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Abstract: Load forecasting (LF) is an essential factor in power system management. LF helps the
utility maximize the utilization of power-generating plants and schedule them both reliably and
economically. In this paper, a novel and hybrid forecasting method is proposed, combining a long
short-term memory network (LSTM) and neural prophet (NP) through an artificial neural network.
The paper aims to predict electric load for different time horizons with improved accuracy as well
as consistency. The proposed model uses historical load data, weather data, and statistical features
obtained from the historical data. Multiple case studies have been conducted with two different
real-time data sets on three different types of load forecasting. The hybrid model is later compared
with a few established methods of load forecasting found in the literature with different performance
metrics: mean average percentage error (MAPE), root mean square error (RMSE), sum of square
error (SSE), and regression coefficient (R). Moreover, a guideline with various attributes is provided
for different types of load forecasting considering the applications of the proposed model. The
results and comparisons from our test cases showed that the proposed hybrid model improved the
forecasting accuracy for three different types of load forecasting over other forecasting techniques.

Keywords: artificial intelligence; artificial neural network; load forecasting; long short-term memory;
neural prophet; time series forecasting

1. Introduction

Forecasting is the prediction of the behavior of elements that are intermittent in
nature [1] based on historical data or from other parameters related to the elements. Fore-
casting is an important tool for any industry as it helps to plan ahead and choose the best
possible solution [2]. Researchers use different artificial intelligence (AI)-based techniques
for different types of forecasting. AI techniques are based on the development of computa-
tional techniques and algorithms that automatically improve from experience and learn
from historical data. Some AI-based forecasting models include machine learning, deep
learning, neural network, and support vector machines [3]. These methods are also com-
bined with lagged and additional regressors (i.e., weather information, statistical features,
demographic data) to improve their accuracy. Although these AI models are more complex
than traditional forecasting models, they provide more accurate predictions for different
types of forecasting [3]. Nevertheless, not all of them are suitable for different types of
forecasting (i.e., some may provide better solutions for a short prediction period, some
may require a larger data set, some may require more time, etc). Researchers have also
tried to combine several of these models with classical models to improve the accuracy of
forecasting, as well as its interpretability [4].

Electric load forecasting or load forecasting (LF) is an estimation of load in advance to
predict the behavior of load consumption in an area. In the power industry, load forecasting
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has already become a vital tool. LF has also become an essential part of modern grids due to
the high utilization of renewable energy resources such as wind and solar [5]. Starting from
generation, through to end-user consumption, along with transmission and distribution,
all the companies in these sectors need load forecasting to plan their scheduling and to
maintain the system’s reliability [6]. Moreover, LF has now become more vital with the
inclusion of smart grids, or smart energy management systems, as they require accurate
prediction to ensure optimum grid performance. LF depends on several components. Major
factors that affect LF are [7]:

• Demographic factors: population, income, type of industry, and so on;
• Time factors: seasonal effects, day of the week, hour of the day, holidays, and so on;
• Weather factors: temperature, dew point, humidity, wind speed, cloud cover, and

so on;
• Pricing factors: real-time electricity pricing, fuel pricing.

These factors impact differently on LF depending on the types of forecasting. LF can
generally be classified into three categories [8]: (a) short-term load forecasting, (b) medium-
term load forecasting, and (c) long-term load forecasting. Short-term load forecasting
(STLF) predicts the load in the range of minutes to weeks ahead [9]. STLF is essential to
perform daily operations, such as load flow estimation (to prevent overloading and take
necessary corrective actions), scheduling the generating units economically, and so on.
Medium-term load forecasting (MTLF) has a time horizon over weeks to months. MTLF
is helpful for planning maintenance of the generating units [10], predicting the necessary
power required to purchase from or sell to the neighboring networks, and scheduling
energy storage facilities [11]. Finally, long-term load forecasting (LTLF) has a time horizon
over years to decades [9]. LTLF is vital to make decisions regarding increasing the number
of generating units, estimating the fuel supply required for the future, and so on.

Over the decades, LF has been performed using many different methods with rea-
sonable prediction accuracy. Among all the techniques, the regression model is one of the
simpler and more traditional used for load forecasting [12,13]. Different types of regres-
sion analysis have been used for load forecasting, such as linear regression [14], multiple
regression [15], exponential regression [16], and so on. The authors used an incremental re-
gression tree to predict the load in [17] using historical data, and support vector regression
was used to predict load forecasting [18]. The authors in [19] used deep residual networks
to predict the load for the short term only but did not investigate the performance of the
model for medium- or long-term forecasting. Most of these are only used for short-term
load forecasting as they are not suitable for long-term load forecasting. Another popular
way to predict different kinds of load forecasting is using artificial neural networks [20–22].
In [10], the authors used an improved artificial neural network (ANN) technique to forecast
short-term load using 10-year historical data for New England and showed the proposed
model performed better than the regular ANN. However, the prediction was only per-
formed for STLF, while performance on either MTLF or LTLF of the model was not shown
in the article. Researchers have recently been using deep neural networks (DNN) for load
forecasting [7,23]. For example, DNN was used to predict substation-based hourly load
forecast in [24], and residential hourly load forecast in [25]. Long short-term memory
was used in [26–28] to predict short-term load forecasting for a small region due to its
recurrent nature. Most of the techniques that have been implemented to predict the load
are focused on short-term load forecasting. Therefore, more research is needed on medium-
and long-term load forecasting to improve the accuracy [29]. The aim of this paper is to
predict load for three different types of forecasts with different prediction periods.

As technologies are evolving, additional new parameters such as integration of re-
newable resources and weather-related events are affecting prediction accuracy. In [16],
the authors showed that the mean average percentage error for predicting MTLF was
approximately 10 using different regression techniques. However, this number is on the
higher side of the expected outcomes for this kind of forecasting [11]. Chen et al. used a
support vector machine to solve a daily maximum peak load forecasting problem where
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the prediction period was one month [30]. The paper did not show the effects of adding
weather data as input features on the forecasting results. The authors used decision trees
to perform a long-term forecast in [31], but the error percentage of the model was on the
higher side. Short-term correlation data were extracted from each of these models, and later,
an iterative algorithm was designed for forecasting long-term electric load consumption
by decomposing the forecasting problem into multiple simple linear regression models
in [32]. Researchers have also been trying to use enhanced models and combine multiple
models for power systems applications [33]. In [11], the authors tested their enhanced
deep network model for medium-term load forecasting, resulting in improved accuracy
compared to the traditional model. However, these deep networks tend to take a lot of
time for training, which is true for this case as well. Authors in [34–37] combined different
classical models and/or different AI-based models to predict the load of a power system
and showed that the hybrid models improve the accuracy of the prediction.

From the discussion above, it can be stated that load forecasting is an important topic
and many methods have been proposed to solve the forecasting problem. However, with the
rapid increase of time series data and machine learning techniques, developing explainable
forecasting techniques still remains a challenging task in the decision-making process. That
is why hybrid solutions are needed to decrease the gap between classical interpretable
techniques and machine learning models. Moreover, most of the load forecasting methods
discussed above are focused on predicting load for a short time horizon, where higher
accuracy can be found quite often. However, it is harder to get high accuracy for long-term
forecast models. In this paper, a novel hybrid solution is proposed by combining neural
prophet (NP) with long short-term memory (LSTM) network through an ANN that can
perform prediction with better accuracy than the individual ones. Selection of LSTM for the
hybrid model is due to LSTM’s recurrent nature and the fact that short-term power demand
is closely related to its previous time step values. NP is one of the newest entry in the field
of time series forecasting, and its application in electric load forecasting is yet to be explored.
NP can be more interpretable than the traditional AI-based models [4]. Thus, this paper
adds these interpretable elements to the solution. The paper also focuses on both short-term
and long-term load forecasting. Multiple real-world tests of the model are performed using
a real data set from the National Renewable Energy Laboratory (NREL), USA, and the
Electric Reliability Council of Texas (ERCOT) for different kinds of load forecasting.

2. Methodology of the Proposed Method

The hybrid model is a combination of LSTM and NP, and results from these models are
then fed into an ANN to get the forecasting. Therefore, the hybrid model consists of three
different models: ANN, LSTM, and NP. The basics of each of these models are presented
here, and later, the structure of our proposed hybrid model is discussed.

2.1. Artificial Neural Network (ANN)

An ANN [38] is a mathematical model that mimics the function of the brain and is
useful for pattern recognition, optimization, and prediction. Figure 1 represents a basic
ANN model. An ANN model can be implemented with different algorithms. For the
hybrid model, backpropagation is used to implement the ANN model, as it is empirically
observed that this method provides higher accuracy for the data sets. In the figure, wij is
the weight vector that links between the input and the hidden layer, and wjk is the weight
vector that connects between the hidden layer and the output layer. Steps required for the
implementation of the ANN with backpropagation using the Levenberg–Marquardt (LM)
algorithm are provided below.

Step 1: Initialization of the weights and input parameters;
Step 2: Training and propagating the data set using the network;
Step 3: Minimization of the error with the comparison between the actual and predicted

results;
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Step 4: Updating the weights using the Levenberg–Marquardt algorithm and repeating this
process for each pattern;

Step 5: Continuation of the process until it matches the tolerance level.

Figure 1. Basic concepts of an artificial neural network model.

Weights can be updated with various algorithms. The LM algorithm is used for the
hybrid model because it requires less time to train the model even though it requires
higher memory. Therefore, the larger the data sets are, the higher the requirements for
memory will be. However, training time is an important factor for STLF. The hybrid
model consists of three models, and among them, the LSTM model is computationally
expensive. As a result, the training time for ANN becomes a vital factor for the hybrid
model. For this reason, the LM algorithm is chosen for the model. However, the Bayesian
regularization algorithm can be used for LTLF, as training time is not a concern for this
type of load forecasting. The performance index for the Levenberg–Marquardt algorithm
can be expressed by Equation (1) [39].

F(w) =
p

∑
p=1

[
k

∑
k=1

(Pk − Ak)
2] (1)

where w = [w1, w2, ...., wn]T = weights of the network, k = number of outputs, n = number
of the weights, p = number of patterns, Pk = kth predicted value, and Ak = kth actual value.
The update rule for the weights is provided by Equations (2) and (3).

∆w = (JT · J + µI)−1 · JT · e (2)

J =


∂e1(w)

∂w1
. . . ∂e1(w)

∂wn
...

. . .
...

∂eN(w)
∂w1

. . . ∂eN(w)
∂wn

 (3)

where J = Jacobian matrix that includes derivatives of each error to each weight, µ = Levenberg’s
damping factor, and e = error vector. If µ is very large, the approximated gradient descent is
used, and if µ is small, the Gauss–Newton method is used.

2.2. Long Short-Term Memory (LSTM)

LSTM is one kind of recurrent neural network (RNN) model, which can solve the short-
term dependency problem by learning the long-term dependencies of the parameters [40].
The basic structure for the LSTM model consists of four layers, which are represented in
Figure 2. The four critical layers of LSTM are forget gate layer, input gate layer, memory
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cell layer, and output gate layer. The equations that describe the gate layer are provided in
Equations (4)–(9).

ft = σ(ht−1W f + xtU f ) (4)

it = σ(ht−1Wi + xtU f ) (5)

Ĉt = tanh(ht−1Wg + xtUg) (6)

Ct = σ( ft ∗ Ct−1 + it ∗ Ĉt) (7)

ot = σ(ht−1W0 + xtU0) (8)

ht = ot ∗ tanh(Ct) (9)

where x is input signal, f is forget layer cell, h is hidden layer, Ĉ is candidate hidden state,
C is the unit’s internal memory, ot is the output, U is the weight matrix that connects the
input layer to the hidden layer, and W is the connection between the previous and current
hidden layer.

Figure 2. The basic structure of LSTM model.

2.3. Prophet and Neural Prophet (NP)

Prophet, also known as Fbprophet, is a decomposable time series forecasting model
developed by Facebook’s Core Data Science Team [41]. NP consists of different components
such as trend, seasonality, auto-regression, additional regressors, and so on. Prophet
has three main model components, which are trend, seasonality, and holidays. These
components are combined with Equation (10).

y(t) = g(t) + s(t) + h(t) + e(t) (10)

Here,

• g(t) is a trend-modeling function that can be specified as a linear function or a logistic
function;

• s(t) represents a seasonality function that can be daily, weekly, and/or yearly, which
is handled with Fourier terms;

• h(t) is a holiday function that considers the effect of holidays, which occur irregularly;
• e(t) represents the error changes that are not fitted by the model.

Neural prophet (NP) [4] is a successor of FbProphet that has not been introduced in the
field of power load forecasting. The fundamental difference between these two methods
is that NP integrates deep learning terms to the equations which are fitted on lagged
data. The hyperparameters of this model can also be tuned automatically for optimum
performance. Otherwise, NP has the same basic design flow and forecasting process, with
similar model components. Figure 3 represents forecasting design flow in FbProphet and
neural prophet.

In the forecasting process, the forecasting of time series data is initially produced using
different parameters and specifications that have direct human interpretation. After that,
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the forecasting performance is evaluated in the model, and if any problem arises (i.e., poor
performance), the model will notify a human analyst to intervene. The analyst can then
adjust the model properly based on its feedback.

Figure 3. Forecasting process in FbProphet and neural prophet.

2.4. Combining LSTM with Neural Prophet through ANN

In the hybrid model, output from the LSTM and the neural prophet are combined
through an artificial neural network. The block diagram of the proposed hybrid model
can be found in Figure 4. First, both NP and LSTM are used separately to produce output
features fN , and fL, respectively, with time series data. Later, these outputs are fed into the
ANN model to get the final prediction. However, the ANN model takes temperature as
an additional regressor to improve the accuracy of our hybrid model. The ANN model
also considers other features along with them (i.e., time series data, statistical parameters
from historical load) to produce the forecasted load. Other weather parameters are also
considered with temperature, but temperature is found to be the most correlated parameter
among all the different weather-related features.

Figure 4. Block diagram of proposed hybrid model.

In order to make sure the accuracy is not hampered due to one of the methods’
shortcomings, a safety net is added to the hybrid model. If the performance of one of the
individual methods in terms of accuracy drops significantly below the other one, then the
lower-performing model will be excluded from the model. The threshold for this action is
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selected to be a 2% mean average percentage error. The selection of this specific number
was decided based on a trial-and-error method by performing tests on different data sets.

3. Training of the Model

In order to train and test the model, a data set from a city in Florida is initially used.
For this, the model is trained with hourly load demand data sets from 2016–2019 for the
city, which are collected from [42], and weather information, taken from [43]. Temperature
data is taken at different city locations, and the calculated average is used for the training
and testing phase. Three years of load demand, from 2016 to 2018, are used for the training
phase, and the data set is split into 75:25 for training and validation. The model is tested
using the data set of year 2019. The variation of load for 2016, 2017, and 2018 are provided
in Figure 5.

Figure 5. Hourly load variation for the city of Tallahassee, Florida for different years.

From the figure, it can be seen that the load consumption over the years is pretty
similar, with slight variations. However, there are power dips for very short periods in the
month of September in 2016 and 2017 and in the month of October in 2018. All these drops
are caused by hurricanes, as power lines are destroyed by them. There are some power
spikes that can be found in the month of January in 2016, 2017, and 2018 due to sudden
drop of temperature during those periods. There is also a power spike in the month of July
in 2018, along with some other spikes, which could be because of festivals, the addition of
huge loads, weather-related events, and so on. Next, the 15-year electrical load data set for
the state of Texas collected from [44] is used to train and test the model. The three kinds of
time horizons of load forecasting used to test the model are mentioned below.

3.1. Feature Selection

1. Hour Ahead Load Forecasting: For this case, the objective is to forecast the load every
day one hour ahead of time. Two prediction periods are used here: one for winter,
and one for summer. The training is performed using different statistical and weather
features, and it is empirically observed that the selection of the variables mentioned
below provides better results [45]. Moreover, there is a close relationship between
temperature and power load.

(a) Year
(b) Month
(c) Hour of the day
(d) Day of the week
(e) Holidays
(f) One-hour prior load
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(g) Average load
(h) Temperature

2. Day Ahead Load Forecasting: The objective for this type of forecasting is to forecast
electrical load consumption one day ahead. Therefore, the one-hour prior load cannot
be used as an input variable for prediction. That is why the previous 24 h average load
and 1-day prior load are used as input features for this type of forecasting. Other input
variables used for this case are similar to the previous one. However, the temperature
needs to be predicted a day ahead as well. According to [46], the error percentage
for day ahead weather temperature is less than 1.5. Therefore, the error in predicted
temperature will not have any significant impact on the results. Two prediction
periods are used for this case as well, winter and summer.

3. Year Ahead Load Forecasting: The objective of this forecasting is to estimate daily peak
load consumption a year ahead. The error percentage is relatively high for predicting
weather temperature a year ahead, which will affect our results significantly. Initially,
predicted temperature is added as an input feature to predict the load. Later, this
forecasting is performed only based on the historical load data set, ignoring the
temperature. The rest of the input variables used for this case are provided in the
list below.

(a) Year
(b) Month
(c) Day of the week
(d) Holidays
(e) Temperature

Four performance metrics are used to evaluate the test result. They are the mean
average percentage error (MAPE), the root mean square error (RMSE), the sum of square
error (SSE), and the coefficient of determination (R2). Equations (11)–(14) are used for
calculating the performance parameters, where N is the number of data points, At is the
actual value, and Ft is the forecasted value.

MAPE =
1
n

n

∑
t=1

∣∣∣At − Ft

At

∣∣∣ (11)

SSE =
N

∑
t=1

(At − Ft)
2 (12)

RMSE =

√
∑N

t=1(At − Ft)2

N
(13)

R2 = 1 − sum of squared residuals
total sum of squares

(14)

3.2. Hyperparameter Tuning

With the three years of training data set, different models are trained. The proposed
hybrid model is compared with regression tree (RT), ANN, LSTM, and NP. The number of
hidden units for ANN is optimized based on the error percentage. The training is done
multiple times with different numbers of hidden units, and the number of hidden units
is chosen from the best solution. The momentum of the ANN model is set to 0.9. For the
case of LSTM model, if the hidden unit’s number is increased, the performance improves,
but it also takes more time to train the model. At a certain point, the performance does not
improve significantly; rather, it becomes computationally expensive. Therefore, the number
of hidden units is chosen to be 200 to train the LSTM model to get the best possible outcome
considering both situations. For the case of the NP model, the number of hidden layers
is chosen to be 2, as the model gives good results with this number. Other important
hyperparameters used for the hybrid model are provided in Table 1. Optimized parameters
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of the table are dissimilar for different data sets. The same hyperparameters are also used
for testing each model individually. In the case of RT, the performance depends on the size
of the leaf node. The leaf size of the RT model is optimized with an optimization algorithm
where the objective is to minimize the percentage of error for different cases while changing
the number of leaf sizes.

Table 1. Hyperparameters used for different AI models.

Hyperparameter ANN LSTM NP

Maximum number of epochs 1000 150 100
Number of hidden units optimized 200 160 (each layer)

Learning rate 0.01 0.005 optimized

4. Testing, Results, and Comparisons
4.1. Case I: Hour Ahead Load Forecasting

After training the models, the hour ahead load forecasting has been performed for
different times of the year in 2019. All the training and testing have been performed using
the same configured laptop. The performances of different techniques for load forecast for
a city in Florida are shown in Figures 6–9 for the first seven days of January 2019. From the
results, it can be clearly seen that the proposed hybrid model performs better than all
other models.

Figure 6. Hour ahead load forecast using RT for the first 7 days of January 2019.

Figure 7. Hour ahead load forecast using ANN for the first 7 days of January 2019.
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Figure 8. Hour ahead load forecast using only NP for the first 7 days of January 2019.

Figure 9. Hour ahead load forecast using Hybrid model for the first 7 days of January 2019.

The model is tested for the summer season as well. Figure 10 shows the performance
of the different techniques along with the hybrid model during the summer season for
a city in Florida. The result is consistent with the previous one, as the proposed hybrid
model outperforms other models in this paper. However, the LSTM model is the one that
performs closest to the hybrid model. In order to check the performance of the model,
a different data set from northern Texas during the winter season is also used. In all three
cases, the proposed hybrid model improves the forecasting accuracy compared to the
models if applied separately.

A detailed comparison of hour ahead load forecasting with different data sets with the
three performance metrics can be found in Table 2. From the table, it can be seen that the
hybrid model has the lowest RMSE, and its regression coefficient is the closest to 1 compared
to the other models. Later, hour ahead LF was performed for different years on the Florida
data set to check the consistency of the hybrid model’s performance. From Table 3, it can be
seen that the hybrid model outperforms the other models during both the summer and the
winter periods. Comparing the hybrid model to its closest-performing model, the hybrid
model reduces the error during winter by 0.33%, 1.5%, 0%, 5.4%, and 6.4% for the year
2020, 2019, 2018, 2017, and 2016 respectively. The hybrid model reduces the error during
summer by 1.6%, 5.4%, 2.5%, 3.7%, and 8.6% for the year 2020, 2019, 2018, 2017, and 2016,
respectively. Therefore, the average improvement of accuracy in forecasting by the hybrid
model is almost 3.5% higher than its closest-performing model for this type of forecasting.
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Figure 10. Performance of the hybrid model on hour ahead load forecast during summer for the city
of Tallahassee, Florida.

Table 2. Performance metrics for hour ahead load forecast using different AI techniques for the
year 2019.

Prediction Period AI Model MAPE RMSE SSE R

Winter
(City in
Florida)

RT 2.0988 7.4814 9403 0.9771

ANN 1.9910 6.5222 7146 0.9826

LSTM 1.5824 5.4503 4990 0.9920

NP 1.8974 6.418 6920 0.9832

Hybrid 1.5374 4.9178 4063 0.9934

Summer
(City in
Florida)

RT 1.8476 10.8027 19602 0.9921

ANN 2.0529 11.5953 18858 0.9909

LSTM 1.7570 10.0761 17056 0.9931

NP 1.8968 11.0450 20294 0.9918

Hybrid 1.6774 9.9178 16524 0.9934

Winter
(Northern
Texas)

RT 2.0857 9.8544 16314 0.9912

ANN 2.1510 9.7729 16045 0.9914

LSTM 1.6643 7.8970 10476 0.9944

NP 2.0072 9.4027 14853 0.9920

Hybrid 1.6601 7.8212 10276 0.9949

Table 3. MAPE for hour ahead load forecasting for different years for the city of Tallahassee, Florida.

Prediction Period AI Model
MAPE

2020 2019 2018 2017 2016

Winter

RT 2.7089 2.0988 2.9871 1.9405 1.7513

ANN 2.3073 1.9910 2.7636 2.6971 2.3275

LSTM 1.5073 1.2824 1.5373 1.5495 1.6573

NP 2.0654 1.8974 2.4776 2.5750 2.0905

Hybrid 1.5023 1.2660 1.5373 1.4753 1.5543
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Table 3. Cont.

Prediction Period AI Model
MAPE

2020 2019 2018 2017 2016

Summer

RT 1.9845 1.8476 1.6299 1.7982 1.7806

ANN 1.9645 2.0529 1.8946 2.1040 2.0769

LSTM 1.2675 1.7570 1.6026 1.6803 1.7545

NP 1.7745 1.8968 1.9361 2.0735 2.0426

Hybrid 1.2440 1.6643 1.5678 1.6234 1.6123

4.2. Case II: Day Ahead Load Forecasting

In this case, the objective is to predict a day ahead electric load for both seasons with
different data sets. The hybrid model performs the best for the day ahead LF, which can be
seen in Figure 11. The error percentage is higher in this case than the earlier one, which is
expected due to an increase in the forecasting horizon. From Figure 11, it can be seen that
the error mainly occurs on the maximum or minimum point. These peak points are harder
to predict accurately because the conditions for daily peak load are not constant. They can
vary due to the demography of the place, industrial factors, sudden changes in weather,
and so on. If these events can be predicted or known quite early, the error percentage can
be much less. A detailed comparison of the other AI techniques’ performance with the
hybrid model using different data sets can be found in Table 4. However, comparing the
model that performs closest to the hybrid model, the hybrid model improves the accuracy
by 3.8% for the Florida data set during the winter season, 8.1% during the summer season,
and 16.1% for the northern Texas data set during the winter season. The hybrid model has
also performed better in all four performance metrics.

Table 4. Performance metrics for day ahead load forecast using different AI techniques for the
year 2019.

Prediction Period AI Model MAPE RMSE SSE R

Winter
(City in
Florida)

RT 7.7461 27.7444 129314 0.6143

ANN 5.936 21.7488 79459 0.7863

LSTM 4.9634 16.7352 47050 0.8808

NP 5.6656 19.8259 66035 0.8259

Hybrid 4.7836 16.2359 44286 0.8874

Summer
(City in
Florida)

RT 6.2880 31.1014 162501 0.9327

ANN 6.7183 31.3832 165461 0.9316

LSTM 5.8279 29.1746 142988 0.9411

NP 6.4596 30.5087 156363 0.9357

Hybrid 5.3932 26.0293 113821 0.9534

Winter
(Northern
Texas)

RT 5.3679 22.2471 83148 0.9544

ANN 5.3581 22.1956 82767 0.9546

LSTM 5.1791 22.5298 85269 0.9532

NP 5.1034 22.3825 84160 0.9542

Hybrid 4.3951 19.9222 66676 0.9636
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Figure 11. Day ahead load forecast for the first 7 days of January 2019 for the city of Tallahas-
see, Florida.

In order to test the impact of other weather parameters on load forecasting, two addi-
tional input signals, wind speed and relative humidity, are introduced to our model. Now,
wind speed is fed into the artificial neural network instead of temperature as one of the
inputs. Adding wind speed as one of the features does not improve the accuracy; rather,
it increases the error percentage to 6.3324 from 5.39 during summer. The experiment is
also performed with relative humidity, resulting in MAPE of 6.0476 for the city of Florida
data set. Therefore, it is evident that the temperature has a significant positive effect on
load forecasting results compared to the other weather parameters. Later, forecasting is
performed while considering temperature along with wind speed and relative humidity as
input features. The performance parameters do not show any improvement over the model
where only the temperature is fed into the neural network. Therefore, the hybrid model
only uses temperature instead of any other weather parameters to produce the prediction.
As a result, the number of measurement features is reduced. Day ahead LF has also been
performed for different years on the Florida data set to check the consistency of the model
for this type of forecasting. From Table 5, it can be seen that the hybrid model consistently
outperforms individual AI techniques in terms of our performance metrics. Comparing the
hybrid model to its closest-performing model, the hybrid model reduces the error during
winter by 4%, 3.8%, 6.4%, 11.6%, and 9.2% for the year 2020, 2019, 2018, 2017, and 2016,
respectively. Therefore, the average improvement of accuracy in forecasting by the hybrid
model is almost 8% higher than its closest-performing model for this type of forecasting.

Table 5. MAPE for day ahead load forecasting for different years for the city of Tallahassee, Florida.

Prediction Period AI Model
MAPE

2020 2019 2018 2017 2016

Winter

RT 6.3410 7.7461 6.4992 6.2812 6.7083

ANN 5.6712 5.9360 6.9169 7.4243 8.5237

LSTM 4.6453 4.9634 5.6570 5.9683 6.0432

NP 5.0235 5.6656 6.3573 6.8548 7.1039

Hybrid 4.4656 4.7836 5.3258 5.3460 5.5328

Summer

RT 5.4345 6.2880 5.6446 5.6793 6.3598

ANN 5.9134 6.7183 5.9104 6.4602 6.7343

LSTM 3.9634 5.8279 5.0245 4.9653 6.0632

NP 5.2137 6.4596 5.4878 6.4441 6.3421

Hybrid 3.9634 5.3932 4.8642 4.7624 5.6430
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4.3. Case III: Year Ahead Load Forecasting

Initially, the year ahead LF is performed on the Florida data set, which consists of
three years of data. For long-term forecasting, it has been observed that daily peak load
points are harder to predict, and the objective for this type of forecasting is to predict the
daily peak load one year ahead. The results of year ahead load forecasting can be seen in
Figure 12. From the results, it can be stated that the hybrid model improves the accuracy of
electric load prediction. However, the LSTM does not perform well for this load forecasting.
Therefore, the hybrid model ignores the LSTM model, and only the output from the NP
model is fed into the neural network to produce the forecast. An improved LSTM model
for this type of forecasting can result in better performance of the hybrid model, as the
hybrid model will again consider LSTM features.

Figure 12. Year ahead load forecast for the year 2019 for the city of Florida data set.

As this is a year ahead prediction, the temperature needs to be known one year ahead;
historical temperature data from 2013–2018 are used to perform a temperature prediction
with NP. The predicted temperature has an error percentage of about 15%. Then, year ahead
LF is performed again considering the predicted temperature. The higher error percentage
in predicted temperature is also the reason that the accuracy of this load forecasting is less
than the other two cases. The year ahead LF is also performed with the Texas data set,
which has 15 years of historical data. The hybrid model provides the best solution for this
case as well, which is evident in Figure 13.

Figure 13. Year ahead load forecast for the year 2019 for the Texas data set.

All the other models perform similarly to the Florida data set. From Table 6, it can
be seen that the hybrid model improves the accuracy compared to its closest-performing
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model by 2.65% for the Florida data set and by 1.02% for the Texas data set. The detailed
comparisons with four performance metrics can be found in Table 6 for all data sets. Even
if a more extensive data set is used for the Texas region, it does not impact our results
significantly. Therefore, it can be stated that the hybrid model does not require a huge data
set to provide a good solution.

Table 6. Performance metrics for year ahead load forecast using different AI techniques for the
year 2019.

Prediction Dataset AI Model MAPE RMSE SSE R

City in
Florida

RT 10.1683 53.7462 485290 0.8292

ANN 10.0657 52.6959 466513 0.8378

LSTM 16.5384 109.4362 2012215 0.4920

NP 10.1959 50.6863 431603 0.8497

Hybrid 9.8001 50.6057 430225 0.8499

Northern
Region of
Texas

RT 11.7185 147.988 3679374 0.6872

ANN 10.6267 134.225 3026972 0.7573

LSTM 16.7418 227.6697 8708049 0.4732

NP 9.8421 117.255 2309590 0.8181

Hybrid 9.7211 119.755 2409130 0.8079

5. Conclusions

In this paper, a novel hybrid LSTM-NP model is proposed to predict the electricity load
at a utility-level scale. Three different types of forecasts are performed, which include hour
ahead, day ahead, and year ahead load forecasting, to test the performance of the model.
In order to analyze the results, four statistical performance metrics are also used. The results
obtained from the test cases show that the hybrid model provides higher accuracy in
all three different types of forecasting than the models compared here. Furthermore,
two different data sets are used to test the model’s consistency, where one set is of a small
city, and the other set is a big part of a state. The hybrid model consistently outperforms
the other techniques in both cases. A summarized comparison of these techniques in
different types of forecasting with recommendations is provided in Table 7. This paper has
also explored the effects of other weather information, such as wind speed and humidity,
to improve forecasting accuracy. From the results, it can be said that temperature is the
principal weather factor that affects the results positively. However, the model can perform
better for year ahead load forecasting if the accuracy of the predicted temperature can
be improved.

Table 7. Application guideline for the hybrid model for different types of load forecasting with
comparison to other models.

Attributes Hour Ahead Load
Forecasting Day Ahead Load Forecasting Year Ahead Load Forecasting

Accuracy

The hybrid model provides
the best accuracy, while LSTM

performs very close to the
hybrid model for both winter

and summer seasons in all
three performance metrics.

The other two techniques also
perform quite well for this

type of forecasting.

The hybrid model gives the
best accuracy, with average

improvement of 8 percent for
both winter and summer

seasons. LSTM and NP are the
closest to the hybrid model in

terms of accuracy.

The hybrid model
outperforms all the models’
individual performances in

terms of accuracy. NP
performs closest to the

hybrid model.
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Table 7. Cont.

Attributes Hour Ahead Load
Forecasting Day Ahead Load Forecasting Year Ahead Load Forecasting

Training Time

LSTM takes the highest time
for training, ranging from 10
to 20 min depending on the

size of the data and number of
epochs. The other three take

seconds to a few minutes.
However, the hybrid model

takes the most time as it
combines LSTM with NP.

As this type of forecasting will
have one day for the

prediction, training time does
not have much significance.

As this type of forecasting will
be required to perform one

year ahead, training time does
not have much significance.

Additional Regressor

The hybrid model uses
temperature as an additional

regressor, which improves the
accuracy. LSTM and NP do

not use any additional
regressors for their forecasting

when used separately.

Similar to hour ahead
load forecasting.

Any kind of weather
information is very hard to
incorporate as the regressor
will also need to be known a

year ahead. Very accurate
predicted weather features

can improve the
model’s accuracy.

Size of Data Requirement

A minimum of 3 years of
hourly data is good enough

for this kind of forecasting, as
the accuracy does not go

below 98%.

Using 5 years of hourly data
for Texas instead of 3 years
does not change the result

significantly for all the
techniques, including the

hybrid model. Therefore, a
minimum of 3 years gives

quite accurate results.

Using 15 years of data for
Texas improves the accuracy

by 1 percent over using
3 years of data set. Therefore,
the hybrid model performs

quite well with less
historical data.

Overall Performance

The merit order for all the
techniques mentioned here is

hybrid, LSTM, NP, ANN,
and RT.

The merit order for all the
techniques mentioned here is

hybrid, LSTM, NP, ANN,
and RT.

The merit order for all the
techniques mentioned here is

hybrid, NP, ANN, RT,
and LSTM.
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