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Abstract: The atmospheric CO2 concentration has been continuously increasing due to fossil fuel
combustion. The transformations of CO2 and CO2 derivatives into high value-added chemicals such
as alcohols are ideal routes to mitigate greenhouse gas emissions. Among alcohol products, methanol
is very promising as it fulfills the carbon neutral cycle and can be used for direct methanol fuel
cells. Herein, we summarize the recent progress in the hydrogenation of CO2 or CO2 derivatives to
methanol, and focus on those systems with homogeneous catalysts and molecular hydrogen as the
reductant. Discussions on the catalytic systems, efficiencies, and future outlooks will be given.
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1. Introduction

Global warming has been a growing problem for our ecological environment dur-
ing the last several decades, due to the continuous combustion of fossil fuels and CO2
emissions [1]. The atmospheric CO2 concentration has increased to 415 ppm; therefore,
CO2 capture and utilization is not only important to academic research, but to the whole
environment and ecosystem on Earth [2–4].

Transforming CO2 into high value-added chemicals or alcohols, which can then be
used as biofuel, is an efficient and profitable way to fulfil a carbon-neutral cycle. Nobel Lau-
reate Prof. George A. Olah proposed the concept of the “methanol economy” [5–7], which
advocated for the catalytic conversion of CO2 to methanol by reducing the greenhouse gas
in order to produce methanol for energy applications such as direct methanol fuel cells
(DMFC), as well as raw materials for the synthesis of olefins and other hydrocarbons. In
addition, methanol can act as a hydrogen energy carrier since it contains 12.6 wt% of hydro-
gen and can be easily stored, transported, and distributed using existing pipelines because
of its liquid nature [8,9]. Under this concept, methanol is used as a liquid organic hydrogen
carrier (LOHC) which can reversibly store and release molecular hydrogen whenever and
wherever it is in demand [10–15].

Practical methods of CO2 hydrogenation to methanol were usually based on hetero-
geneous catalysis, and these reactions were traditionally carried out at high temperatures
(200–300 ◦C) [16–20]. Studies showing homogeneous catalytic CO2 hydrogenation under
relatively mild conditions (<150 ◦C) are of great significance, and considerable efforts have
been made in the last decade to achieve this [21–28].

Among the homogeneous catalytic reactions of CO2 hydrogenation to methanol,
the major catalytic systems are transition-metal catalysts [21–29], frustrated Lewis-pairs
(FLPs) [30–33] or N-heterocyclic carbenes (NHC) [34–36], and reductants such as H2 [22,29],
silanes [34,35], or boranes [37,38] are often employed. As a result of its atom efficiency and
low cost, molecular hydrogen is used in CO2 hydrogenation more often. Consequently,
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this review will focus on the hydrogenation of CO2 and CO2 derivatives with H2 as the
reductant for molecular catalysis, and especially on those systems that have employed
transition-metal pincer complexes and metal–ligand cooperation over the past ten years.

2. Hydrogenation of CO2 or CO2 Derivatives
2.1. Ru-Based Catalysts

The first homogeneous CO2 hydrogenation to methanol was reported by Sasaki and
coworkers in 1993 (Figure 1) [39]. In this report, methanol was observed to be an intermedi-
ate during the hydrogenation of CO2 to methane. The reaction was carried out using a 1:3
CO2/H2 mixture with an initial pressure of 80 atm, which was gradually heated to 240 ◦C.
The catalytic system consisted of Ru3(CO)12 and KI, which produced methanol with a TON
of 32 based on a ruthenium atom. However, the selectivity was poor, different components
such as carbon monoxide, methane, and ethane were generated, and the ratio was hard
to control. In 1995, the same group studied the detailed mechanisms of this reaction [40].
Under 240 ◦C, the trinuclear Ru precursor Ru3(CO)12 was transformed into the tetranuclear
species [H2Ru4(CO)12]2− and [H3Ru4(CO)12]−, which were the catalytic active species.
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Figure 1. Hydrogenation of CO2 using Ru3(CO)12.

This Ru3(CO)12–KI catalytic system demonstrated the feasibility of gaseous CO2
hydrogenation to methanol; however, some limitations such as high temperature and
pressure, low turnover efficiency, and poor selectivity have to be considered. Therefore,
developing CO2 hydrogenation under relatively mild conditions is urgent and of great
significance, though great improvements have been made in the last ten years.

A cascade synthesis of methanol from CO2 was reported by the Sanford group in
2011 (Figure 2) [41]. Three different homogeneous catalysts were employed, including
(PMe3)4Ru(Cl)(OAc) ([Ru]-1), Sc(OTf)3, and (PNN)Ru(CO)(H) ([Ru]-2). The three-step
cascade reaction was realized in one reaction apparatus with an inner and outer vessel,
without isolating the corresponding intermediates. The first and second steps were carried
out in the inner vessel, and the hydrogenation of CO2 to formic acid with [Ru]-1 and
Sc(OTf)3- catalyzed esterification to generate methyl formate. The reaction temperature was
then increased to 135 ◦C, and the formate was transferred to the outer vessel automatically.
The last step was a ruthenium–pincer complex; [Ru]-2 catalyzed hydrogenation of the
formate ester to methanol. The inner–outer vessel transfer approach also enhanced the
overall turnover number of the reaction significantly, with a turnover number of 21, which
is eight times greater than the reaction carried out in one pot without an inner–outer
vessel. The difference in catalytic efficiency was ascribed to the deactivation of the [Ru]-2
catalyst in the first and second steps. A similar protocol was also developed by Goldberg
and coworkers in 2019, with a combination of Ru(H)2[P(CH2CH2PPh2)3]/Sc(OTf)3/Ir-
(tBuPCP)(CO), and an overall TON of 428 was obtained [42].

The above approach, developed by the Sanford group, opened a new way for CO2
hydrogenation to methanol, and used structurally well-defined metal–ligand complexes
as a catalyst. However, the combination of three different catalysts was complicated. A
one-pot CO2 hydrogenation to methanol with a single catalyst was still desirable.

In 2012, Klankermayer, Leitner, and others presented a single ruthenium–phosphine com-
plex that catalyzed the CO2 hydrogenation to methanol with high efficiency (Figure 3) [43].
Two catalytic systems, [Ru(acac)3]/Triphos and [(Triphos)Ru-(TMM)]2 ([Ru]-3), were able
to promote formate hydrogenation to methanol independently. Acid additives were re-
ported to have facilitated the generation of active ruthenium species from Ru precursors,
thus, [Ru(acac)3]/Triphos/MSA/EtOH or [Ru]-3/HNTf2/EtOH were tested for direct CO2
hydrogenation in one pot, respectively. These two multifunctional catalysts worked on
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CO2 hydrogenation to formic acid, and hydrogenation of formate ester to methanol. The
highest TONs were 135 with [Ru(acac)3] and 221 with [Ru]-3 under 140 ◦C, with 20 bar
CO2 and 60 bar H2. These results clearly demonstrate that CO2 hydrogenation to methanol
can be realized with a single catalyst in one pot, and that they exhibit comparable turnover
numbers. The metal triphos system was further expanded by Klankermayer and others in
2020; a tridentate tdppcy (cis,cis-1,3,5-tris-(diphenylphosphino)cyclohexane) ligand was
introduced as a structurally tailored ligand, in combination with a ruthenium precursor
(cod)Ru(methallyl)2. The TON of CO2 hydrogenation was around 1100, and switching the
solvent from THF to EtOH resulted in an unprecedented TON up to 2100 [44].
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The Sanford group also disclosed another elegant approach of tandem CO2 hydro-
genation to methanol in 2015, by using a single ruthenium catalyst [Ru]-4 (Figure 4) [45].
The key to success was introducing a CO2 capture process to generate carbamate inter-
mediates, which underwent an additional hydrogenation step to produce methanol. In
this report, dimethylamine was used as a CO2 capture reagent for dimethylammonium
dimethylcarbamate (DMC), which was tested as a model substrate for methanol synthesis.
The optimal conditions for DMC hydrogenation were found to be Ru-MACHO-BH ([Ru]-4),
with K3PO4 as base under 50 bar H2 at 155 ◦C, and a TON of 19 was observed. Two possible
mechanistic routes were suggested; the first was DMC hydrogenation to DMF, the other
was a CO2 release from DMC and subsequent CO2 hydrogenation to formic acid, followed
by an amidation reaction to generate DMF. Notably, this method was able to occur under
2.5 bar CO2, which was a greatly reduced pressure compared with others. Under the
optimal conditions, CO2 (2.5 bar)/H2 (50 bar) was heated at 95 ◦C to form DMF, after
which, the temperature was increased to 155 ◦C in order to enable the hydrogenation of
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DMF to methanol. The highest TON of 550 was achieved, and the conversion of CO2 was
as high as 96%.
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Meanwhile, Milstein and coworkers developed a combined CO2 capture/utilization
protocol for methanol synthesis (Figure 5) [46]. They focused their efforts on the tandem
reaction of CO2 to oxazolidinone and oxazolidinone hydrogenation, and a variety of amino
alcohols were used as CO2 capture reagents. Valinol was found to be an ideal reagent
to give higher yields and to shorten reaction time. The second step took place under
Ru complex ([Ru]-5) and tBuOK, and methanol was obtained in 92% yield at 135 ◦C. In
this work, they also showcased a one-pot reaction of CO2 capture/hydrogenation, where
1–3 bar of CO2 was transformed into oxazolidinone, and underwent the hydrogenation
step without isolation, using a [Ru]-5 catalyst to obtain methanol in 53% yield.
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In 2015, Ding and coworkers developed elegant examples of ruthenium catalyzed
by N-formylation reactions of morpholine with H2/CO2 to generate formamide, which
was able to undergo a second step of hydrogenation, which produced methanol with high
efficiency (Figure 6) [47]. The highest turnover number achieved for the N-formylation
reaction was 1,940,000, with a 0.00005 mol% [Ru]-6 catalyst. A one-pot, two-step CO2
hydrogenation to methanol was realized under 35 atm CO2 and 35 atm H2 at 120 ◦C in
THF with a [Ru]-7 catalyst, and then 50 atm H2 at 160 ◦C to produce methanol in 36%
yield. Notably, another Ru-catalyzed amine-assisted CO2 hydrogenation to methanol via
formamide was later reported by Prakash [48].
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These three methods developed by Sanford [45], Milstein [46], and Ding [47] provided
a new way for CO2 capture and utilization (CCU) using a homogeneous ruthenium catalyst
and an amine as a capture reagent. In early 2016, the Olah and Prakash group reported
a similar strategy (Figure 7) [49]. CO2 was captured by pentaethylenehexamine (PEHA),
which has low volatility, is a highly basic reagent, and showed good solubility in THF.
A variety of ruthenium pincer catalysts were examined for this CO2 hydrogenation to
methanol with PEHA as an amine and K3PO4 as an additive at 75 bar CO2/H2 (1:3). It was
found that a significantly higher TON (1060) was obtained when employing Ru-MACHO-
BH ([Ru]-4) as a catalyst, and keeping the reaction temperature at 155 ◦C consistently
resulted in a 23% CO2 conversion to CH3OH. The catalyst was recycled and reused by
a simple distillation of the mixture after the reaction; five more cycles were performed
and a total TON of 1850 was reached. By increasing the CO2/H2 ratio from 1:3 to 1:9,
methanol was formed in 65% NMR yield. Remarkably, direct CO2 capture from an ambient
atmosphere, with PEHA and in situ hydrogenation, was achieved with up to 79% yield
of methanol. This work was a significant step forward in terms of capturing CO2 from an
ambient atmosphere in order to transform it into methanol.

Based on this work, the Prakash group further demonstrated a recyclable system for
a CO2 capture/in situ hydrogenation system [50]. Methanol was generated in a biphasic
2-methyl THF/water system, which allows for regeneration and an easy separation of
catalyst ([Ru]-4) and amine (PEHA). The catalytic system was recycled at least three times
without significant loss of activity. CO2 from the air can also be transformed into methanol
under this protocol.

Very recently, Prakash and coworkers introduced an alkaline, hydroxide-based system
for CO2 capture and hydrogenation to methanol (Figure 8) [51]. Inexpensive inorganic bases
such as NaOH, KOH, Ca(OH)2 were combined with ethylene glycol for the CO2 capture
process. The in situ formed bicarbonate and formate were hydrogenated to methanol with a
high yield; the inorganic base and ethylene glycol were regenerated, along with a methanol
formation. The optimal catalytic system was found to be 0.5 mol% Ru-MaCHO-BH ([Ru]-4)
under 70 bar H2 at 140 ◦C, the NMR yield of methanol reached up to 100%, and TON
reached up to 480 with 0.1 mol%. In an integrated one-pot system, CO2 capture from
ambient air and subsequent hydrogenation was realized to give a 100% NMR yield of
methanol based on captured CO2 [52].
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Another amine-assisted CO2 hydrogenation to methanol without a tridentate pincer-
type ligand was reported by the Wass group in 2017 (Figure 9) [53]. Several new catalyst sys-
tems containing ruthenium and amine auxiliaries were investigated, and an exceptional TON
of 8900 and TOF of 4500 h−1 were obtained by employing [RuCl2(Ph2PCH2CH2NHMe)2]
([Ru]-8) and diisopropylamine under 100 ◦C in 2 h.
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In addition to small molecular organic amines and inorganic bases promoting CO2 hy-
drogenation, polymeric amines with a molecular weight ranging from 600 to 250,000
were investigated by Kayaki and their coworkers in 2019 [54]. Branched and linear
poly(ethyleneimine)s (PEIs) were used as an amine source to be formylated, with the
[Ru]-4 catalyst at 100 ◦C in THF. The formamide group that was attached to the polymer
backbones were hydrogenated to recover the PEI and obtain methanol. A one-pot protocol
was also used so that methanol could be easily separated from the mixture. The highest
TON was 689 under 20 bar CO2 and 60 bar H2 at 150 ◦C.

From the examples above, it is evident that the direct CO2 hydrogenation to methanol
is still demanding, and requires additional components, such as an organic amine or an
inorganic base to promote the CO2 fixation and transformation, which is due to the high
activation barrier of CO2. Cascade CO2 hydrogenation, or one-pot two-step hydrogenation,
were subsequently investigated. Alternatively, employing CO2 derivatives as a substrate
will significantly lower the activation barrier. One can use a different capture reagent to
react with CO2 in order to make a number of CO2 derivatives, such as ureas, formates,
carbamates, and carbonates; these derivatives then undergo hydrogenation to obtain
methanol under transition metal catalysts.

Based on this conception, in 2011, the Milstein group hydrogenated various CO2
derivatives, including formates, carbamates, and carbonates (Figure 10) [55]. When ap-
plying dimethyl carbonate as a substrate, the hydrogenation was achieved with [Ru]-2 at
145 ◦C, 60 bar H2, resulting in a TOF of 2500 h−1, and with [Ru]-9 at 110 ◦C, 50 bar H2,
a TOF of 314 h−1 was given. For methyl formate, [Ru]-2 showed the highest efficiency
and lead to a TON of 4700 at 50 bar H2. A variety of substituted methyl carbamates as
substrates were also able to be hydrogenated with [Ru]-2 under 10 bar H2 at 110 ◦C in THF,
to deliver methanol in 94–98% yield.
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Shortly afterwards, the hydrogenation of another important CO2 derivative, urea to
methanol, was developed by Milstein and coworkers in the same year (Figure 11) [56].
[Ru]-2 was found to be the most effective for urea hydrogenation, with 2 mol% [Ru]-2 under
13.6 atm of H2, and urea derivatives were successfully transformed into methanol with a
46–94% yield. Preliminary mechanism studies showed that the reaction first proceeded
with the hydrogenolysis of urea to obtain formamide and amine, then the formamide was
hydrogenated to deliver methanol.
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Another key intermediate in the chemical industry, ethylene carbonate, has been used
for ethylene glycol synthesis as a key step in Shell’s omega process. In 2012, the Ding group
reported that a PNP pincer ruthenium complex catalyzed the hydrogenation of ethylene
carbonate and other cyclic carbonates (Figure 12) [57]. Specifically, Ru-MACHO ([Ru]-7)
was found to be the most efficient, and a remarkable TON of 87,000 was achieved by
employing only 0.001 mol% [Ru]-7 under 60 atm H2 at 140 ◦C, which produced methanol
in 84% yield. A number of substituted cyclic carbonates were hydrogenated to methanol
with a high yield.
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2.2. Co-Based Catalysts

The aforementioned CO2 hydrogenation reactions were realized by ruthenium cat-
alysts; in sharp contrast, the first-row transition metals are less developed for this trans-
formation, and their high abundance, low cost, and low toxicity have also drawn much
attention in the past five years [58–60].

Homogeneous CO2 hydrogenation to methanol by non-pincer-type base metal cataly-
sis was first discovered by Beller and coworkers in 2017 (Figure 13) [61]. The active catalytic
species contains Co(acac)3, triphos, and HNTf2, with 20 bar of CO2 and 60 bar of H2 at
140 ◦C, which achieved a TON of 31. The continued increase in H2 pressure to 70 bar, in
addition to more Brønsted acid, improved the TON to 50, even with the lower temperature
of 100 ◦C, which is one of the lowest temperatures to be recorded during a successful CO2
hydrogenation to methanol reaction.
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Two years later, the Beller group modified the aforementioned molecularly defined
cobalt catalyst system, and a TON of up to 125 was reached, which was more than two-
fold greater than the TON reached in the previous reaction [62]. The key to the increase
was the modification of triphos by adding substituents on the phenyl ring of the ligand.
Triphos(p-tol) (Figure 13) was found to be the most efficient, which was attributed to the
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increased electron density on phosphorus, which made the cobalt center more electron-rich
to activate H2. The additive, HNTf2, could also be removed by using Co(NTf2)2 as the
catalyst instead of Co(acac)2.

2.3. Mn-Based Catalysts

Prakash and their colleagues discovered a Mn(I)–PNP pincer complex ([Mn]-1) that
catalyzed a one-pot CO2 hydrogenation in 2017 (Figure 14) [63]. Similar to previous
works catalyzed by ruthenium catalysts, this procedure also contained two steps: (1) N-
formylation of amines by CO2 and H2; and (2) formamide hydrogenation to methanol
under H2. In this work, a well-defined Mn–PNP catalyst ([Mn]-1) exhibited good activity
in both steps. Morpholine and benzylamines were better amine sources than amines with a
long alkyl chain, such as amylamine. The optimal conditions were found to be benzylamine
under CO2 (30 bar) and H2 (30 bar) with 2 mol% [Mn]-1 catalyst at 110 ◦C in THF, which
gave the N-formylation product, and then an increase in the total pressure to 80 bar with
another 36 h to obtain methanol in 84% yield. However, the turnover number and turnover
efficiency were not able to be compared with noble metal catalysts. This study demonstrates
the feasibility of using base-metal pincer catalysts in homogeneous CO2 hydrogenation to
methanol reactions.
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In 2018, the groups of Milstein, Rueping, and Leitner independently reported the
manganese-catalyzed hydrogenation of carbonates (Figure 15) [64–66]. In Milstein’s re-
port, a PNN pincer manganese complex ([Mn]-2) was chosen as the optimal catalyst at
under 30–50 bar of H2 at 110 ◦C, and a wide range of cyclic and acyclic carbonates were
hydrogenated to methanol smoothly. Unsymmetrical acyclic carbonates were also suit-
able substrates for this transformation, although they achieved lower yields. Moreover,
poly(propylene carbonate) from waste plastic was able to undergo depolymerization and
hydrogenation to afford methanol in 59% yield [64]. Rueping and others mainly focused on
cyclic carbonates as substrates, with a 0.25 mol% PNN pincer manganese complex([Mn]-3)
and KOtBu as a base under 50 bar of H2 at 140 ◦C. Ethylene carbonate was hydrogenated to
>99% ethylene glycol and 92% methanol, and poly(propylene carbonate) was hydrogenated
with a catalyst [Mn]-3 to produce methanol in 84% yield, which also provides new avenues
for plastic degradation. Density functional theory also confirmed the heterolytic cleavage
of the dihydrogen molecule. [65] The Leitner group made use of the PNP pincer manganese
complex [Mn]-1 and NaOtBu as a base under 30 bar H2, to obtain methanol in 41–94%
yields from different cyclic carbonates. These reports demonstrate the feasibility of using
non-noble metal pincer-type catalysts in the hydrogenation of carbonates, which, combined
with CO2 fixation, could complete the CO2 hydrogenation to methanol [66].
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The hydrogenation tendency of polar unsaturated chemical bonds depends on their
polarity. Compared to carbonate, carbamates, and ureas, they are more challenging car-
bonyls in terms of hydrogenation. As common products that result from the reaction of CO2
with amines, or with amines and alcohols, the hydrogenation of carbamates and ureas is
highly attractive, and will provide milder conditions for an indirect CO2 hydrogenation to
methanol (Figure 16) [67]. The conditions for the hydrogenation of carbamates developed
by Milstein were 2 mol% [Mn]-4, 3 mol%, tBuOK under 20 bar, H2 at 130 ◦C, which led to a
series of aryl amine- and alkyl amine-derived carbamates to be hydrogenated in excellent
yields. Under similar conditions, the most challenging urea derivatives were hydrogenated,
obtaining both amines and methanol successfully.
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2.4. Fe-Based Catalysts

Recently, Bernskoetter and coworkers represented a homogeneous Fe–PNP com-
plex ([Fe]-1), which catalyzed CO2 hydrogenation to methanol in a two-step fashion
(Figure 17) [68]. The reaction was attempted in a single batch and was found to be in-
efficient due to catalyst poisoning by CO2 during the formamide hydrogenation step. More
specifically, the catalyst formed a stable iron(II) formate complex under the CO2 atmosphere
and was not active anymore. By switching the conditions to a two-step procedure, a net
TON of 590 was achieved, which was superior to the base-metal catalysts reported for
this reaction.
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3. Conclusions

As previously discussed, using CO2 and CO2 derivatives for hydrogenation is indica-
tive of state-of-the-art research in this field (see Tables 1 and 2). The homogeneous catalytic
systems show benefits such as relatively mild conditions, low catalyst loadings and clear
reaction mechanistic pathways. However, there is still a long way to go in order for these
systems to be practical; the highest TONs achieved so far are around 9000 with ruthenium
catalysis, and therefore the identification of new catalytic conditions, especially the de-
velopment of non-noble catalysts with high catalytic efficiencies, is of great significance
to this realm. Furthermore, the advantages shown by the homogeneous systems can be
explored in more detail; given that the reaction is expected to occur under 100 ◦C or even
lower temperatures, the catalyst loadings still have room to be decreased, which in turn
may promote an increase in TONs. Finally, the direct capture of CO2 from the flue gas of
coal combustion or from an ambient atmosphere is important to the carbon neutral cycle
and has been seen in a few examples.

Table 1. Molecular catalysts for CO2 hydrogenation to methanol.

Catalyst Auxiliary T
(◦C)

P
(bar) Solvent Time

(h) TON Ref.

Ru3(CO)12 KI 240 80 NMP 3 32 [39]

[Ru]-1/[Ru]-3 Sc(OTf)3 135 40 Dioxane 16 21 [41]

Ru(H)2[P(CH2CH2PPh2)3]
Sc(OTf)3 90 62 Dioxane

EtOH
16 428 [42]Ir-(tBuPCP)(CO)

[Ru(acac)3] Triphos MSA 140 80 EtOH 24 135 [43]

[Ru]-3 HNTf2 140 80 EtOH 24 221 [43]

(cod)Ru(methallyl)2
Tdppcy

120 120 THF 20 1100 [44]Al(OTf)3

(cod)Ru(methallyl)2
Tdppcy

Al(OTf)3
120 120 EtOH 20 2100 [44]

Ru-MACHO-BH Dimethylamine 95~155 50 THF 54 550 [45]

[Ru]-5 Valinol 135 60 DMSO/THF 19 322 [46]

[Ru]-6 Morpholine 120 70 THF 96 1,940,000 [47]

[Ru]-4 PEHA 155 70 THF 40 1060 [49]

[Ru]-4 PEHA 145 70 2-MeTHF/H2O 72 520 [50]

[Ru]-4 Ethylene glycol 140 70 THF 72 480 [51]

[Ru]-8 Amine 100 40 Toluene 20 8900 [53]

[Ru]-4 PEIs 150 80 THF 20 689 [54]

Co(acac)3 Triphos HNTf2 140 80 THF/EtOH 24 31 [61]

Co(acac)3 Triphos 110 90 THF/EtOH 24 50 [61]

Co(NTf2)2 Triphos(p-tol) 100 90 THF/EtOH 24 125 [62]

[Mn]-1 Morpholine 110 80 THF 36 840 [63]

[Fe]-1 Morpholine 120 69 Dioxane 16 590 [68]
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Table 2. Molecular catalysts for CO2 derivatives hydrogenation to methanol.

Catalyst CO2 derivatives T
(◦C)

P
(bar) Solvent Time

(h) TON Ref.

[Ru]-2 Dimethyl carbonate 145 60 Dioxane 1 2500 [55]

[Ru]-9 Dimethyl carbonate 110 50 THF 14 4400 [55]

[Ru]-2 Methyl formate 110 50 THF 14 4700 [55]

[Ru]-2 Urea 100 13.6 THF 72 202 [56]

[Ru]-7 Ethylene carbonate 140 60 THF 48 87,000 [57]

[Mn]-2 Carbonates 110 50 PhMe 30 390 [64]

[Mn]-3 Cyclic carbonates 140 50 Dioxane 16 920 [65]

[Mn]-1 Cyclic carbonates 120 30 THF 40 175 [66]

[Mn]-4 Carbamates, urea 130 20 Toluene 48 50 [67]

As is evident, regardless of whether a noble or non-noble metal is employed, the
majority of the catalysts are tridentate pincer-type complexes, which demonstrates the
superiority of pincer complexes for this transformation. In this regard, the modification of
the pincer ligand to achieve higher TONs and TOFs is desired, so that the heteroatoms and
substituents on the pincer ligand can be tuned based on their electronic and steric effects,
or so that new tridentate coordinating skeletons can be developed for hydrogen activation
in milder conditions. In terms of practical applications for CO2 capture and utilization,
the recyclability and stability of the catalysts should be considered. Prakash’s biphasic
system offers new routes for homogeneous catalysts to recycle in CO2 hydrogenation
reactions [50]. We believe that as the community has focused more on reducing CO2
emissions and developing routes for CO2 utilization, the homogeneous CO2 hydrogenation
will still be popular in the next decade or so, which will promote the realization of the
carbon neutral cycle.
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