 9o, = 18 °C, the supply temperature
is reduced accordingly to ¥sgen = 40 °C. Linear interpolation is assumed within these
temperature limits. The COP depends on the dynamic operation point and, according to
Bettanini et al. [43], can be idealized as a product of three terms (24): the full load efficiency
COPg, the partial load factor (PLF), which takes into account the influence of thermal load,
and the degradation coefficient due to the defrost factor (DOF).

COP = COPy-PLF-DOF (24)

The functions of the three factors can be determined using the test data of the German
standard DIN V 18599-5 [44]. More details can be found in Appendix A.

4.5. Storage Tank and Hydraulic System Model

The stratified storage tank model is shown with the corresponding temperature layers
and mass flows in Figure 5, as are the positions of the inlet and outlet ports. The model
represents a cylindrical storage tank and its volume is set with a height of 2 m (Volume
4.5 m3), which is equally divided into N = 20 temperature layers. The TES was modelled
using TRNSYS component Type 158 [39], which solves differential Equation (15).
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_hy My gen .
o_Jo 0,_; T 0,."5 Ormin

Figure 5. Vertically stratified storage tank with stepped temperature distribution.

The left side of the tank indicates the connections to the heat pump, which can be
charged by the inlet port (upper layer) with the corresponding supply temperature s gen
and the mass flow ms,gen of the heat pump. The outlet port, which is located at the bottom
layer of the left tank side, represents the return flow to the heat pump. Similarly, on the
right side of the tank, the water with the corresponding supply temperature ;s and mass
flow mg g is supplied to the AHU via the outlet port on the upper right side in case of
heating demands in the building (discharging). The return flow from the AHU is connected
to the lowest layer of the tank. It is assumed that the mass flows on both sides are identical
when charging or discharging at the inlet and outlet port (Mg gen = Mygen; Mg st = Myst).
The supply temperature to the AHU is equal to the temperature of the upper layer, and the
return temperature to the heat pump corresponds to the temperature of the bottom layer
(Os,st = 01; Orgen = B20). When the design temperature of the air conditioning system to
estimate the storage capacity are d; min = 40 °C in the bottom and ¢stmax = 60 °C in the top
layer, the energy capacity is 104 kWh [8]. The heat losses of the storage tank are calculated
with an average heat transfer coefficient of 0.4 W/ (m?-K), and the ambient temperature
of the TES is assumed to be 20 °C throughout the entire heating period. The initial water
temperature at the beginning of the year (simulation start) was set to 40 °C. The heat loss
in the pipeline to the ambient areas is neglected [30]. Based on the nominal temperature

difference AB4es and heating load QO,H, the design mass flow rate of the hydraulic system
is given by (25).

Qo
Cp,w-Aedes

1'hdes = (25)
The auxiliary power of the hydraulic pump Py p is determined by the flow rate Vtotal,
the pressure losses Apy;y, and the efficiency of the pump np according to (26).

_ Vtotal . ApHV

P p
& np

(26)

4.6. Pre-Processing of Model Inputs
4.6.1. Grid-Supportive Signal

Time-variable grid-supportive signals are based on the price of electricity (24 h day-
ahead price) [45] and the carbon dioxide emissions (CDE) of electricity generation in
Germany. The level of direct emissions depends on the type of electricity source partic-
ipating in electricity generation at each specific time. The data are available 24 h ahead
for each upcoming day [46]. Only direct emissions are observed; thus, potential indirect
emission reductions in electricity generation, e.g., by emission certificates, are not consid-
ered. Furthermore, the effects on the energy market are not reflected when the signal is
used for ADR control purposes [47]. The carbon dioxide equivalents conducted are listed
in Appendix A. For the definition of low, medium, and high electricity grid utilization,
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the grid-supportive signal g(t) is categorized into three discrete signals by determining the
range for each day (27).

AS = 8max (t) - gmin(t) (27)

Accordingly, the time periods with the corresponding signals are classified into the
three levels (I, I, and III). Low-level grid signals (G(t) = I) correspond to time durations with
an electricity surplus in the grid or when there is a large share of electricity from renewable
energy sources—the generation exceeds the demand. On the contrary, high-level grid
signal levels (G(t) = III) represent the peak hours when electricity generation is relatively
low compared to the demand. Figure 6 illustrates the grid signal classification using an
exemplary day from 2017.

—e— Electricity price CDE

45 500
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= 35 460 £
< 0
8 = 400 &
T 20 E
s 380
) 15 360 O
£ 10 ? 340
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TR — 300

0 4 8 12 16 20 24
hour of the day in h

Figure 6. Processing of the grid-supportive signal (electricity price and CDE) for an exemplary day
(March 2017).

It is obvious that there can be significant fluctuations during the day, with the price
signal generally indicating a comparatively lower price at night and higher electricity prices
in the morning and early evening. The CDE grid signal pattern shows similar characteristics,
although the minimum usually occurs in the afternoon due to the fluctuating amounts
of renewable electricity that are generated. The variation in the CDE is not as significant
compared to the price signal and tends to vary with the seasons. Changes may occur due
to climatic influences and between workdays and weekends.

4.6.2. Load Prediction Model

In the case of a data-driven model, different machine learning methods are suitable for
predicting the daily heating energy demand of buildings. Among the classical regression
methods, the support vector method, Gaussian process regression, and regression trees
are appropriate models [48,49]. In this case study, a regression tree (RT) model is used.
Using RT as a data-based model, the input data is processed iteratively and recursively,
aiming to define the most possible class assignment for a specified property of the different
parameters [50]. For this purpose, the input data is divided into groups in the form of a
tree, consisting of a root node, several branch nodes, and the bottom level (output). Each
information content (28) is weighted and processed by the probability of its occurrence
(information entropy),

E(S) = 2?:1 —p;- log, (p;) (28)
where n represents the number of different target values and p; is the probability of each
data group. The so-called Iterative Dichotomiser 3 algorithm (ID3) [51] was used to generate
the RT. The prediction approach for data-driven modelling can be divided into the three
common steps according to supervised learning [52]: data preparation, data processing
(model training), and prediction. The number of input data during data preparation
(training variables) and the training data affect the prediction accuracy. Suitable training
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variable selection is usually carried out by testing and checking and is always a compromise
between the prediction accuracy versus the challenge of specifying certain parameters.
In this study, only very commonly measurable and accessible smart building parameters
are considered as training variables (Table 1).

Table 1. Training parameters of the load prediction model.

Parameter Range of Values Unit
Weekday Mo... Fr -
Hour of the day 0...24 h
Presence of users 0...1 -
Set temperature 16... 20 °C
Outdoor temperature -12...35 °C
Solar radiation 0...928 W/m?2
Daily heat load 0...28 kW

The simulation results for the BES (heating period) that were described in Chapter 3
were used as training data using the Test Reference Year (TRY) [53] of Stuttgart as weather
data. For prediction purposes as well as for the simulations using the MPC strategy,
historical data from 2017 [54] are obtained and provided as weather forecasts. An exemplary

prediction of the daily heating power load QH,Pred compared to the real thermal load Qg
of the BES simulation is shown in Figure 7.
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Figure 7. Predicted and actual thermal power of the HVAC system on a typical cool winter day.

The comparison between the forecast and the real heating power for the exemplary
winter day shows good agreement with R? = 0.97 and the RMSE = 0.78 kW. During the
year, however, there are days with significantly lower prediction accuracy. The accuracy
for the entire heating period (2017) is R? = 0.71 and RMSE = 1.53 kW.

4.6.3. Signal for the Heating Requirement

If the outdoor temperature ¢, is below 18 °C during the building’s office hours
(8 am.—19 p.m.), then it is assumed that there is a heating requirement for this day (H; = 1).
Otherwise, H; is set to H = 0 and the heating system stays off during the day. Signal H is
determined at the beginning of each day based on the weather forecast.

4.7. MPC Implementation

As a bivalent heat pump coupled with TES is considered in the heating system,
the object function (20) can be instantiated into (29), which aims to minimize the electricity
consumption of the heating system based on the grid-supportive signal. The electricity
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power is the sum of the power of the heat pump Py 5e,, and the circulation pump Py (t). Two
different grid-supportive signals, the day-ahead electricity price C,j and the carbon dioxide
emission rate CDE,, will be discussed. The boundary conditions of the MPC strategy are
represented by (30)—(34). Since electricity is pure usable energy, the boundary conditions
remain unchanged and the objective function (29), as well as the boundary constraints
(30)—(34), are identical for both exergy-based and energy-based control strategies. In (30) to

(32), the bivalent operation of the heat pump is considered. Qgen represents the thermal
power provided by the heat generator, which consists of the thermal power of the heat

pump Qpp, and the electrical heating tab Q. QHp,maX specifies the upper and lower

limit Qlemin of the thermal power provided by the heat generator (31). The electrical
power of the heat generator is calculated by considering the variable COP of the heat
pump (Section 4.4) and a constant efficiency of the heating tab ny = 0.9 (32). The initial
charging schedule indicates that the heat generator charges the storage tank with nominal
power (33). Moreover, (34) was used to calculate the electrical power of the circulation
pump. Since a simplified hydraulic system is adopted in this study, the circulation pump

power is correlated with the predicted heat load QH,Pred' When implementing exergy or
energy analysis in the MPC strategy, it is important to note that a fluid with the same
energy quantity can provide a different exergy quantity. Therefore, the XMPC strategy
uses (35), which describes the required transient exergy stored in the TES for flexible
operation throughout the entire day. On the contrary, in the EMPC strategy, (36) is applied
to guarantee that the heating demands for the HVAC system can be covered during the day.

24 N
minJ = Z (Pel,gen(t)'x(t)'g( ): T“'Pelp( ): g(t)'T)) (29)
t=1
T=1h
s.t. _ ) )
Qgen(t) = Qpup(t) + Qpus(t) (30)
QHP,min(t) S QHP (t) S QHP,max(t) (31)
Pagen(t) = (T + 211 o)
X(t) € {0,1} (33)
Pel,p(t) = f(QH,Pred) (34)
k= 5 k=t
—kZI(l—SP)t_k-Egen(t)X(t) T < Bgo-(1 — SF)! Z (1-sP)kaut)t (35
or:
k= 5 K=t
- th (1= SF)"™-Qgen () X (t)T < Egeo+(1 — SF)' 2 — SF)" " -Qpprealt) T (36)
=1 k=1

Taking energy or exergy losses, irreversibility, and deviations in the load prediction
into consideration, a safety factor SF was used. As there are not many SF reference values
for XMPC, the value of 0.5% per hour (12% per day), which was recommended in previous
EMPC research [30], was initially adopted in this study. Three assumptions were made to
provide an estimation of the temperatures and to make the exergy predictions for XMPC,
thereby allowing (35) to be solved. First, it was assumed that the supply temperature 0 gen
and the return temperature 9 gen of the heat generator were equal to the temperature at
the top and bottom of the storage tank. Second, it was assumed that the storage tank had a
linear stratification. The temperature of the water supply for the HVAC system ¢t was
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equal to the temperature of the first layer of water in the tank; however, depending on the
discretization accuracy, it could be lower than the heat pump supply temperature 9 gen.
In this case, it was assumed that the tank had a 5% temperature spread (Jsgen — Ur,gen)
for the temperature difference since the entire tank was discretized into 20 layers. Third,
a linear correlation between the temperature spread A0 and the supply temperature 9
was assumed in order to approximate the behavior of the heating system as a function
of the ambient conditions (details in Section 4.3). With these assumptions, the predicted

exergy demand Zg; and exergy supply capability of the heat generator Egen (Section 3.2)
—
could be computed and used to create the initial charging plan X. It can be seen that both

the objective function and the boundary conditions are linear functions of z(t) Since ; (t)
is a binary integer vector, the optimal scheduling problem can be solved using a mixed
integer linear programming (MILP) algorithm. In this paper, the MATLAB optimization
toolbox [55] was chosen because of its fast computation and good compatibility with TRN-
SYS. After the initial charging schedule was computed, the control strategy proceeded to
the second phase during the simulation and performed the rule-based calibration described
in Section 3.3. The time resolution of the calibration was 5 min.

5. Results and Evaluation of the Control Strategy
5.1. Analysis on Characteristic Days

The results of the simulations with EMPC and XMPC are analyzed for individual char-
acteristic days (Table 2), which represent typical loads for the heating period in Stuttgart.

Table 2. Typical days for the location of Stuttgart, Germany (2017).

Typical Day Temperature Appearance Frequency
Cold day —15°Cto —5°C 10 days
Cool day —5°Cto5°C 88 days
Moderate day 5°Cto15°C 162 days

To prospectively illustrate the amount of stored exergy within the TES during ADR
operation, the state of charge ¢ is introduced. According to (37), ¢ is defined as the ratio of
the stored exergy or energy to the maximum storage capacity (Section 4.5).

Het (t Eq:i(t
(t) = =t or () = PV @7)
st max Est,max

Figures 8-10 present daily analyses of typical days for both the energy (EMPC) and
exergy (XMPC) models during ADR operation. More specifically, the load curves on the left
axis of the left illustration represent the thermal power of the heat pump (blue lines) and the
heating load of the AHU (red line). On the secondary axis, the discrete grid control signal
G(t) is shown (green line). The results are carried out with the day-ahead price as the grid-
supportive signal. The variant with the CDE factor as a grid-supportive signal is discussed
separately in Section 5.3.1. In each graph on the right-hand side, the thermal stratification
within the tank and the supply temperature of the heat pump 9 gen are illustrated on the
left-axis, while the state of the charge is presented on the secondary axis. The thermal
stratification within the TES is demonstrated by the fluid temperature of the layers at the
bottom ;_yp, in the middle 19, and at the top ¢;_.
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Figure 8. Daily analysis of heating and TES (cold day): (a) thermal power profiles and (b) stratification
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Figure 10. Daily analysis of heating and TES (moderate day): (a) thermal power profiles and

(b) stratification within the TES.

On a typical cold day, the main EMPC and XMPC charging durations extend through-
out the entire night—from 0:00 to the early morning at 6:00. This day is among those with
the highest energy requirements, which is seen during the heat load-oriented charging
hours after 6:00, when the discrete control signal changes to the middle-level. For EMPC,
the overall high temperature level leads to a gradual decrease in the heat flux supplied by
the heat generator after 4:00, since the return temperature to the heat generator increases
significantly as the state of charge increases. Over the course of the day, especially when the
grid signal is at a high level, the heat pump remains off and the storage tank is discharged
to a large extent. In order to provide sufficient energy quantity within the tank, the heat
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generator is temporarily in heat load-oriented operation between 12:00 and 16:00 and is
charged for some time with EMPC at a nominal power level. Although the temperature
level and the state of charge of the previous day are slightly higher when using EMPC
compared to XMPC, the generator runs in demand-based operation with EMPC for about
one hour after the main charging period (00:00 to 6:00). The temperature difference in
the thermocline during daily operation with XMPC is about 17 K to 35 K, while the mini-
mum temperature difference due to stratification with EMPC is just 10 K (around 5:00 am).
On this cold day, besides the minor variations in the charging cycle, the differences of
the temperature distribution within the tank are most important. It can be seen that the
temperature level for EMPC and thus the stored energy is higher compared to XMPC.

On a cool day (Figure 9), the heat generator with the XMPC runs at nominal power
from 0 to 5 o’clock to optimally utilize the interval with a low-level grid signal and stays
off during the high-level grid signals.

Under the same conditions, the EMPC strategy continues to charge the TES in heat
load-oriented mode until around 7 o’clock when the grid signal reaches the middle-level,
although the initial temperature level is slightly higher compared to that on a cold day.
Moderate days have a comparatively low heating energy demand, so the storage tank does
not require charging on all of these days. Figure 10 shows a moderate day with a brief
charging duration in the early morning (4:00) using both methods. EMPC had already
performed a brief charging procedure at 1:00. Stratification with the XMPC maintains a
range of 10-20 K, while the water temperatures of the different layers with EMPC reach
almost the same level at 5:00.

The typical daily analyses demonstrate that exergy-based control provides a higher
capability to maintain appropriate stratification than the EMPC under the same boundary
conditions. Additionally, the XMPC charging durations are able to adapt to momentary grid
utilization more quickly compared to EMPC, increasing its ability to exploit the flexibility
potential based on the variable grid-supportive signal. This is further validated by the
annual results discussed in the following section.

5.2. Analysis of Annual Simulation

The annual simulation results of the XMPC and EMPC strategy are compared with the
Reference Model, where the heat generator supplies the AHU system directly without the
operation of either TES or ADR. Correspondingly, the heat generator runs in the Reference
Model in the heat load-oriented mode all the time.

5.2.1. Dynamic Exergy and Energy Analysis

The exergy quantities according to the balance Equation (7) as well as the overall
exergy efficiency are listed in Tables 3 and 4. It can be seen that with both approaches,
more declines in the exergy are caused by destruction E4e4 (i.e., irreversibility) rather than
exergy loss Ejoss during an annual cycle. As shown in the tables, especially during colder
periods (i.e., Dec. to Jan.), exergy destruction dominates, while in moderate months (i.e.,
Mar. to Oct.) the decrease in the available exergy is mainly due to exergy losses. As for
the overall exergy efficiency 1, both of the control strategies showed the same tendency—
higher in cold months and lower in mild months. Comparing the absolute values of
EMPC and XMPC, it is obvious that the XMPC strategy has a significantly higher exergy
efficiency, especially in the moderate months. Thus, the total annual exergy efficiency is
about 6% higher with the XMPC. The exergy that is consumed by the HVAC system Ee.
of both models is comparable, although the exergy that is provided by the heat generator
is considerably higher with the EMPC. The differences in the exergy that is delivered is
mainly due to the state of charge at a certain time, which may vary due to different charging
cycles. Thus, the supply temperature as well as the return temperature of the HVAC system
may also differ during real-time operation. Nevertheless, it can be shown that XMPC is
able to recover more exergy for the heating supply and that it can provide greater amounts
of usable energy to the HVAC system. With the XMPC strategy, the annual exergy loss
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drops by about 42%, from 102.5 kWh to 59.3 kWh, which again proves that XMPC allows
for more appropriate stratification within the TES to be maintained and that allows for
better adaptation to actual HVAC demand.

Table 3. Annual EMPC exergy analysis.

Ein Erec Zloss Edes AZ Lz

Month (kWh) (kWh) (kWh) (kWh) (kWh) (%)
Jan 311.6 2723 10.7 30.0 1.4 87.4
Feb 80.0 56.7 8.1 10.7 45 70.9
Mar 15.2 48 9.6 1.7 09 31.4
Apr 113 0.0 11.0 0.2 0.1 0.4
May 7.0 0.0 9.1 0.1 23 0.0
Jun 7.2 0.0 6.5 0.1 0.6 0.0
Jul 5.3 0.0 6.3 0.1 ~1.0 0.0
Aug 6.8 0.0 6.1 0.1 0.6 0.0
Sep 9.8 0.0 8.8 0.1 0.8 0.0
Oct 13.1 0.0 93 0.1 3.6 03
Nov 80.3 64.6 8.7 10.9 —4.0 80.5
Dec 157.4 128.8 8.2 73.8 14 81.8
Sum 704.9 527.2 102.5 127.9 2.0 74.8

Table 4. Annual XMPC exergy analysis.

Month Zin Erec Zloss Edes AE P
(kWh) (kWh) (kWh) (kWh) (kWh) (%)
Jan 276.6 245.7 72 25.5 -1.9 88.9
Feb 67.4 52.8 5.8 6.1 2.7 78.4
Mar 9.3 4.3 5.8 1.0 -1.8 45.7
Apr 7.5 0.0 6.3 0.4 0.9 0.5
May 1.6 0.0 3.7 0.2 -22 0.1
Jun 3.6 0.0 2.4 0.4 0.8 0.0
Jul 3.0 0.0 2.7 0.3 0.0 0.0
Aug 3.3 0.0 3.3 0.2 -0.2 0.0
Sep 49 0.0 4.0 0.3 0.5 0.0
Oct 10.1 0.0 47 0.4 5.0 0.3
Nov 70.7 61.4 6.8 6.7 —4.2 86.8
Dec 147.0 125.7 6.5 55.5 0.2 85.5
Sum 605.0 490.0 59.3 96.9 -0.3 81.0

More adequate stratification reduces unnecessary heat losses, especially during the
moderate months. The exergy analysis demonstrates that the XMPC strategy is more
flexible and effective during ADR operation compared to EMPC.

5.2.2. Load Shifting Potential and Electricity Utilization

The shifted energy can be evaluated according to (38) via the predefined time durations
of the low (G(t) = I), middle (G(t) = II), and high (G(t) = III) electricity grid utilization levels.

Wy = / P dt + / P dt+ / P dt (38)
GH)=T G(H)=TI G(t)=T

Figure 11 shows the electricity demand of the Reference Model, as well as during ADR
operation, and is categorized according to the grid utilization level. It can be seen that in
the case of the Reference Model, electricity utilization often occurs (34%) during peak hours,
when the price is highest (G(t) = III), while over 28% of the electricity utilization occurs at
the middle price level (G(t) = II), and 37% of the total demand occurs at the low-price level.
Considering ADR operation, most of the electricity utilization—more than 80% with EMPC
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and over 83% with XMPC, respectively—occurs during low-price times (G(t) = I). Only a
minor part of the electricity utilization takes place when higher price levels are in effect
(G(t) = III).
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Figure 11. Comparison of operational flexibility and electricity utilization.

It can be seen that during ADR operation, the total annual electricity demand de-
clines compared to the Reference Model, decreasing from 10.2 to 9.3 kWh/ (m2~a) for the
EMPC and, most significantly, for the XMPC—with an overall reduction from 27% to
7.4 kWh/(m?-a). The reduction in the total electricity demand during ADR operation is
due to the higher overall efficiency of the heat generator, which is further discussed in the
next section.

5.2.3. Efficiency of the Heating Generator

The coeftficient of performance (COP) as well as the seasonal coefficient of performance
(SCOP) of the heat pump in the annual cycle are analyzed according to (39) and (40).

Qpp
Perpp

Qup +Qnur _  Qup + Qnur
Wel,gen Wel,HP —+ %

COP =

(39)

SCOP =

(40)

The MPC strategies during ADR operation with TES allow for higher COP and SCOP
values, which explains the total reduction in electric energy despite the increased demand
for thermal energy. The annual COP distribution throughout the entire heating period
can be found in Appendix C. As shown in Figure 12a, SCOP is increased by 28% with
EMPC and by 53% with XMPC during ADR operation compared to the Reference Model.
The results support the conclusions of other researchers, which indicate that by using TES
in combination with an appropriate control strategy, the efficiency of the heat generator
in a building energy system can be increased [10,56]. Apart from COP, the XMPC method
defines a more appropriate operating time for the heat pump in order to minimize the
auxiliary electrical heating power, as observed in Figure 12b. The thermal energy that is
generated by auxiliary electrical heating accounts for about 40% compared to the Reference
Model, while it is reduced to 18% with EMPC and to 6% with XMPC. It can also be seen
from Figure 12b that the ADR operation with the TES slightly increases the thermal energy
demand of the heat generator compared to the Reference Model—by 16% with EMPC and
11% with XMPC. This is mainly due to the losses related to irreversibility and heat transfer
to the ambient area. It has also been concluded by other researchers that TES deployment
can increase the total energy demand of a building’s energy system [56].
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Figure 12. Comparison of heat pump performance: (a) SCOP of the heat generator and (b) thermal
energy generation.

Ideally, the TES should be capable of providing the thermal power required by the
HVAC system at any time. To evaluate the heating supply, the time durations are accumu-
lated as a percentage of the dissatisfied hours (PDH) when the thermal power supplied
from the TES during ADR operation is insufficient, i.e., lower than the heat load of the

building (Qec(t) < Qg(t)). In addition, the insufficiently supplied energy is summed
up as being deficit energy throughout the entire year. For both the EMPC and XMPC
strategy, the PDH is less than 0.2%, while the insufficient delivered energy for each model
is 0.6%. In order to achieve the same performance, the safety factor must be increased to
5% with EMPC. Once again, this indicates that the exergy-based methodology has a higher
capability of providing the required thermal energy for the HVAC system.

5.2.4. Operating Costs and Carbon-Dioxide Emissions

The operating costs (OC) and the CDE were calculated using (41) and (42), respec-
tively [24,30,57].
OC =}, Carlt) Wa(t) (41)

CDE =) ' | CDEg(t)-Wa(t) (42)

The results are illustrated and compared in Figure 13. Compared to the Reference
Model, EMPC and XMPC achieve reductions in both OC and CDE. The EMPC strategy
achieves a 34% reduction in the OC and a 10% decrease in the annual CDE. With XMPC,
the annual OC drops to 0.27 EUR/(m?-a) (47%), and CDE declines to 3.95 kgCO,/(m?-a)
(27%)—a further 13% and 17% reduction in OC and CDE, respectively, compared to EMPC.
Although MPC-based optimization aims to minimize costs, it achieved a reduction in the
CDE as well. As more electricity is generated by renewable energy sources in the grid,
electricity costs will be lower and less greenhouse gases will be emitted.
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Figure 13. Comparison of operating costs (OC) and emissions (CDE) in the annual analysis.
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5.3. Stability and Sensitivity Analysis

In order to examine the stability of the proposed methodology, three key parameters—
the grid-supportive signal, the size of the TES, and the heat pump—are studied further.
A sensitivity analysis was carried out for the XMPC strategy since its overall performance is
higher compared to the EMPC strategy.

5.3.1. Influence of the Grid-Supportive Signal

When considering the energy-related emissions as the grid-supportive signal, it is
obvious that, in contrast to the electricity price, the time intervals in the early morning
hours before occupancy tend to be less eligible for charging than the time intervals in the
afternoon. The following analysis will demonstrate how the XMPC handles the different
characteristics of the grid signal. All of the other inputs, the physical model in the TRNSYS,
and the parameters of the control strategy in ADR operation remain unchanged, and the
signal is processed in the same manner (Section 4.6.1). Compared to the results for a typical
cool day shown in Section 5.1 along with the cost of the grid signal (Figure 9), the charging
behavior during the day is quite different when using the CDE grid signal, as shown
in Figure 14. The grid signal remains at a high level throughout the night (0:00-8:00).
In order to provide enough energy during office hours, the heat generator charges the
tank at nominal power from 3:00 to 4:00 and in the heat-oriented mode from 6:00 to 8:00,
even when the grid signal is at a high level (G(t) = III). During the day, the heat generator
runs at nominal power again from 12:00 to 14:00, when the grid indicates high availability

(G(t) =1).
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Figure 14. Daily heating and TES (cool day) analysis with CDE grid signal: (a) thermal power profiles
and (b) stratification within the TES.

As shown in Figure 14b, the temperature increases during the charging durations
and then drops as the storage tank is discharged. Compared to the Reference Model,
the annual thermal energy demand increases by 10%, while the hours with insufficient
thermal power and annual insufficient energy during operation are just 0.2% and 0.1%,
respectively. The MPC strategy demonstrates good compatibility with different grid signal
characteristics. Given that the CDE grid signal tends to be lower during the daytime—when
the ambient temperature is relatively high—the heat pump is able to operate at a slightly
higher COP and SCOP. Due to the improved efficiency of the heat generator and the slightly
reduced thermal energy demand during ADR operation, the total annual electricity demand
is reduced by 26%. With the CDE grid signal, XMPC achieves minimal annual emissions of
3.93 kg /(m?-a)—another 6% reduction compared to the price of electricity for the grid signal.
Figure 15 shows the flexibility potentials for different grid utilization levels by comparing
the electricity price (XMPC-OC) and the CDE (XMPC-CDE) as grid-supportive signals,
respectively. The simulation results were categorized into three variations based on the
grid-supportive signal that was used in the control strategy (Reference, XMPC-CDE, XMPC-
OC) and were evaluated according to the grid signal level (labels). The electric energy
demand values are given in percentages. Regarding the CDE grid signal level (left column



Energies 2022, 15,1793

21 of 31

in each group), the high-level electricity demand (G(t)cpg = III) is the most reduced when
XMPC-CDE is implemented—by about 26%; similarly, the low-level electricity demand
(G(t)cpg =1) is greatly increased with XMPC-CDE—by about 21%. In terms of the day-
ahead price grid signal, XMPC-OC achieves the maximum reduction in electricity demand
at the high-level (G(t)oc = IlI)—by about 42%—while XMPC-CDE only reached a decrease
of about 16%. With respect to the changes in the operating costs and the CDE, both grid-
supportive signals show a similar overall tendency, again indicating that the electricity
price and CDE have a positive correlation with one another.

OG(t)coe=l B G(t)coe=I BG(t)coe=Il
OG(t)oc=l TOG(t)oc=I EG(t)oc=II

T R
o N
I )

2%

35%

Reference XMPC-CDE XMPC - OC
Type of model

Electricity demand in
kWh/(m?-a)

SO N A OO
1

Figure 15. Comparison of electricity load-shifting potential of XMPC with CDE and OC grid signals.

If the variability of the grid signal is considered its own during the control strategy
by adjusting the optimization boundary conditions accordingly (32), the reductions can
be determined without considering a heat pump. The electricity costs are thus reduced
by 25%.

5.3.2. Influence of the Tank Size

The size of the TES could affect the performance of the entire energy system, espe-
cially in terms of ADR operation [15]. Considering the baseline model, two scenarios are
examined, one with a 50% increase and another with a 50% decrease in volume. The results
of the simulations are listed in Table 5. Both PDH and the insufficient delivered energy are
comparable in these three variations. As the size of the TES increases, the annual thermal
energy consumption increases slightly due to the higher heat losses to the ambient area.
The electricity demand, which results from the heating demand and the SCOP of the heat
pump (40), declines as the storage size increases. This is due to the higher SCOP of the heat
generator when a larger tank size is deployed.

Table 5. Results of storage size variations.

. Insufficient
Size PDH Energy Qu Wy Cop CDE
(%) (%) (%) (kWh/(m?-a)) (kWh/(m?-a)) (EUR/(m2-a)) (kg/(m?-a))
-5 03 0.78 15.22 8.35 0.336 4.42

0 0.2 0.61 15.55 7.43 0.274 3.95

50 0.3 0.55 16.08 7.46 0.271 3.98

If the tank volume varies between —50% and +50%, then the annual operating costs
decline by about 24% and the CDE declines by 11%. This is due to the higher storage
capacity, which increases the shifted energy quantities during the ADR event. This is also
reflected in the electricity utilization breakdown according to the grid signal level (Table 6).
If the size of the TES is decreased by 50%, only 69% of the electricity consumption occurs in
a time interval with the low-level grid signal (G(t) = I), 28% in intervals with a middle-level
grid signal (G(t) = II), and 3% at peak hours (G(t) = III).



Energies 2022, 15,1793

22 of 31

Table 6. Electrical energy demand according to grid signal (electricity price).

Relative Electricity

Tank Size Gi) =1 G) =11 G(t) =111 Utilization in %
—50% 72% 27% 3% 82
Baseline 84% 15% 1% 73
50% 86% 13% 1% 73

The XMPC strategy maintains both PDH and the insufficient delivered energy below
1%, which proves that the thermal power as well as the total energy quantity required by the
HVAC system are guaranteed. The ADR potential increases significantly, and the operating
costs drop sharply as the TES volume changes from —50% to +50%. However, the larger
TES is more cost-intensive and the initial investment in the BES increases correspondingly.
Further economic analysis would be required in order to determine the optimal tank size
for each specific BES.

5.3.3. Influence of Dimension and Type of Heat Pumps

Since the standard [44] does not address heat pump power sizing in combination with
TES for flexible operation, it is interesting to observe how the nominal heat pump power
affects ADR operation. For the Reference Model, the nominal heat pump design is probably
slightly oversized. As the dimensions of heat pump power decrease, the lower limit of

the thermal power of the heat pump Qpp 1,in drops as well. Therefore, with a smaller heat
pump the auxiliary electrical heating would be switched on less frequently in order to cover
the relatively low heating demand on moderately or cool days. Simulations are carried
out with heat pumps with nominal power percentages of 75% and 60%. The results of the
Reference Model and XMPC with different heat pump dimensions are listed in Table 7.
The annual heating demand Qy for the Reference Model and XMPC remains the same,
although the dimensions of the heat generator vary. This is due to the fact that the heating
energy demand mainly depends on the size of the TES. The dimensions of the heat pump
have a greater influence on the SCOP and, consequently, the electrical energy demand and
operating costs, as well as the emissions.

Table 7. Simulation results for XMPC strategy with different heat pump dimensions.

Variations of Heat Nominal 75% of Nominal 60% of Nominal

Pump Dimension Dimension Dimension
Reference XMPC Reference XMPC Reference =~ XMPC

Qy (KWh/(m?-a)) 13.99 15.55 13.99 15.60 13.99 15.56

W (kWh/(m?2-a)) 10.19 7.43 9.43 7.61 9.01 7.99

CDE (kg/m2 -a) 5.40 3.95 5.00 4.08 4.79 4.30

Cop (EUR / m?-a) 0.51 0.27 0.47 0.28 0.45 0.30

SCOP 1.38 2.11 1.49 2.07 1.57 1.97

PDH (%) - 0.21 - 0.20 - 0.20

Insufficient
Energy (%) 0.61 - 0.57 - 0.66

The heat pump accounts for a larger share of the annual heat generation (Figure 16),
resulting in a higher SCOP—which increases from 1.4 to 1.6. For the XMPC, reducing the
dimensions of the heat pump decreases the SCOP because the charging ability of the heat
pump is lowered. Therefore, the XMPC strategy with reduced dimensions may not be
capable of making full use of the time durations with low-level grid signals in the same
way that nominal dimensions can. Thus, the auxiliary electrical heating coil is switched on
more frequently in the XMPC with reduced heat pump dimensions. This leads to a minor
reduction in the SCOP of the heat pump from 2.11 to 1.97.
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Figure 16. Influence of heat pump dimensions on the thermal energy generation breakdown.

The flexibility of the electrical energy for different sized heat pumps is illustrated in
Figure 17. Regarding absolute values, the XMPC with nominal heat pump dimensions
provides the highest flexibility.

B Ref-G(t)= | DRef-G(t)= I @Ref-G(t)=]|
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Figure 17. Influence of heat pump dimensions on flexibility potential.

Although the absolute values for electricity consumption for the different grid signal
levels differ in the Reference Model and XMPC, the composition of the electrical energy
remains almost the same for the XMPC strategy (around 81% for G(t) =1, 17% for G(t) =11,
and 2% for G(t) = III). The size of the tank volume has a greater impact on the distribution of
the electricity utilization than the dimensions of the heat pump, while both parameters can
affect the absolute electrical energy demand. The results of the studies refer to air-water
heat pumps, which represent the most commonly used type. If a brine-water (source
temperature of 10 °C) or water-water heat pump (source temperature of 12 °C) was
modelled following the same approach (Section 4.4) using corresponding test data [44],
the SCOP with the XMPC would increase to 2.84 and 3.10, respectively. With a brine—
water heat pump, 43% of emissions and 58% of the operating costs would be reduced;
with the water-water heat pump, the emissions and cost reductions would be 65% and
53%, respectively.

6. Conclusions

HVAC systems coupled with TES are considered to be a promising technology that
can be used to increase operational flexibility in the building sector. The TES deployment
increases the complexity of building energy systems and requires effective control strategies
to ensure both an appropriate temperature level without large additional energy demands
and a maximum available storage capacity during the time intervals in which there is an
electricity surplus in the grid.

Recent studies have applied exergy-based control to HVAC systems and have proven
its effectiveness. However, none of these studies conducted a transient exergy analysis as
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part of the MPC strategy that specifically addresses the application of stratified hot water
storage tanks and their performance. Therefore, in this study, a novel exergy-based control
(XMPC) framework was adopted to investigate the optimal heat generator scheduling
during ADR. Conventional energy-based control (EMPC) was used for comparison studies.
An office building equipped with AHU and a heat pump in combination with TES was
considered as the case study.

The results show that ADR operation can increase thermal energy demand by up to
16% (EMPC). This is because the TES requires more thermal energy to ensure that enough
energy or exergy is stored for load shifting at any given time. An annual exergy analysis of
the building’s heating supply indicated that, during colder months, energy degradation
in the TES is mainly caused by exergy destruction due to irreversibility, while in the mild
transition months, exergy loss dominates. With the XMPC, the annual exergy loss and
exergy destruction is reduced by about 42% and 24%, respectively, thereby increasing the
overall exergy efficiency by about 6%. The proposed MPC strategy demonstrates a high
load-shifting capability for both the EMPC and XMPC methods: more than 80% of the
energy consumption takes place during off-peak hours, when there is an electricity surplus
in the grid. In a typical daily analysis, the exergy-based control method demonstrated more
appropriate temperature stratification for all of the load characteristics and a greater overall
performance compared to the energy-based method. With comparable operational flexibil-
ity, the results reveal that the XMPC strategy reduces the annual electricity consumption
and operating costs as well as emissions by an additional 18%, 17%, and 13%, respectively,
compared to EMPC. Furthermore, XMPC provides a more adequate thermocline, allowing
for better storage capacity utilization during ADR operation. This was proven by the
stratification analysis on characteristic days as well as by a higher overall exergy efficiency
when using XMPC.

Sensitivity and stability analyses based on XMPC were carried out in order to study the
influence of the grid-supportive signal, tank volume, and heat pump design. By adopting
the CDE factor as a grid-supportive signal, the time intervals in the early morning hours
before user occupancy are less suitable for storage charging due to the differences in the
CDE characteristics. The operating costs and CDE were reduced when using both grid-
supportive signals, proving that the XMPC method is capable of coping with different
grid signal characteristics. The tank size plays a major role in the load-shifting potential.
On the one hand, a larger tank size increases the load shifting potential and reduces the
operating costs: if the tank size varies from —50% to +50%, then the annual operating costs
decrease by about 24% and the CDE declines by 11%. On the other hand, it increases the
thermal losses and the capital costs. Optimal tank dimensions can only be determined
by conducting an overall economic analysis for individual cases. The analysis of the heat
pump dimensions showed that the appropriate sizing and type of heat generator for ADR
operation is quite important when maximizing the efficiency of the generator. With heat
pump size reduced to 60% of nominal, the percent load shift potential is barely affected
compared to the variation of the storage tank size; the efficiency (SCOP), however, decreases
by 7% and thus the electric energy consumption increases.

In future research, it would also be interesting to investigate the performance of
the proposed methodology for different HVAC systems and heating load characteristics.
In addition to the building’s heating system, it would also be interesting to investigate the
flexibility potential during cooling since cooling has become more important in Europe in
recent years. Basically, the proposed methodology would work the same way, but, due to
temperature stratification, the changing position of the tank for exergy supply and exergy
recovery must be considered. The potential for CDE reduction could be larger during
cooling due to the higher variance that is caused by the larger solar power input. In the
future, tests on a real building or as part of a hardware-in-the-loop (HiL) simulation would
be beneficial in order to validate the results with measurements.
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Nomenclature

Ay The surface area of the TES of the layer i (m?)

Cpw Heat capacity of the water (J/(kg-K))

Cql Day-ahead costs for electricity from the grid (EUR /kWh)
G Heat capacity of the layer i of the TES (W /K)

CDE Carbon dioxide emissions (kgCO;)

CDEg Carbon dioxide emission factor for electricity generation (kgCO,/kWh)
cor Coefficient of performance (-)

COPc COP of Carnot cycle (-)

COPy Full-load efficiency (-)

DOF Defrost factor (-)

E(S) Information entropy (-)

Eg Energy demand forecast of the HVAC for each day (Wh)

EH rest Energy demand forecast of the HVAC system for rest of the day (Wh)
Ein Energy supplied to the TES (Wh)

Eloss Energy loss of the TES (Wh)

Erec Energy recovered from the TES and utilized by the HVAC system (Wh)
Est max Energy storage capacity of the TES (Wh)

Est Energy stored in the TES at time t (Wh)

g(t) Continuous grid supportive signal (-)

Gy Lowest discrete grid signal within a day (-)

G(t) Discrete grid supportive signal, discrete grid signal (-)

G(t)cpg  Discrete grid supportive signal based on carbon dioxide emission factor (-)
G(t)oc  Discrete grid supportive signal based on electricity price (-)

H Total height of the TES (m)

H; Heating requirement signal (-)

Mg Total mass of the water in the TES (kg)

Mges Design mass flow rate of the hydraulic system (kg/s)

Mgen Water mass flow rate of the loop between heat generator and TES (kg/s)
n'lgen,n Design mass flow rate of the heat generator (kg/s)

Mgt Water mass flow rate of the loop between TES and HVAC system (kg/s)
N Number of modeled layers in the TES (-)

ocC Operating costs (EUR)

P; Probability of each data group (-)

Pe Electrical power of the building energy system (W)

Pel gen Electricity power of the heat generator (kW)
Pelhyd Electricity power of the hydraulic system (kW)
Pe 1p Electricity power of the heat pump (kW)

Pep Electrical power of the circulation pump (W)
PDH Percentage of dissatisfied hour (%)
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PLF
Qn
Qup
Qur
Qgen
th,i
Qu
QH,Pred
Qur
Qnp
Qini
Qmix,i
Qrec,i
qur,i
Qou
SCOP
SF

U

Vtotal

Vs

Wel,up

Wel,gen

Wel

N

X

Greek symbols
o

p

n

np
H

p

T

¥
Onot
19Au
Beold

U; AHU
19r,gen
l9r,st

Us AHU
ﬁs,gen

ﬂs,st

%o

Partial load factor (-)

Heating energy demand (kWh)

Heating energy demand of the heat pump (kWh)

Heating energy demand of the auxiliary electrical heating (kWh)

Thermal power of the heat generator (kW)

Heat flux due to heat conduction of the adjacent layer i (W)

Heating power of the HVAC system (kW)

Predicted heating power (kW)

Thermal power of the auxiliary electrical heating (kW)

Thermal power of the heat pump (kW)

Heat flux supplied to the layer i in the TES (W)

Heat flux due to mixing caused by the flow momentum of the layer i (W)
Heat flux recovered from the layer i in the TES (W)

Heat flux due to losses of the layer i from the TES to the ambient (W)
Nominal heating power of the building (kW)

Seasonal coefficient of performance (-)

Safety factor (-)

Heat transfer coefficient to the ambient of the TES (W /(m?-K))
Volume flow rate of the hydraulic pump (kg/s)

Volume of the TES (m?)

Electricity energy demand of the heat pump (Wh)

Electricity energy demand of the heat generator (Wh)

Electricity energy demand of the building energy system (Wh)

Initial charging schedule (-)

Heat pump coefficient (-)

Heat pump coefficient (-)

Overall energy efficiency (%)

Efficiency of the circulation pump (-)

Efficiency of the auxiliary electrical heating (-)

Density of the water (kg/m?)

Time interval (h)

Overall exergy efficiency (%)

The temperature of the hot heat reservoir of a Carnot machine (K)
Outside ambient temperature (K)

The temperature of the of the cold heat reservoir a Carnot machine (K)
Water temperature of the layer i in the TES (K)

Return water temperature of the HVAC system (K)

Return water temperature to the heat generator (K)

Return water temperature to the storage (K)

Supply water temperature of the HVAC system (K)

Supply water temperature of the heat generator (K)

Supply water temperature of the storage (K)

Ambient temperature of the TES (K)
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Apyy Pressure losses in the hydraulic system (Pa)
AE Change of stored energy quantity in the TES during an observed period (Wh)
= Change of exergy quantity in the TES during an observed period (Wh)
AS Range of the continuous grid supportive signal within a day (-)
AB Temperature spread of the HVAC system under nominal conditions (K)
e(t) Energy/exergy-based transient state of charge of the TES
Edes Exergy destruction due to irreversibility (Wh)
H Exergy demand forecast of the HVAC system for each day (Wh)

H rest Exergy demand forecast of the HVAC system for rest of the day (Wh)
Exergy supplied to the TES (Wh)

Exergy loss of the TES (Wh)

rec Exergy recovered from the TES and utilized by the HVAC system (Wh)
Exergy storage capacity of the TES (Wh)

5

—
o}
@
©»

[11- [1- [0 [11 [11 [0 [11 [ [o0 [1]

st,max
st Exergy stored in the TES at time t (Wh)
gen Exergy thermal power of the heat generator (W)
H Exergy thermal power forecast of the HVAC system (W)
Acronyms
ADR Active Demand Response
AHU Air Handling Unit
BES Building Energy System
EMPC Energy-based Model Predictive Control
HiL Hardware-in-the-Loop
HVAC Heating Ventilation and Air-Conditioning
ID3 Iterative Dichotomiser 3
KPI Key Performance Indicator
Micro-CSP  Micro-scale Concentrated Solar Power
MILP Mixed-Integer Linear Programming
MPC Model Predictive Control
STES Seasonal Thermal Energy Storage
TES Thermal Energy Storage
XMPC Exergy-based Model Predictive Control
Appendix A

Table Al. Standard values for electrically driven air-water heat pump in bivalent operation [44].

Air temperature -7°C 2°C 7°C
Supply temperature 35°C
Relative thermal power 0.69 0.85 1.0
cor 2.8 3.2 3.8
Supply temperature 45°C
Relative thermal power 0.66 0.82 0.97
COop 2.3 2.7 3.2
Supply temperature 55°C
Relative thermal power 0.64 0.80 0.95

cor 1.9 21 2.6




Energies 2022, 15,1793 28 of 31

Table A2. Operation data of a case-appropriate heat pump calculated according to norm [44].

Air temperature -7°C 2°C 7°C
Supply temperature 35°C
Maximal thermal power in kW 26.07 34.28 38.84
COPhp,max 2.8 3.2 3.8
Thermal power of test points in kW 23.46 28.90 34.00
COPrpyp ¢ 2.8 3.2 3.8
Minimal thermal power in kW 521 6.86 7.77
COPpp,min 2.6 3.0 3.6
Supply temperature 45°C
Maximal thermal power in kW 24.93 32.79 37.15
COPhp,max 2.3 2.7 3.2
Thermal power of test points in kW 2244 27.88 32.98
COPrpyp ¢ 2.3 2.7 3.2
Minimal thermal power in kW 4.99 6.56 7.43
COPhp,min 2.1 25 3.0
Supply temperature 55°C
Maximal thermal power in kW 24.18 31.79 36.02
COPhp,max 19 2.1 2.6
Thermal power of test points in kW 21.76 27.20 32.30
COPrpyp ¢ 19 2.1 2.6
Minimal thermal power in kW 4.84 6.36 7.20
COPhp,min 1.7 19 2.4

Table A3. Conducted CDE equivalents [58].

Energy Source CDE in kg/kWh
Brown coal 1.118
Hard coal 0.821
Natural gas 0.367
Other conventional fuels (oil) 1.0

Appendix B

The mathematical model of the Coefficient of Performance (COP) is detailed in this
section. As for the full-load efficiency, which represents the COP of the heat pump working
with nominal capacity, the general thermodynamic approach is based on correlations
between the real refrigeration cycle and a Carnot refrigeration cycle (ideal cycle) operating
at the same temperatures. Here, a linear relationship is assumed on the basis of coefficients
o1, 0p, which are provided by test data (Appendix A) [43].

COPq = o1-COPc + op (A1)

19s,gen

Ohot
COP - 0 ~
¢ Ohot — Dcold 19s,gen — Bau
In this case study, x1=0.3291 and x= 0.251 were used. The part load factor (PLF) uses
the ratio of nominal to actual power, which represents part load ratio (PLR) in combination
with coefficient 3 (derived from test data in Appendix A) [43].

(A2)

PLR

PLF = ——«——
31-PLR + B3,

(A3)

In the case study, 3; and 3, were 0.9756 and 0.0214, respectively. DOF is represented
by the test data
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Appendix C

The annual COP distributions under different strategies are illustrated in the box
diagram (Figure A1). The median of COP with XMPC is the highest and thus proves that
the heat pump operates more efficiently.

6 -
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[ ]COP EMPC
[_]COP XMPC
51 |
—8—42
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(&)
3
2
1

Reference EMPC XMPC

Figure A1l. Box diagram for COP of the heat pump in annual analysis.
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