
����������
�������

Citation: Nonoyama, K.; Liu, Z.;

Fujiwara, T.; Alam, M.M.; Nishi, T.

Energy-Efficient Robot Configuration

and Motion Planning Using Genetic

Algorithm and Particle Swarm

Optimization. Energies 2022, 15, 2074.

https://doi.org/10.3390/en15062074

Academic Editors: Luigi Fortuna and

Andrzej Bielecki

Received: 7 February 2022

Accepted: 9 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Energy-Efficient Robot Configuration and Motion Planning
Using Genetic Algorithm and Particle Swarm Optimization
Kazuki Nonoyama, Ziang Liu , Tomofumi Fujiwara, Md Moktadir Alam and Tatsushi Nishi *

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku,
Okayama City 700-8530, Okayama, Japan; pws575rj@s.okayama-u.ac.jp (K.N.); liu.ziang@okayama-u.ac.jp (Z.L.);
fujiwara.tomofumi@okayama-u.ac.jp (T.F.); moktadir.alam@okayama-u.ac.jp (M.M.A.)
* Correspondence: nishi.tatsushi@okayama-u.ac.jp

Abstract: The implementation of Industry 5.0 necessitates a decrease in the energy consumption of
industrial robots. This research investigates energy optimization for optimal motion planning for
a dual-arm industrial robot. The objective function for the energy minimization problem is stated
based on the execution time and total energy consumption of the robot arm configurations in its
workspace for pick-and-place operation. Firstly, the PID controller is being used to achieve the
optimal parameters. The parameters of PID are then fine-tuned using metaheuristic algorithms
such as Genetic Algorithms and Particle Swarm Optimization methods to create a more precise
robot motion trajectory, resulting in an energy-efficient robot configuration. The results for different
robot configurations were compared with both motion planning algorithms, which shows better
compatibility in terms of both execution time and energy efficiency. The feasibility of the algorithms
is demonstrated by conducting experiments on a dual-arm robot, named as duAro. In terms of energy
efficiency, the results show that dual-arm motions can save more energy than single-arm motions
for an industrial robot. Furthermore, combining the robot configuration problem with metaheuristic
approaches saves energy consumption and robot execution time when compared to motion planning
with PID controllers alone.

Keywords: robot motion planning; robot placement; optimization; PID; genetic algorithm; particle
swarm optimization

1. Introduction

Sustainable development requires energy-efficient manufacturing. The target of dou-
bling global energy efficiency by 2030 is one of the major objectives of the Sustainable
Development Goal (SDG 7.3) [1]. According to the report of Energy Information Admin-
istration (EIA) [2], globally, the industrial sector consumes more energy than any other
sector, accounting for around 54% of total supplied energy. Furthermore, in this phase of
Industry 5.0, industrial robots have a broad range of applications in current production
and will continue to impact smart manufacturing because of their superior repeatability,
controllability, and flexibility, and may face a substantial problem due to inefficiency in
energy consumption. The robot’s energy consumption in the industries may be very high
due to its wide applicability and global sales expansion. Because of the rising cost of
energy sources and the diminishing green environment, the minimization of energy usage
for robot motions is becoming an increasing concern in industries. Therefore, modeling
energy-efficient robot placements are indispensable. Optimization in robot path planning
has been established as one of the ways for enhancing energy efficiency in robotic systems.

Numerous approaches have been used to solve the challenges in the optimization of
path planning [3], which is crucial in the model of robotics. The strategies generally seek
to find a solution that maximizes the achievement of a collection of objectives while also
identifying a set of the best actions given a set of limitations. Optimization techniques

Energies 2022, 15, 2074. https://doi.org/10.3390/en15062074 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15062074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1364-3502
https://orcid.org/0000-0001-8541-690X
https://orcid.org/0000-0003-1354-3939
https://doi.org/10.3390/en15062074
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15062074?type=check_update&version=2

Energies 2022, 15, 2074 2 of 20

have a long history of handling hard-optimization challenges in industrial applications
such as resource distribution, task planning, system optimization, and path planning.
Some metaheuristic computational techniques, for instance, Ant Colony Optimization
(ACO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and others, have
demonstrated their applicability in solving optimization issues to the path planning in
robotic research [4,5]. Recently, Zaplana et al. [6] implemented a GA for balancing the
workload of industrial lines, which is directly related to efficient energy consumption.

Most of these studies focus on mobile robots in the path and/or motion optimization;
however, they ignore energy optimization or do not consider simultaneous robot configu-
ration and motion planning for energy-efficient pick-and-place operations. Furthermore,
if the energy efficient operation is achieved, the traveling time of robot arms is increased,
and then the throughput of the multiple arms may be deteriorated. Moreover, conven-
tional motion planning strategies are based on the layout of robot configurations and the
application of the robotic system with the empirical knowledge of System Integrator (SIer).
However, it has been a significant burden for Sier to provide efficient system integration
knowledge for each robot configuration. Therefore, it is required to strengthen the Sier’s
decision-making process with optimized robot configurations and motion planning for the
robot manipulators to minimize total energy consumption.

In this study, the major objective is to develop an energy-efficient workpiece transport
model for the dual-arm robot for industrial applications. Dual-arm robots handle a greater
variety of applications than single-arm robot manipulators, primarily due to their greater
flexibility and load capacity, as well as their greater capability for cooperative operations.
Dual-arm robots are not merely the combination of two single-arm robots; instead, they
work together concurrently as a unit. In comparison to the single-arm manipulator, dual-
arm operations increase collaboration between both arms. Environmental adaptation and
coordinated control between dual-arm manipulators are critical and need more complex
path planning [7]. As a result, researchers have focused their efforts on trajectory optimiza-
tion and dual-arm coordination, which requires both coordinated trajectory planning and
coordinated motion control at the same time.

Firstly, in this research, the robot motions are modeled and analyzed by a GA method
by tuning Proportional-Integral-Differential (PID) controller gain adjustment, which can
significantly improve energy efficiency. The associated torque is analyzed using four
objective minimization functions in a PID-based control simulation method. The variants
for objective functions are (1) number of times each joint angle surpasses the commanded
angle, (2) time at which each joint angle surpasses commanded angle, (3) total execution
time for the robot manipulator, and (4) total energy consumption. Nevertheless, because of
the non-linear nature of the robot’s joint angles, direct mathematical formulae cannot be
used to estimate the optimal PID gain. Therefore, when the optimal solution is obtained by
a precise optimization method, for example, the branch and bound technique, computation
time for robot motion planning exponentially increases with the increasing number of
joints. Because of the longer execution time, this strategy is not practicable. To address
this issue, this study prioritizes obtaining a robot motion planning that may correspond to
the dual-arm robot motion trajectory by using a GA method to identify the local optimum
solution rather than the global optimum solution. The simulation software K-ROSET is
being utilized to verify the accuracy of the robot trajectory. Analytical results using GA
show that dual-arm robot motion is more energy efficient in various configurations than
single-arm robot motion.

Furthermore, an empirical study is conducted to examine whether the robot configura-
tion has any further impact on the energy consumption of the robot. The results indicate the
possibility of obtaining better solutions by including the robot’s configurations as decision
variables. For further improvement, a metaheuristic algorithm, PSO, is applied for the
solution of optimized energy usage for the dual-arm robot configurations and motion
planning problem. The experimental results show that PSO performs consistently well and
is stable for this problem compared with GA.

Energies 2022, 15, 2074 3 of 20

The main contribution of this study is to apply metaheuristic theories (GA and PSO
algorithms) and computations to the industrial robots with a dual-arm configuration to gain
energy efficiency in different robot configurations for a workpiece transportation system
using a conveyor belt. As detailed in Section 2, these algorithms have been developed
and applied mainly to mobile types of robots or industrial robots with a single-arm rather
than industrial robots with multiple arms by many researchers. The merit of the proposed
method is that it does not require to specify the placement of the robot, trajectory, and
velocity planning of the robot arms in advance. Moreover, researchers applied the kinematic
approach, which can be easily derived, and the relation between motion-planning (joint
planning) and path-planning (cartesian planning) will be, thus, straightforward. This will
largely simplify the control and thus the optimization. However, in many solutions, the
kinematic model itself cannot provide the optimum motion planning. In this study, we
decoupled the acting force in the joints of the robot arm to calculate the energy-efficient
robot motion trajectory of the robot arm, which can be considered as another novelty of
our work.

The following is a breakdown of the rest of the paper’s structure. In Section 2, the
most recent research on energy efficiency techniques and robot path planning will be
highlighted. In Section 3, the robot motion planning problem is formulated, and GA
is applied to this problem. Section 4 introduces the robot placement variables to the
motion planning problem, and PSO is used to solve the optimal robot placement and
motion planning problem. Section 5 presents the computational results and conducts
simulation and implementation experiments on a real-world dual-arm robot. The final
section summarizes the conclusions.

2. Literature Review

The energy consumption characteristics of industrial robots are increasingly being
studied and predicted by robot manufacturers and research groups. Liu et al. [8] devel-
oped an energy consumption model to study power utilization and dynamic parameter
identification of a robotic manipulator with a single arm. As a function of the robot joint
velocities and accelerations, Paes et al. [9] proposed time and energy-optimal paths in
a limited workspace. Paryanto and his research group [10] studied the energy profile
and dynamic characteristics for a 6DOF robot with different speeds and payloads in an
assembly system. The energy-optimal robot motion parameters inside the manufacturing
work-cell of mechanical structure and control logics of industrial robots were modeled
by Gadaleta et al. [11,12]. Researchers have also studied multimodal robot trajectory op-
timization for motion planning using a cost function [13,14], as well as extending the
framework for optimized energy and maximum power consumption [14]. Researchers also
presented theoretical research on the energy savings that could be realized by optimizing
robot motion acceleration characteristics [15]. Their study is limited to specific motion
profiles that are not affected by manufacturing cycle times. Software-simulated power data
were used in several studies to identify robot dynamics and predict energy-efficient robotic
motion [8,16]. Pellicciari et al. [17] suggested a numerical technique for lowering industrial
robots’ energy usage. The pre-scheduled robot paths are subjected to a whole-time rescaling
in this method, which addresses the scheduling gap problem in manufacturing. Horla
et al. obtained energy optimal trajectories for an unmanned aerial vehicle using swarm
optimization methods [18].

Several state-of-the-art ways of modeling and planning the energy profile for robots
have been presented as the methods for total energy optimization and reducing negative
environmental effects. Feng et al. [19] introduced a novel numerical energy consumption
model for a cyclic pick-and-place robotic operation by optimal joint placements to maximize
energy saving. Ji et al. [20] devised a mechanism for fine-tuning the stiffness of the robot
actuator to achieve time-energy optimal trajectory planning. Gadaleta et al. [11] introduced
an offline programming-based simulation tool to automatically generate code to save energy
consumption. The researcher has also adopted non-linear programming optimization

Energies 2022, 15, 2074 4 of 20

approaches that can facilitate multiple-robot coordination [20,21]. They devised methods for
reducing energy consumption while preserving productivity and smoothing the trajectory
of the robot.

During the previous two decades, robotics scientists and engineers have highly fo-
cused on the issue of motion planning with obstacle avoidance. Path planning for robot
manipulators is primarily concerned with determining the best collision-free path from a
start to an end pose. Furthermore, optimizing a robot’s path planning in its workspace
leads to a reduction in energy consumption. Sangiovanni et al. [22] developed an ad hoc
Deep Reinforcement Learning (DRL) technique for obstacle avoidance and path planning
optimization for a self-configuring robot. Hovgard et al. [23] developed an optimization
approach for reducing energy consumption in multi-robot systems by determining the
best execution time and order of robot motions through motion parameter modification.
To acquire the optimized path planning, several heuristic-based algorithms such as neu-
ral network (NN) [24], fuzzy logic (FL) [25], and nature-inspired algorithms, including
GA [26], PSO [27], and ACO [28], as well as certain Artificial Potential Field Algorithm
(APFA) [29,30] and some other hybrid models [31,32], are also applied. However, many of
these studies do not take energy efficiency into account.

The objective of this study is to find the best energy utilization of a dual-arm robot’s
workpiece transporting motion. However, most of the research on energy optimization
stated above does not account for workpiece transportation motion. Furthermore, rather
than dual-arm robots, energy-efficient path planning algorithms are generally used in
mobile robots, multi-robot systems, or single-arm robots. For dual-arm robot motion
planning, Cohen et al. [5] used a heuristic technique. However, they do not incorporate
motion planning optimization in their work and completely disregard energy optimization.
In human–robot collaboration, Wang et al. [33] developed a cost function considering the
dual-arm robot configuration to determine the most efficient path planning solutions for
its human partner. Imajo et al. [34] addressed a neural network for gain tuning for the
generation of a robot arm trajectory. Yan et al. [35] suggested a method for holding moving
workpieces with large momentum using a dual-arm mobile robot by coordinated motion
planning as well as environmental compliance control. One of the most recent studies on
energy-efficient robot motion planning with dual-arm configuration, focusing on a pick-up
pose controlling strategy for carrying workpieces that works while avoiding collisions,
was presented by Nishi and Mori [36]. In their research, the workspace was limited to two
dimensions (X and Y coordinates), and motion planning was formulated as a minimization
problem in terms of workpiece transportation time and total energy utilization of the robot
arm motion. To make further improvements, the research group included the Z-coordinates
in the motion planning of the robot’s configuration and used GA to optimize PID gain for
minimal energy consumption [37]. The limitation of this previous study is that the robot
placement is not considered. Our empirical results show that robot configuration has a
major influence on the obtained solutions to reduce the robot’s energy consumption.

Finally, in this study, the robot configuration and motion planning problems are for-
mulated as a minimization problem. The PSO algorithm is used to solve the minimization
problem. To the best of our knowledge, PSO is not used for industrial robots’ energy
efficiency gain tuning even though we found that this algorithm is applied for mobile
types of robots [38,39]. The experiment results suggest that PSO performs consistently well
and has stable performance for this problem compared with GA. This is the first study to
explore the applications of metaheuristic algorithms on joint robot placement and motion
planning problems considering energy efficiency. This study fills a gap in the research on
energy-efficient robot optimization problems.

3. Robot’s Workpiece Transportation Motion Plan
3.1. Model of Workpiece Transportation Motion

The model of work transportation operation using a dual-arm robot is shown in
Figure 1. Each arm is assumed to pick-up workpieces carried by a conveyor belt from an

Energies 2022, 15, 2074 5 of 20

initial robot configuration, A1(f or right Arm), A2(f or le f t arm). The conveyor belt trans-
ports the workpieces (Wk, for k = 1, 2, . . . m) at a distance of 1.2 m apart. The workpieces are
picked up at the Bn positions. The motion of the arms is predefined by the PID controller.
GA is used for calculating PID gains to solve the minimization problem of the time to com-
plete and the energy consumption for each arm during its motion so that each arm does not
overshoot each desired angle. Furthermore, robot arm motions are planned by assigning
motions to each workpiece transportation model that are suitable for the conveyor-belt
speed (v (m/s)), derived from the obtained motions.

Figure 1. Workpiece transport model using a dual-arm robot.

3.2. Defining Robot Dynamics

Torque PID control law is used to represent the dynamics of each robot arm where the
proportional gain is KPi, the integral gain is KIi, and differential gain is KDi. The torque at
the i-th joint, for i = 1, 2, . . . n, can be defined as:

τt = KPi (θt − θi) + KIi

∫
(θt − θi)dt− KDiωi (1)

where

θt: Target angle of i-th joint motor (rad)
θi: Initial angle of i-th joint motor (rad)
ωi: Angular velocity of joint (rad/s)
KPi, KIi, KDi: Proportional, integral, differential controller gain of i-th joint motor

To identify the PID controller gain, the acting forces on the classical robot kinematic
motion equation for the configuration of Figure 2 for joint I = 1 can be defined as follows.

The torque exerted on the first joint τ1 is calculated by

τ1 = τm1 + F1L1 sin θ2 + F2L1 sin θ2 + F3L1 sin θ2 − τf 1 (2)

F1 =
m2L2ω2

2

2
(3)

F2 = m3L2ω2
2 (4)

F3 = mW L2ω2
2 (5)

where

F1, F2, F3: Forces on the joints and links
τm1: Motor torque of the first joint
τf 1: Torque caused by frictional force exerted on the first joint
m2, m3: Weight of second and third link, respectively
L1, L2: First and second joint link length
mw: Mass of workpiece
θ2: Joint angle at i = 1

Energies 2022, 15, 2074 6 of 20

ω2: Angular velocity at i = 2

Figure 2. Forces exerted on the right manipulator.

The torque caused by frictional force exerted on each joint τf i is written as

τf i = τvi + τsi + τci + τdi (6)

where

τvi: viscous friction torque at i-th joint
τsi: static friction torque at i-th joint
τci: coulomb friction torque at i-th joint
τdi: rag friction torque at i-th joint

Figure 3 depicts the active forces (F4 to F7) on the second joint (i = 2). The torque for
the second joint τ2 is stated by the following equation:

τ2 = τm2 − F4L2
2 sin

(
θ1 + θ2 − tan−1 yg2

xg2

)
− (F5 + F6)L2 sin

(
θ1 + θ2 − tan−1 yg3

xg3

)
− F7L2

2 cos
(

θ1 + θ2 − tan−1 yg2
xg2

)
− τf 2 (7)

where

(xg2, yg2): center of gravity position for second link
(xg3, yg3): center of gravity position for third link
τm2: joint torque at i = 2
τf 2: frictional torque at i = 2
θ1: joint angle at i = 1

The center of gravity (xg2, yg2) for the robot arm’s second link can be expressed as

xg2 = L1 cos θ1 +
L2

2
cos(θ1 + θ2) (8)

yg2 = L1 sin θ1 +
L2

2
sin(θ1 + θ2) (9)

Energies 2022, 15, 2074 7 of 20

Figure 3. Force exerted on the right arm of the dual arm robot.

The centrifugal force (F4) of the robot arm’s second link caused by the angle θ1, with
an angular velocity of ω1 derived as

F4 = m2

√
xg22 + yg22ω1

2 (10)

Similarly, the centrifugal force, F5 and F6 derived as:

F5 = m3

√
xg32 + yg32ω1

2 (11)

F6 = mW

√
xg32 + yg32ω1

2 (12)

The force acting on the second link (F7) due to the motion trajectory of the first link
can be calculated as:

F7 = m2

√
xg22 + yg22α1 (13)

The coordinate for the center of gravity for the third link is (xg3, yg3) and obtained as:

xg3 = L1 cos θ1 + L2 cos(θ1 + θ2) (14)

yg3 = L1 sin θ1 + L2 sin(θ1 + θ2) (15)

In contrast to the first and second joints, the third joint of the dual armed manipulator
operates in a vertical orientation. It is tough to express such orientation as an angle because
of this configuration. As a result, in this experiment, we infer that a piece of virtual gear
at the end of the second link moves the third link. The third joint’s angle is treated as the
gear’s rotation angle. The third link’s movement can thus be treated as an angle, much like
the first and second joints. Figure 4 depicts a virtual gear setup for the third link. Assuming
r3 is the radius of the virtual gear and l3 is the displacement length of the third link, then
the third joint (i = 3) torque is calculated as:

τ3 = τm3 − 0.05(m3 + mw)g− τf 3 (16)

Energies 2022, 15, 2074 8 of 20

where
θ3 =

l3
r3

. (17)

Figure 4. The third link of the robot.

From the classical equation of rotational motion τi = Iiαi for the moment of inertia
Ii, at joint i with angular acceleration of αi. If the angular velocity of the rotational motion
changes from ω0i to ωi in time interval of ∆t, then angular acceleration is defined as follows:

ωi −ω0i
∆t

= αi (18)

Furthermore, for change in angle from an initial value of θ0i to a final value of θi

θi − θ0i
∆t

= ωi (19)

The i-th joint angle of the robot arm is represented by the following equations.

ωi =
τi
Ii

∆t + ω0i (20)

θi =
τi
Ii

∆t2 + ω0i∆t + θ0i (21)

A robot arm’s joint parameters, such as command angle, joint velocity, payload, and
so on, must all be defined within a certain range. If the range is crossed, the maximum and
minimum values must be restored. Under the above model description, we can simulate
detailed kinematic dynamics of the dual armed robot arm evaluating energy consumption.
The PID control simulation is run from the initial state, computing the motion trajectory at
each sufficiently small-time interval ∆t, until the simulation’s termination states are met.

The termination states for the simulation are described as follows.

State 1. During pick-up, the distances between the robot’s end-effector and the workpieces
are sufficiently small (within 0.01 m).

State 2. The movements of each joint are stopped (the absolute values of angular ve-
locity and acceleration of each joint are within 0.1 rad/s and within 0.1 rad/s2,
respectively).

State 3. The value of the evaluation function reaches a threshold, which is set in advance.

State 1 comes from the arm robot simulation setting of Kawasaki Heavy Industries.
The Kawasaki Heavy Industries simulation software, K-ROSET, does not work well when
the error tolerance is set as less than 0.01 m. In a unified way, the PID simulation was
also conducted.

State 2 is set because the next sequence of the robot arm motion is assumed to start
with zero acceleration and velocity. Therefore, the final state of the arm should be zero in
acceleration and velocity.

Energies 2022, 15, 2074 9 of 20

State 3 is necessary because the PID gains randomly generated by the simulation can
take zero or negative values. If all the gains are set to zero, then the robot arms do not
move and never reach a goal. Furthermore, the evaluation function stated in the following
Equation (22) indicates that time t value will increase even during robot arm resting, so this
state should be added to terminate the simulation.

The flowchart in Figure 5 defines the termination states for the PID simulation. For
the calculation of individual gains, GA and PSO algorithms are used. Section 3.3 describes
the optimization techniques of PID gain tuning using GA. Moreover, Section 4.2 defines
the objective function for individual gains using PSO. At the termination of the simulation,
the objective function’s performance is assessed. For robot arm motions that satisfy state 3,
the value of the objective function is defined to an adequately larger range irrespective of
the significance of the objective function at the termination of the simulation.

Figure 5. PID simulation flowchart.

3.3. Genetic Algorithm for Optimization of PID Gain Tuning

The GA method is widely used as an evolutionary computation technique simulating
the process of evolution. It takes much computational effort to find the optimal solution for
solving a complex optimization problem, including physical simulations. The enumerative
search from the vast number of combinations is unrealistic. Therefore, this study aims to
find a local optimal solution instead of a global optimal solution considering the computa-
tion time. Our designed GA for finding an energy-efficient operation is described below.
The objective is to find a better solution by repeating the search a predetermined number of
times. The objective function is represented by Equation (22).

min{τmi} (t + aN + bM + cE + dP) (22)

where a, b, c, d are the weighting factors in the objective function. t is the total completion
time of pick-and-place motion, N represents the number of overshoots. M represents time
in seconds when the current angle deviates from the target angle. P represents the penalty
for violating conflicts between the trajectory of the other arm. Those terms are obtained in
the simulation. The calculation method of energy consumption E is from reference [40] in

Energies 2022, 15, 2074 10 of 20

this study. Although, in our previous study [36], the energy consumption was obtained
from the acceleration of the hand position of the robot arm.

Ei =
∫ {

τmiωi + Ri

(
τmi
kti

)2
}

dt (23)

Ei: Energy consumed by the i-th joint
Ri: Terminal resistance of the i-th joint
kti: Torque constant of the i-th joint

Joints 1 and 2 have a maximum energy consumption of 80 W, while joint 3 has a
maximum energy consumption of 50 W [41]. When the integral calculation of Equation (21)
is conducted in the range of t = [0, 1], the terminal resistance and torque constants of the
first and the second joints can be evaluated by Equation (24) assuming that the motor
torque and angular velocity are at their maximum values.

Ri
kti

2 =
80− 15π

900
(24)

where Ri is the terminal resistance and kti is the torque constant. Similarly, for the third joint:

R3

kt32 =
50− 7.5π

225
(25)

Therefore, energy consumption equation for each robot arm joint is defined as:

E = ∑3
i=1 Ei (26)

The steps in the proposed GA for the PID gain optimization technique are as follows.

3.3.1. Initialization

The number of individuals and parameters are set and the individuals for decision
variables are encoded by binary encoding of real values. We have set the population sizes
of GA to 200, 300, and 400, and compared the performance of these GA variants. The
experimental results suggest there were not many differences in the final solutions. We
set the number of individuals as 300 because 200 individuals did not work well in the
preliminary experiments.

3.3.2. Generation of Initial Individuals

Initial individuals are generated by using random numbers on uniform distribution.
The proportional gains KP1, KP2, KP3, differential gains KD1, KD2, KD3, and integral gains
KI3 are initialized by random numbers in the range [−5, 30]. The individuals’ generations
are repeated for the number of individuals.

3.3.3. Evaluation

The value of the objective function is obtained for each individual included in the
generation by executing the PID simulation, which is explained in the previous section.

3.3.4. Selection

Selection of the next iteration is conducted by the following idea. A set of individuals
are randomly selected from the current generation and their fitness values are used to
select the individuals to be left for the next generation. The probability Pi for individual i is
calculated by Equation (27).

Pi =
1

Oi

∑3
j=1

1
Oj

(27)

Energies 2022, 15, 2074 11 of 20

Each selected individual is assigned index j (j = 1, 2, 3) for each joint, and the evaluation
value of that individual is Oj, and the probability of being left to the next generation is
Pi. An elite preserving strategy is also adopted in the selection process. The top three
individuals are elite, and they are not subject to crossover and mutation.

3.3.5. Crossing Over

In the crossing over, two individuals are chosen from the two groups, which are
divided, and a random number is generated in the range of [0, 1], and the crossover
is performed when it is smaller than the set crossover rate. A random number with
an integer value in the range of

[
1, 26 − 1

]
is generated to determine the genes to be

exchanged between the two individuals. If the remainder of 2 of the random number value
is 1, KP1, KP2 exchange is performed extensively, otherwise KP3, KD1, KD2, KD3, and KI3
exchange is conducted when the remainder of 2, 4, 8, 16, 32 for the random value is an odd
number. The gene in the digit with the binary value of 1 is exchanged into 0.

3.3.6. Mutation

Random numbers are generated in the range of [0, 1] for each next-generation individ-
ual, and mutation is performed when the mutation rate is smaller than the set mutation rate.
When mutations occur, random values are entered in KP1, KP2, KP3, KD1, KD2, KD3, KI3.
However, if the specified number of generations is exceeded, a value close to the near-
optimal solution is generated at that point.

3.3.7. Update Generation

After updating the population of individuals, Steps 2 to 6 are repeated for a specified
number of generations.

The setting of initial solutions does not depend on the selection of initial solutions
because the set of initial solutions are generated from random numbers. The GA iterations
are repeated 10 times in the numerical experiments. Therefore, there is little effect on the
selection of the initial solution and the selected parameters from preliminary experiments.

When finding a solution by a genetic algorithm, different behaviors can be obtained
from the same algorithm by changing the weighting factors of the objective function. If
the value of the energy consumption weight is made small, time-oriented operations
can be obtained, and if it is made large, energy-saving-oriented operations can be ob-
tained. In Section 5, numerical experiments are performed based on the simulation and
genetic algorithms.

4. Optimal Robot Placement and Motion Planning
4.1. Problem Statement

In the previous section, GA was used to optimize the robot motion planning problem.
Evidence from our experimental results suggests that the robot placement plays a crucial
role in the energy-efficient robot optimization problems. Changing the robot placement may
have a major influence on the optimal results. Therefore, by combining the robot placement
problem and the motion planning problem, it will be possible to find better solutions.

The aim of this section is to optimize the joint robot placement and motion planning
problem by metaheuristic algorithms. The objective function of the robot placement and
motion planning problem is shown in Equation (22). In addition, x and y represent the
robot placement variables. The optimization algorithm simultaneously searches the optimal
robot motion and the robot placement. The robot can be moved in a two-dimensional space,
as shown in Figure 6.

Energies 2022, 15, 2074 12 of 20

Figure 6. Optimal robot placement and motion planning problem.

4.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based metaheuristic algorithm
proposed by Kennedy and Eberhart [42]. The PSO algorithm is one of the most widely used
metaheuristics because of its good performance for many optimization problems [43,44].
The PSO algorithm searches the solution space by changing the positions of particles. The
positions of particles represent the possible solutions for an optimization problem. To
date, PSO has been successfully applied to various real-world problems. However, the
present research explores, for the first time, the usefulness of PSO in the robot placement
and motion planning problem.

In this study, the PSO algorithm is used to solve the robot placement and motion
planning problem while considering the energy-efficiency. For this problem, the position of
a particle consists of nine variables that are proportional gains KP1, KP2, KP3, differential
gains KD1, KD2, KD3, integral gains KI3, and robot placement variables x and y. These vari-
ables can be represented by a vector pi = {KP1, KP2, KP3, KD1, KD2, KD3, KI3, x, y}. Let pi,t
be the position of particle i at generation t, where i is the index of particles (i = 1, 2, . . . , NP),
and NP is the population size.

During the computation process, the first seven parameters are set within the range
[−5, 30], and the robot placement variables take values in the interval of [−0.08, 0.3]. There-
fore, the following ranges are set for pi,t: pmin = (−5,−5,−5,−5,−5,−5,−5,−0.08,−0.08),
and pmax = (30, 30, 30, 30, 30, 30, 30, 0.3, 0.3).

The first step in PSO is initialization. The initial population pi,0 is created by the
following equation:

pi,0 = pmin + rand(pmax − pmin) (28)

where rand is a random vector that is uniformly distributed in the range [0, 1]9.
After the initialization, the objective value of pi,0 (i = 1, 2, . . . , NP) is evaluated. Then,

the best solution in the swarm g∗, and the personal best solution of particle i, p∗i are
generated. For i = 1, 2, . . . , NP, let g∗ = argmin f (pi,0), and p∗i = pi,0.

At each generation, the velocity vi and position pi of ith particle are updated as follows:

vi,t+1 = ωvi,t + c1r1(g∗ − pi,t) + c2r2(p∗i − pi,t) (29)

pi,t+1 = pi,t + vi,t+1 (30)

where ω is the inertia factor that takes values within the range [0, 1]. The parameter c1 and
c2 are the accelerate coefficients. These two parameters often take values around 2. Two
random vectors r1 and r2 take values in the interval of [0, 1].

The position pi,t should always be in the bounds of pmin and pmax. To keep the
variables in this range, the feasibility of the generated position pi,t+1 is examined. A

Energies 2022, 15, 2074 13 of 20

variable is set to the most closed bound value when it is larger than pmax or lower than
pmin. This repair strategy is as follows:

pi,t+1 = min(pmax, pi,t+1) (31)

pi,t+1 = max(pmin, pi,t+1) (32)

The same repair strategy is used to the velocity vi,t+1. However, the ranges of velocity
are set as

vmax = 0.5(pmax − pmin) (33)

vmin = −vmax (34)

At the end of each generation, the personal best solution p∗i is updated if the new
position pi,t+1 has better fitness than it. Moreover, after updating the positions for all
the particles, if the fitness of the best pi,t+1 is better than f (g∗) for i = 1, 2, . . . , NP, g∗ is
updated to p∗i .

The pseudo code of PSO is shown in Algorithm 1:

Algorithm 1. Particle swarm algorithm

Initialize positions pi,0, i = 1, 2, . . . , NP //Equation (28)
Set t = 0
Evaluate the objective values f

(
pi,0
)
, i = 1, 2, . . . , NP

Set f (g∗) = min
{

f
(

pi,0
)}

, g∗ = argmin f
(

pi,0
)
, i = 1, 2, . . . , NP

Set p∗i = pi,0, i = 1, 2, . . . , NP
while (stop condition is not reached) do:

for i = 1 : NP
Generate vi,t+1 and pi,t+1 //Equations (29) and (30)
Repair vi,t+1 and pi,t+1 if it is not feasible //Equations (31) and (32)
Evaluate the objective value f

(
pi,t+1

)
if f
(

pi,t+1
)
< f

(
p∗i
)

p∗i = pi,t+1, f (p∗i) = f
(

pi,t+1
)

end if
end for

if min
(

f
(

p∗i
))

< f (g∗), i = 1, 2, . . . , NP
g∗ = p∗i , f (g∗) = min

(
f
(

p∗i
))

end if
t = t + 1

end while

PSO has four important parameters, including the inertia factor, two accelerate coeffi-
cients and the population size. This study uses a common parameter setting for the first
three parameters: ω = 0.5, c1 = 2, and c2 = 2. It is a well-known fact that the population
size has a crucial impact on the performance of metaheuristic algorithms [45]. In the next
section, we examine the performance of six PSO variants under different population sizes
that range from 20 up to 200 particles.

5. Results
5.1. Robot Motion Planning
5.1.1. Experimental Conditions

We consider a pick-and-place motion with cyclic operations from an initial position to
a workpiece acquisition point. The values of the weighting factors a and b are fixed at 20,
and the value for c is varied to 0, 0.1, 1, and 10, to normalize the values of each term of the
objective function. There are 32 types of motions obtained, and these motions are assigned
in such a way that the total energy consumption for the conveyor-belt speed is reduced.

Energies 2022, 15, 2074 14 of 20

5.1.2. Experimental Results

Table 1 illustrates the average total execution time and total energy consumption
during a pick-and-place operation for various analytical weights for the GA method. The
robot operation duration grows steadily as the computational weight increases, while the
energy consumption reduces. In comparison to the case in which the weighting factors
changed from 0 to 10, the total completion time increased by 1.7 times, while the energy
consumption can be lowered by 0.2 times. By merging these algorithms to the robot motion
plan for different robot configurations, the total energy consumption for the pick-and-place
operation can be reduced.

Table 1. Computational results for the GA method under various weights.

Computational Weight for GA Average Execution Time (s) Total Energy
Consumption, E (W)

0 320,125 525,625
0.1 390,375 2,174,625
1 51,575 16,405
10 54,775 1,143,625

Figure 7 depicts the changes in total energy consumption for single-arm and dual-arm
robots when the conveyor-belt speed was varied during the experiment. According to the
numerical study of right-arm motion, one cycle of pick-and-place operation takes about
5.00 s to complete. As a result, the conveyor-belt speed should be set below 0.24 m/s to
pick up the workpieces when the spacing between them was 1.2 m. In comparison to using
only the right arm, using dual-arms with increasing conveyor-belt speed results in lower
total energy consumption. However, as the conveyor-belt speed decreased, the difference
in total energy consumption shrank. When the conveyor-belt speed is below 0.17 m/s, the
energy consumption with only the right arm is lower than the dual-arm operation. The
most likely reason for this is that the conveyor belt’s speed is low enough that the right
arm can choose an action that requires less energy, whereas the dual-arm action uses more
energy to maintain the arm’s posture.

Figure 7. Total energy consumption for single and dual-arm robot pick-and-place operation with
different conveyor-belt speeds.

5.2. Robot Placement and Motion Planning
5.2.1. Illustrative Example

An empirical study is conducted to investigate the impacts of different robot place-
ments on the energy consumption and completion time of a robot. The initial robot
placements are set to the robot’s initial platform position as the origin and from the coordi-

Energies 2022, 15, 2074 15 of 20

nates B4 on the conveyor belt to the arm’s initial position A1. The computational results
with different robot configurations are presented in Table 2.

Table 2. Computational results with different robot configurations.

Robot Configurations
(x [m], y [m])

Total Execution Time t (s) Total Energy
Consumption E (W)

(−0.053, −0.004) 3.685 8.841
(0.148, −0.080) 5.085 15.422
(0.140, −0.042) 5.185 11.830
(0.082, −0.021) 5.752 16.116
(0.131, −0.008) 6.318 15.670

The results from Table 2 suggest that the robot configurations have a major impact on
the energy consumption and completion time of a robot. In detail, the robot placement
(−0.053, −0.004) has the lowest energy consumption at 8.841, while the robot placement
(0.082, −0.021) has the highest energy consumption at 16.116. Thus, setting the robot
placement to different values may result in obtaining better results. However, to do this,
many trial-and-error computations are required, and the computations are time-consuming.
Therefore, in the next section, GA and PSO are applied to solve the robot configuration and
motion planning problem.

Overall, the findings clearly indicate the possibility of obtaining better solutions by
considering the robot placements as decision variables.

5.2.2. Comparison Results

In this study, the joint robot placement and motion planning problem is solved by
two metaheuristic algorithms, the GA algorithm and the PSO algorithm. The maximum
number of fitness evaluations MaxFEs is set to 5000. All the algorithms are coded using
Python and executed on a computer with AMD Ryzen 9 3900X CPU (3.8 GHz), 16 GB RAM
and a Windows 10 operating system.

The parameter setting may have a major influence on the performance of metaheuris-
tic algorithms. To find the appropriate parameter setting of GA and PSO for the robot
placement and motion planning problem, the performance of GA and PSO under differ-
ent parameter settings are investigated. The population sizes of GA and PSO are set so
that there would be approximately 2000 simulations in each condition. GA and PSO run
10 times with each parameter setting.

The parameter settings for GA and PSO are shown in Table 3, where ind represents
the number of individuals, gen the number of generations, mutation the mutation rate,
and cross the crossover rate for GA described in Section 3.3, while ω represents the inertia
factor, c1 and c2 the accelerate coefficients, and NP the population size for PSO described in
Section 4.2.

Table 3. The parameter settings for GA and PSO.

Algorithm Parameter Settings

GA1 ind = 100, gen = 30, mutation = 0.3, cross = 0.5
GA2 ind = 100, gen = 30, mutation = 0.4, cross = 0.4
GA3 ind = 100, gen = 30, mutation = 0.5, cross = 0.3
GA4 ind = 200, gen = 20, mutation = 0.1, cross = 0.4
GA5 ind = 200, gen = 50, mutation = 0.1, cross = 0.1
GA6 ind = 300, gen = 10, mutation = 0.4, cross = 0.4
GA7 ind = 300, gen = 30, mutation = 0.1, cross = 0.1

Energies 2022, 15, 2074 16 of 20

Table 3. Cont.

Algorithm Parameter Settings

PSO1 ω = 0.5, c1 = 2, c2 = 2, NP = 20
PSO2 ω = 0.5, c1 = 2, c2 = 2, NP = 40
PSO3 ω = 0.5, c1 = 2, c2 = 2, NP = 60
PSO4 ω = 0.5, c1 = 2, c2 = 2, NP = 80
PSO5 ω = 0.5, c1 = 2, c2 = 2, NP = 100
PSO6 ω = 0.5, c1 = 2, c2 = 2, NP = 200

Figure 8 and Tables 4 and 5 show the calculation results of the objective function (22),
which is the weighted sum of total completion time, number of overshoots, time in seconds
when the current angle deviates from the target angle, penalty, and energy consumption.
Boxplots of the objective values are obtained by GA and PSO for solving the robot placement
and motion planning problem are shown in Figure 8. The interquartile ranges of the PSO
algorithms are smaller than GA, meaning that PSO has robust performance. Furthermore,
the upper quartiles of the PSO algorithms are lower than GA, which indicates that PSO has
better performance.

Figure 8. Boxplots of GA and PSO for solving the robot placement and motion planning problem.

Table 4. The best, worst, and mean results of GA.

GA1 GA2 GA3 GA4 GA5 GA6 GA7

Best 6,411,957 6,101,113 6,437,138 5,914,767 4,660,399 6,031,033 5,539,134
Worst 2,598,877 2,503,144 2,956,093 2,704,759 1,587,137 1,606,871 1,910,518
Mean 4,287,444 4,089,252 410,142 4,121,686 3,311,333 3,944,367 366,246

Table 5. The best, worst, and mean results of PSO.

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6

Best 2,517,318 2,549,859 2,695,012 2,579,943 2,704,407 2,649,485
Worst 1,131,703 1,098,057 1,068,871 1,130,499 1,202,886 1,254,347
Mean 2,120,034 210,798 1,938,292 1,984,438 2,067,629 2,169,012

Energies 2022, 15, 2074 17 of 20

The best, worst, mean results of GA and PSO are shown in Tables 4 and 5, respectively.
Furthermore, the worst results obtained by PSO are still better than the best results by GA3
and GA4. Overall, PSO performs consistently well and is stable for this problem compared
with GA. As shown in Table 5, PSO3 provides the best mean result for the robot placement
and motion planning problem.

To further evaluate the results obtained by PSO3, we investigated this result under
different weight settings, as shown in Table 6, and compared it with the results obtained by
GA in Table 7. The comparison results indicate that our proposed method can save 16%
implementation time and 18% energy on average.

Table 6. Execution time and energy consumption applying the PSO3 algorithm.

Computational
Weight

Robot Configuration
(x [m], y [m])

Average Execution
Time t (s)

Total Energy
Consumption E (W)

10 (−0.053, −0.004) 3685 8841
1 (−0.053, −0.004) 2852 10,031

0.1 (−0.053, −0.004) 267 16,101
0 (−0.053, −0.004) 2502 32,730

Table 7. Execution time and energy consumption applying the GA algorithm.

Computational Weight Average Execution Time t (s) Total Energy
Consumption E (W)

10 3.89 14.83
1 4.22 14.76

0.1 3.07 16.24
0 2.77 36.75

5.3. Simulation and Implementation

The pick-and-place operation of a dual-arm robot, named duAro, is used to pick
workpieces with the conveyor-belt speed of v = 0.2 m/s, as shown in Figure 9. To check
the motion trajectory and simulate, Kawasaki’s offline robot simulation program K-ROSET
is employed. After verifying that the generated motion trajectory is likely workable on
the actual robot using K-ROSET, the proposed method is implemented on the actual robot
duAro. Figure 10 illustrates the actual motion trajectory for the duAro robot and the
simulated trajectory.

Figure 9. Experimental dual-arm robot system in pick-and-place operation.

Energies 2022, 15, 2074 18 of 20

Figure 10. Trajectories of the proposed method implemented in the PID simulation and the actual
robot duAro. Position indicates the origin of the robot arm (the first joint).

As seen in Figure 10, there is a slight difference of up to around 7 mm between the
simulation trajectory and the actual trajectory; however, the actual robot duAro was almost
able to achieve the desired trajectory. The slight difference is caused by the actual friction
force and the discretization error of the trajectory.

There are also some limitations to our proposed method:

(1) The proposed method is only applied to a SCARA robot.
(2) The workpieces are assumed to be at the center of the conveyor belt.
(3) Each workpiece is set at a constant interval.
(4) The conveyor-belt speed is constant.

A vision system will be necessary to detect and grasp roughly set (dynamic) work-
pieces on the conveyor belt.

Therefore, the future work will be to address those issues above and to apply our
proposed method to more complicated scenarios.

6. Conclusions

This study set out to develop a model for the joint robot placement and motion
planning problem and evaluate the performance of two metaheuristic algorithms on this
problem. First, the robot motion planning problem is formulated, and the optimized PID
gains are obtained by GA. The objective is to minimize the total execution time and energy
utilization of a dual-arm robot for the workpiece transportation process. Then, the PSO
algorithm is applied to optimize the robot configuration as well as motion simultaneously.
Finally, the proposed approach is implemented in a real-world dual-arm robot duAro.
The simulation and implementation results suggest that our proposed motion planning
approach is effective, and it can be verified on the K-ROSET simulation environment.
The findings of the experiments reveal that dual-arm motions can save more energy than
single-arm motions in terms of energy efficiency. Furthermore, when compared to motion
planning with PID controllers alone, combining the robot configuration problem with the
metaheuristic method can save 18% of energy usage and 16% of execution time. The future
work will be to apply our proposed method to more complicated scenarios, including other
types of industrial robots and dynamically set workpieces.

Energies 2022, 15, 2074 19 of 20

Author Contributions: Conceptualization, K.N. and T.N.; methodology, K.N. and T.N.; software,
K.N. and Z.L.; validation, K.N., T.F. and T.N.; formal analysis, K.N.; investigation, K.N.; resources,
T.N.; data curation, K.N.; writing—original draft preparation, K.N., Z.L., T.F., M.M.A. and T.N.;
writing—review and editing, K.N., Z.L., T.F., M.M.A. and T.N.; visualization, K.N.; supervision,
T.N.; project administration, T.N.; funding acquisition, T.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is subsidized by New Energy and Industrial Technology Development
Organization (NEDO) under a project JPNP20016.

Acknowledgments: This research is subsidized by New Energy and Industrial Technology Devel-
opment Organization (NEDO) under a project JPNP20016. This paper is one of the achievements of
join research with ROBOT Industrial Basic Technology Collaborative Innovation Partnership and
the ROBOT Industrial Basic Technology Collaborative Innovation Partnership a joint copyright of
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sustainable Development Goals (SDG 7). Available online: https://unric.org/en/sdg-7/ (accessed on 14 December 2021).
2. Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to

2040; DOE/EIA-0484(2016); USDOE Energy Information Administration: Washington, DC, USA, 2016; p. 1296780.
3. Madridano, Á.; Al-Kaff, A.; Martín, D.; De la Escalera, A. Trajectory Planning for Multi-Robot Systems: Methods and Applications.

Expert Syst. Appl. 2021, 173, 114660. [CrossRef]
4. Fong, S.; Deb, S.; Chaudhary, A. A Review of Metaheuristics in Robotics. Comput. Electr. Eng. 2015, 43, 278–291. [CrossRef]
5. Cohen, B.; Chitta, S.; Likhachev, M. Single- and Dual-Arm Motion Planning with Heuristic Search. Int. J. Robot. Res. 2014, 33,

305–320. [CrossRef]
6. Zaplana, I.; Cepolina, E.; Faieta, F.; Lucia, O.; Gagliardi, R.; Baizid, K.; D’Imperio, M.; Cannella, F. A Novel Strategy for Balancing

the Workload of Industrial Lines Based on a Genetic Algorithm. In Proceedings of the 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 785–792.

7. Zhang, H.; Zha, W.; Xu, X.; Zhu, Y. Optimization Control of Cooperative Trajectory towards Dual Arms Based on Time-Varying
Constrained Output State. Complexity 2021, 2021, 5338134. [CrossRef]

8. Liu, A.; Liu, H.; Yao, B.; Xu, W.; Yang, M. Energy Consumption Modeling of Industrial Robot Based on Simulated Power Data
and Parameter Identification. Adv. Mech. Eng. 2018, 10, 1687814018773852. [CrossRef]

9. Paes, K.; Dewulf, W.; Elst, K.V.; Kellens, K.; Slaets, P. Energy Efficient Trajectories for an Industrial ABB Robot. Procedia CIRP 2014,
15, 105–110. [CrossRef]

10. Paryanto; Brossog, M.; Kohl, J.; Merhof, J.; Spreng, S.; Franke, J. Energy Consumption and Dynamic Behavior Analysis of a
Six-Axis Industrial Robot in an Assembly System. Procedia CIRP 2014, 23, 131–136. [CrossRef]

11. Gadaleta, M.; Berselli, G.; Pellicciari, M. Energy-Optimal Layout Design of Robotic Work Cells: Potential Assessment on an
Industrial Case Study. Robot. Comput.-Integr. Manuf. 2017, 47, 102–111. [CrossRef]

12. Gadaleta, M.; Pellicciari, M.; Berselli, G. Optimization of the Energy Consumption of Industrial Robots for Automatic Code
Generation. Robot. Comput.-Integr. Manuf. 2019, 57, 452–464. [CrossRef]

13. Osa, T. Multimodal Trajectory Optimization for Motion Planning. Int. J. Robot. Res. 2020, 39, 983–1001. [CrossRef]
14. Riazi, S.; Wigström, O.; Bengtsson, K.; Lennartson, B. Energy and Peak Power Optimization of Time-Bounded Robot Trajectories.

IEEE Trans. Autom. Sci. Eng. 2017, 14, 646–657. [CrossRef]
15. Pastras, G.; Fysikopoulos, A.; Chryssolouris, G. A Theoretical Investigation on the Potential Energy Savings by Optimization of

the Robotic Motion Profiles. Robot. Comput.-Integr. Manuf. 2019, 58, 55–68. [CrossRef]
16. Paryanto; Hetzner, A.; Brossog, M.; Franke, J. A Dynamic Simulation Model of Industrial Robots for Energy Examination Purpose.

Appl. Mech. Mater. 2015, 805, 223–230. [CrossRef]
17. Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A Method for Reducing the Energy Consumption of Pick-and-Place Industrial

Robots. Mechatronics 2013, 23, 326–334. [CrossRef]
18. Horla, D.; Cieślak, J. On Obtaining Energy-Optimal Trajectories for Landing of UAVs. Energies 2020, 13, 2062. [CrossRef]
19. Feng, Y.; Ji, Z.; Gao, Y.; Zheng, H.; Tan, J. An Energy-Saving Optimization Method for Cyclic Pick-and-Place Tasks Based on

Flexible Joint Configurations. Robot. Comput.-Integr. Manuf. 2021, 67, 102037. [CrossRef]
20. Ji, C.; Kong, M.; Li, R. Time-Energy Optimal Trajectory Planning for Variable Stiffness Actuated Robot. IEEE Access 2019, 7,

14366–14377. [CrossRef]
21. Glorieux, E.; Riazi, S.; Lennartson, B. Productivity/Energy Optimisation of Trajectories and Coordination for Cyclic Multi-Robot

Systems. Robot. Comput.-Integr. Manuf. 2018, 49, 152–161. [CrossRef]
22. Sangiovanni, B.; Incremona, G.P.; Piastra, M.; Ferrara, A. Self-Configuring Robot Path Planning with Obstacle Avoidance via

Deep Reinforcement Learning. IEEE Control Syst. Lett. 2021, 5, 397–402. [CrossRef]

https://unric.org/en/sdg-7/
http://doi.org/10.1016/j.eswa.2021.114660
http://doi.org/10.1016/j.compeleceng.2015.01.009
http://doi.org/10.1177/0278364913507983
http://doi.org/10.1155/2021/5338134
http://doi.org/10.1177/1687814018773852
http://doi.org/10.1016/j.procir.2014.06.043
http://doi.org/10.1016/j.procir.2014.10.091
http://doi.org/10.1016/j.rcim.2016.10.002
http://doi.org/10.1016/j.rcim.2018.12.020
http://doi.org/10.1177/0278364920918296
http://doi.org/10.1109/TASE.2016.2641743
http://doi.org/10.1016/j.rcim.2019.02.001
http://doi.org/10.4028/www.scientific.net/AMM.805.223
http://doi.org/10.1016/j.mechatronics.2013.01.013
http://doi.org/10.3390/en13082062
http://doi.org/10.1016/j.rcim.2020.102037
http://doi.org/10.1109/ACCESS.2019.2891663
http://doi.org/10.1016/j.rcim.2017.06.012
http://doi.org/10.1109/LCSYS.2020.3002852

Energies 2022, 15, 2074 20 of 20

23. Hovgard, M.; Lennartson, B.; Bengtsson, K. Applied Energy Optimization of Multi-Robot Systems through Motion Parameter
Tuning. CIRP J. Manuf. Sci. Technol. 2021, 35, 422–430. [CrossRef]

24. Wang, J.; Liu, J.; Chen, W.; Chi, W.; Meng, M.Q.-H. Robot Path Planning via Neural-Networks-Driven Prediction. IEEE Trans.
Artif. Intell. 2021, 1. [CrossRef]

25. Patle, B.K.; Jha, A.; Pandey, A.; Gudadhe, N.; Kashyap, S.K. The Optimized Path for a Mobile Robot Using Fuzzy Decision
Function. Mater. Today Proc. 2019, 18, 3575–3581. [CrossRef]

26. Jang, G.; Cho, S.-B. Optimal Trajectory Path Generation for Jointed Structure of Excavator Using Genetic Algorithm. In Proceedings
of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1953–1959.

27. Landa-Torres, I.; Manjarres, D.; Bilbao, S. Metaheuristic Algorithm for Optimal Swarm Robotic Parameter Configuration in Time-
Variant Plume Detection. In EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, Lisboa, Portugal,
17–19 September 2018; Rodrigues, H.C., Herskovits, J., Mota Soares, C.M., Araújo, A.L., Guedes, J.M., Folgado, J.O., Moleiro, F.,
Madeira, J.F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 959–969, ISBN 978-3-319-97772-0.

28. Cong, Y.Z.; Ponnambalam, S.G. Mobile Robot Path Planning Using Ant Colony Optimization. In Proceedings of the 2009
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 851–856.

29. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on
an Improved Artificial Potential Field Algorithm. Energies 2019, 12, 2342. [CrossRef]

30. Szczepanski, R.; Bereit, A.; Tarczewski, T. Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by
Augmented Reality. Energies 2021, 14, 6642. [CrossRef]

31. Quan, Y.; Ouyang, H.; Zhang, C.; Li, S.; Gao, L.-Q. Mobile Robot Dynamic Path Planning Based on Self-Adaptive Harmony
Search Algorithm and Morphin Algorithm. IEEE Access 2021, 9, 102758–102769. [CrossRef]

32. Liu, S.Q.; Kozan, E. A Hybrid Metaheuristic Algorithm to Optimise a Real-World Robotic Cell. Comput. Oper. Res. 2017, 84,
188–194. [CrossRef]

33. Wang, W.; Chen, Y.; Jia, Y. Evaluation and Optimization of Dual-Arm Robot Path Planning for Human–Robot Collaborative Tasks
in Smart Manufacturing Contexts. ASME Lett. Dyn. Syst. Control 2020, 1, 011012. [CrossRef]

34. Imajo, S.; Konishi, M.; Nishi, T.; Imai, J. Application of a Neural Network to the Generation of a Robot Arm Trajectory. Artif. Life
Robot. 2005, 9, 107–111. [CrossRef]

35. Yan, L.; Yang, Y.; Wenfu, X.; Vijayakumar, S. Dual-arm Coordinnated Motion Planning and Compliance Control for Capturing
Moving Objects with Large Momentum. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2901–2908.

36. Nishi, T.; Mori, Y. Energy Efficient Motion Planning of Dual-Armed Robots with Pickup Point Determination for Transportation
Tasks. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Bangkok, Thailand, 16–19 December 2018; pp. 1401–1405.

37. Nonoyama, K.; Nishi, T. Every-Efficient Motion Planning for Dual-Armed Robot by Pid Gain Optimization with Genetic
Algorithm. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon,
France, 23–27 August 2021; pp. 1155–1160.

38. Das, P.K.; Behera, H.S.; Panigrahi, B.K. Intelligent-Based Multi-Robot Path Planning Inspired by Improved Classical Q-Learning
and Improved Particle Swarm Optimization with Perturbed Velocity. Eng. Sci. Technol. Int. J. 2016, 19, 651–669. [CrossRef]

39. Contreras-Cruz, M.A.; Ayala-Ramirez, V.; Hernandez-Belmonte, U.H. Mobile Robot Path Planning Using Artificial Bee Colony
and Evolutionary Programming. Appl. Soft Comput. 2015, 30, 319–328. [CrossRef]

40. Plooij, M.; Wisse, M.A. Novel Spring Mechanism to Reduce Energy Consumption of Robotic Arms. In Proceedings of the
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal, 7–12 October 2012;
pp. 2901–2908.

41. Kawasaki Heavy Industries, Ltd. Standard Specifications of DuAro. Available online: https://robotics.kawasaki.com/userAssets1
/productPDF/duAro1_WD002NLF61052-E.pdf (accessed on 7 January 2022).

42. Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

43. Liu, Z.; Nishi, T. Multipopulation Ensemble Particle Swarm Optimizer for Engineering Design Problems. Math. Probl. Eng. 2020,
2020, 1450985. [CrossRef]

44. Liu, Z.; Nishi, T. Strategy Dynamics Particle Swarm Optimizer. Inf. Sci. 2022, 582, 665–703. [CrossRef]
45. Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Population Size in Particle Swarm Optimization. Swarm Evol. Comput. 2020,

58, 100718. [CrossRef]

http://doi.org/10.1016/j.cirpj.2021.07.012
http://doi.org/10.1109/TAI.2021.3119890
http://doi.org/10.1016/j.matpr.2019.07.288
http://doi.org/10.3390/en12122342
http://doi.org/10.3390/en14206642
http://doi.org/10.1109/ACCESS.2021.3098706
http://doi.org/10.1016/j.cor.2016.09.011
http://doi.org/10.1115/1.4046577
http://doi.org/10.1007/s10015-004-0334-4
http://doi.org/10.1016/j.jestch.2015.09.009
http://doi.org/10.1016/j.asoc.2015.01.067
https://robotics.kawasaki.com/userAssets1/productPDF/duAro1_WD002NLF61052-E.pdf
https://robotics.kawasaki.com/userAssets1/productPDF/duAro1_WD002NLF61052-E.pdf
http://doi.org/10.1155/2020/1450985
http://doi.org/10.1016/j.ins.2021.10.028
http://doi.org/10.1016/j.swevo.2020.100718

	Introduction
	Literature Review
	Robot’s Workpiece Transportation Motion Plan
	Model of Workpiece Transportation Motion
	Defining Robot Dynamics
	Genetic Algorithm for Optimization of PID Gain Tuning
	Initialization
	Generation of Initial Individuals
	Evaluation
	Selection
	Crossing Over
	Mutation
	Update Generation

	Optimal Robot Placement and Motion Planning
	Problem Statement
	Particle Swarm Optimization

	Results
	Robot Motion Planning
	Experimental Conditions
	Experimental Results

	Robot Placement and Motion Planning
	Illustrative Example
	Comparison Results

	Simulation and Implementation

	Conclusions
	References

