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Abstract: In this study, the possibility of sector coupling with biological Power-to-Methane to
support and stabilize the energy transition of the three major sectors of electricity, heat, and gas was
addressed. For this purpose, the energy cell simulation methodology and the Calliope tool were
utilized for energy system optimization. This combination provides detailed insights into the existing
dependencies of consumers and fossil and renewable energy suppliers on a local scale. In this context,
Power-to-Methane represents an efficient technology for quickly and effectively exploiting unused
electricity potential for various sectors and consumers. It was found that, even in regions with low
wind levels, this surplus electricity potential already exists and depends on various influencing
factors in very different ways. The solar influence on these potentials was considered in connection
with gas-fired cogeneration plants for district heating. It was found that the current heat demand
for district heating produces a large amount of electricity and can generate surplus electricity in
the winter. However, in the summer, large amounts of usable waste heat are dissipated into the
environment, owing to the low consumption of district heat. This problem in the heat sector could
be reduced by the expansion of photovoltaics, but this would require further expansion of storage
or conversion systems in the electricity sector. This demonstrates that the consideration of several
sectors is necessary to reflect the complexity of the sector coupling with Power-to-Methane properly.

Keywords: Power-to-Methane; energy systems modeling; energy cell simulation; sector coupling;
sustainable energy; energy storage

1. Introduction

According to the Intergovernmental Panel on Climate Change [1], a limited CO2 bud-
get remains for the world to achieve the global goal of limiting the maximum temperature
increase to 1.5 ◦C. With an estimated budget of 580 GtCO2 remaining to emit, the goal will
be achieved by 50%. This goal of only emitting 580 GtCO2 can only be achieved through
further expansion of renewable energy and storage systems. In Europe, countries such
as Germany have committed themselves to reducing greenhouse gas emissions by up to
100% by 2045 compared with their 1990 levels. Since 1990, 40.8% has been achieved in
Germany [2]. This massive emission reduction and the reduction that still has to be done
indicate the urgency of the situation.

Reducing emissions does not only result in changes in the electricity sector, where
renewable energies have advanced most visibly. It is becoming increasingly important to
increase the use of renewables in the transport and heat sectors. The transport sector is
currently undergoing a change owing to technological advances in battery development
and public policies. In the heat sector, which is the second-largest CO2 emitter in Germany,
policies have been developed to reduce energy consumption. Strategies include switching
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from fossil fuels to renewable sources, such as from coal to renewable natural gas (RNG),
switching content (meaning increasing the amount of RNG), and employing the so-called
“modal switch” [3] (turning, for the most part, to decentralized structures in the heating
sector, as well as renovation and optimization of decentralized heating systems). One of
the most important strategies of the modal switch is district heating. In this context, to
provide a means of storing energy, clean heat sources, and solutions for the transport sector,
technologies such as Power-to-Methane (PtM) can help in solving these problems [4–7].
PtM technologies are essential for the production of RNG, which can be fed in the natural-
gas grid. In the first power-to-hydrogen step, water is separated into hydrogen and oxygen
through electrolysis, either via alkaline (AEL) or the polymer electrolyte membrane (PEM).
AEL has long been used in hydrogen production and, therefore, is already applicable
on a large scale [5]. PEM has a more flexible and faster load behavior. Thema et al. [4]
reviewed several implemented projects and came to the conclusion that, despite AEL
having a better CAPEX due to the long experience, AEL and PEM are implemented in
approximately equal shares. In the second hydrogen-to-methane step, the produced H2
reacts with CO2 to CH4. Either chemical-catalytic or biological methanation is available
for this purpose. Graf et al. [6] showed that catalytic methanation is more efficient but
also has less flexibility in the load change behavior. Biological methanation, on the other
hand, has much more moderate reaction conditions and resistance to gas contamination [8].
The projects investigated by Thema et al. [4] show that catPtM has so far achieved higher
maximum capacities and also has better CAPEX than bioPtM. However, both technologies
are implemented approximately equally often. As discussed by Morgenthaler et al. [7] the
combination of battery and PtM is a novel concept to make energy surplus more accessible.

The increased expansion of renewable energy sources (RESs) to cover these demands
has led to several problems in the power grid, challenging its current centralized structure.
Among the several issues affecting the grid, peak shaving, where industrial and commercial
power consumers level out their peaks in electricity use, and electricity surpluses that arise
at times of high renewable energy supply pose the biggest problems. In response to
these demands, it is necessary to develop approaches that involve a greater number of
stakeholders, as has been proposed for different circumstances [9] and approaches to energy
transitions [10]. At the center of these new approaches, a new generation of prosumers
are active in the energy system, with the expectation that new democratic forms of citizen
participation will emerge [11]. However, it is important to establish the extent to which
different technologies and types of demand can be efficiently combined at the local level [12].
Establishing a regional and local planning system is of great relevance because energy
markets (bidding zones) are usually national or supranational. Because of the oversupply
of electricity, its stock market price can fall to such an extent that negative electricity prices
are sometimes generated [13]. To reduce the surplus, either conventional power plants
must be shut down or the production of renewable energy must be curtailed.

For predicting power surpluses and placing storage technologies in the power grid,
complex simulations must perform at the local level. However, this requires a significant
amount of knowledge about the area to be modeled and specific simulation tools [12]. Nor-
mally, the simulation of energy systems is carried out at an industry level and restricted to a
few industrial processes or buildings, or it is at the level of entire regions or countries based
on aggregations of demand and generation [14]. However, a new generation of simulation
tools makes it possible to realize multi-nodal simulation models at different geographic
and temporal scales [15,16]. This makes the development of meso-level simulations in
clearly defined regions possible, simulating their respective interrelationships. In these
so-called “energy cell simulations”, the influence of the deployment of storage technologies
and distributed generation on energy cells [17] can be considered over several years [7].

Energy cells are defined here as a self-defined geographic scale, which usually consists
of buildings, neighborhoods, or cities. Scaling can also be up to the national scale. For
example, Tröndle et al. [18] pointed out that 497 energy cells were defined for the “Fully
Renewable Electricity European” Calliope model. Some studies subdivide cities into
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different sub-energy cells, which are connected to specific local electricity load and supply
profiles [15]. The cellular approach that inspired this study makes it possible to transmit
the energy that is not used in certain identified energy cells to cells that cannot guarantee
their own supply because of weather phenomena or high energy consumption. In other
words, energy should be consumed where it is generated, or it should be transported to the
energy cell that needs energy.

1.1. Research Problem

In the literature on regional energy system simulations, weather data has proven to be
an important issue in various contexts [19]. There is also great concern about the quality
of the data used to develop power system simulation models that serve as the basis for
decision-making [20]. In this regard, much effort has been devoted to the improvement
and validation of new climate data collections [19]. Several re-analysis data studies show
that some sources are different but, in some cases, may not have a significant impact on the
resulting simulation models [21].

Regarding the geographical dimension, because of the lack of granular data on the
geography, location, and demand loads, researchers and institutions have filled this gap
by developing databases that offer an aggregated or typical view of the daily behavior of
a consumer (Standard Load Profiles or SLP), the typical annual consumption of different
consumers, and the consumption in a region based on the top-down calculations based on
economic activities [22]. These databases are usually developed from disaggregation of
data by class, and they do not always coincide with reality [23].

In this study, we tackle this issue from a bottom-up perspective, with relatively few
simplifications, rather than a strictly top-down perspective. Moreover, as SLP data can be
inaccurate, standard consumer profiles were compared with real data collected in the two
case study regions. This makes the study highly valuable for real-world applications for
future investments in the field of energy storage.

Another subject that has not been investigated sufficiently is the storage of renewable
energy via PtM and the resulting heat generation [24]. Wind and PV produce renewable
power, but what is needed is the transformation into storable energy resources that can be
transported and distributed in existing energy grids and that can be used in the transport
and heat sector. PtM offer opportunities that are currently not integrated into energy
simulation models [25].

1.2. Research Objective

This article presents the results of two optimization models for two case study regions
in Germany. The optimization models simulate all available generation sources available
in the regions and their extension with an additional PtM technology. The optimization
model minimizes the cost of the overall systems that meet the given demand to determine
which combinations of technologies are economically meaningful.

The working hypothesis is that the use of real demand profiles (RLP) combined with
multiple time series of weather data should have an impact on the economic results of
the optimization model compared to models using only a one-year data series and SLP.
Therefore, we optimize the size of the systems using SLP [20], a demand that is characterized
by no large peaks of use and very regular behavior, and compare them to the results of
RLP, which contains a larger amount of variation. Our analysis focuses on runtime and
size capacity because the use of RESs and energy storage technologies depend highly on
peak demand and production. This should be especially visible in energy-conversion
technologies, such as PtM.

To control for the impact of these two demand curves on the simulation results, five
years with their respective solar data were considered. This makes it possible to control for
the level of influence of using multiple years of weather data in the existing photovoltaic
generation sources. This should control for possible “cherry-picking” strategies regarding
weather data and electricity usage.
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Instead of focusing only on electricity generation, heat, or gas [26], we included
RLP and SLP for natural gas demand, electricity demand, and heat demand. Efficient
technologies to provide heat and power are combined heat and power (CHP) technologies.
When CHP plants are operated to produce heat on demand, sometimes there is surplus
electrical power. When they are operated to fill shortages in the provision of electrical
power, sometimes there is surplus heat. PtM produces additional heat, mostly in the
process of electrolyzing renewable power from wind or PV. This work evaluates the system-
supporting role of biological PtM in the field of decentralized gas and district heat grids
and efficient energy production, conversion, and use in an energy cell.

2. Materials and Methods

In the following, the simulation in this study is explained. In addition, the different
data used, as well as the process carried out for their collection, preparation, and use,
are presented.

First, we identified the energy demand for heat, electricity, and gas by type of consumer.
For that, data on electricity, heat, and gas hourly load profiles were collected for different
exemplary categories according to their sector of activity from the district heating and
distribution companies working in the region. Second, to identify the weight of each
category in the total energy demand, final users’ size and number were identified using
building categories from OSM data. For that, OSM data were classified according to their
size and location and assigned to the demand profiles, which were normalized based
on public estimates of annual regional energy consumption. Third, the characteristics
of the available energy generation plants were included based on the Bavarian Energy
Atlas [27]. Here, generation technologies such as renewable energy systems (RES) such as
hydropower were used, but fossil-fuel-based combined heat and power generators were
also included. Then, a mixed linear-integer program (MILP) to define the size of the PtM
system that minimizes the overall cost of the regional energy system was proposed. Finally,
the MILP was applied to the two case studies for two different scenarios in different years.
Nevertheless, providing optimal system sizing based on all available energy sources was
beyond the scope of this study.

2.1. Optimization Model

In this paper, we continued the mixed-integer linear optimization (MILP) model from
Valdes et al. [20] with hourly resolution and analysis of the hourly operation of generation
and storage, such that the electricity demand in different periods was met. In this article, we
considered two case study regions with a PtM system coupled to its renewable and other
existing non-electricity supply technologies. The applied modeling framework computed
the optimum PtM system size and operation for a given predefined demand of electricity,
gas, and heat. The model calculated the amount installed capacity required to produce
a certain demand at each time step t and a certain total accumulated demand for every
period p. The model resembled others, such as the model presented by Pfenninger and
Keirstead [28] and the model presented by Díaz et al. [29]. One main difference is that this
model presented, in addition to an electricity demand, an added heat and gas demand.

The optimization model was developed using the Calliope modeling framework.
Calliope is an open simulation framework for optimizing and simulating energy systems,
including different energy carriers. The details of the optimization model and the different
constraints and conditions were not described. These can be found in Pfenninger and Pick-
ering [30] and in Pontes Luz and Amaro e Silvia [31], as well as in subsequent applications.
In general terms, the objective of the model presented here was to minimize the overall
costs necessary to cover the electricity and heat demands of each region, which was the
result of the aggregation of seven building categories, using a limited number of available
technologies. A simplified model is shown in Figure 1.
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Figure 1. Structure of the simplified model with data sources.

The power, heating, and gas demand is the aggregate demand of different types of
users classified according to their consumption profiles [32,33] (see Appendix A). Heat was
generated with the CHP and PtM technologies. The PtM technology allows for supplying
the heat and gas sectors with renewable methane gas. In addition, with the use of CHP
technologies, electricity and heat are generated simultaneously to cover the estimated
district heating demand. The CHP power plants are fired exclusively by gas, which can
be covered by the PtM plant, or by the gas grid supply, which is unrestricted. The model
included the investment costs, production, and operating and maintenance (O and M) costs
for each technology [7,34,35]. The use of PV and hydropower technologies was forced.
This means that these sources are always first activated to meet the demand and the hourly
potential was fully utilized. This priority over all others potentially results in excess energy.

We used Calliope in a model in which only three hypothetical sub-regions were consid-
ered: one region representing the generation sector, another including energy conversion
and storage technologies, and a last one including all energy demands (demand, heat,
and gas). This did not represent a real system such as other previous applications in-
volving multiple energy carriers [31,36], but the location and characteristics of the grid
were not available at the distribution grid level, therefore distribution grid losses may be
not representative.

The simulation framework Calliope has been identified as one of the most flexible
frameworks, and together with oemof and urbs, it is the only framework capable of
including a multi-energy system perspective, owing to its capacity to include different
energy carriers and sources [14]. The full mathematical formulation of the framework is
available online [37]. As in previous research [7], a PtM plant coupled to its own renewable
electricity supply technologies was considered, but other existing technologies and the
possibility of drawing gas from the grid was included in this case. The input parameter
values used are summarized in Table 1.

Table 1. Techno-economic model input data.

Installed
Capacity
SR [kW]

Installed
Capacity

VOF [kW]

Investment
Cost [€/kW]

Consumption
Cost [€/unit]

Fix O and
M [€/kW]

Lifetime
[a] Efficiency

Min. Usage
of Capacity

[%]

Hydropower 21,500 5000 5250 0 52.5 80 0.85 100
PV 54,028 24,517 1050 0 10.5 25 0.90 100

CHP bio 1354 4780 3000 - 30.0 20 0.35 0
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Table 1. Cont.

Installed
Capacity
SR [kW]

Installed
Capacity

VOF [kW]

Investment
Cost [€/kW]

Consumption
Cost [€/unit]

Fix O and
M [€/kW]

Lifetime
[a] Efficiency

Min. Usage
of Capacity

[%]

CHP 65 MW 65,000 65,000 787.5 - 15.57 25 0.332 0
CHP 22 MW 22,000 22,000 400 - 0.005 25 0.46 0

PtM Infinite Infinite 4568 - 137 25 0.54/0.85 0
Battery 5403 2452 1028 - 25.19 11 0.90 0

Gas pipeline Infinite Infinite 0 0.016 0 50 1.00 0
Bio supply Infinite Infinite 0 0.03 0 50 1.00 0

H2O supply Infinite Infinite 0 3.27 0 25 1.00 0
CO2 supply Infinite Infinite 0 0 0 25 1.00 0

Infinite: No limitations for calliope to optimize the scale of the technology.

2.2. Input Data

The data used in this study came from various sources, including newly collected end-
use energy hourly consumption data for electric and thermal clients; meteorological data for
the PV panel simulation from renewables.ninja [38], such as in Pfenninger and Staffell [39];
public data on annual energy consumption data per region [27]; geographic data on the
building usage [40]; public data on existing generating units and power plants [41]. These
data are presented in Section 2.1. The methodology consisted of three phases, following
Valdes [20] and Alhamwi [15], as shown in Figure 1.

2.2.1. Energy Generation and Sources

The generation side consisted of a combination of public available installed capacities
that were available in 2020 in the locations considered and a set of potential technologies.
All RESs used in the simulation are available from official sources [27]. These are PV,
hydropower, and biogas plants. The installed maximum capacity of the available tech-
nologies is listed in Table 1. To make full use of renewable electricity, hydropower and PV
generation capacities were always fully utilized and no curtailment was necessary. Time
series weather data for PV were collected from Pfenninger and Staffell [39]. They offered
bias-corrected capacity factors for renewable energy systems for PV over different years. To
cover the electricity and district heating demand in times of need, conventional gas-fired
CHP technologies were available. These CHP plants were not directly located in the region,
but the current CHP plants are present in the vicinity. The CHP plants are, besides PtM, the
only heat source for district heating demand. In addition to the methane produced by PtM,
natural gas was sourced from the German gas grid, and the cost and gas composition were
the same as in the German gas mix in 2019. Natural gas is available to cover direct demand
from CHP and households.

2.2.2. Energy Conversion and Storage

In the model, battery storage was first assumed, which corresponded to 10% of the
PV power installed on each case study region. This enabled the battery to compensate for
smaller power surpluses, which would still be too small for a PtM system to ramp up. In
addition, the battery can be charged or discharged to 25% within one hour. Other values
necessary for the simulation were taken from a market survey for battery storage [42]
(p. 20).

A simplified PtM model (see Figure 2) was calculated following Valdes et al. [20]. For
the PtM technology, it was considered that electrolysis is not carried out separately and that
all hydrogen can be directly transformed into methane. The upper heating value for H2
was 3.54 kWh/Nm3, and for CH4, it was 11.06 kWh/Nm3. As the study reviewed electrical
surplus with lots of start and shut-down cycles, we chose a PEM electrolyzer for the flexible
load behavior. The nominal H2 production for a PEM electrolyzer was given by H-Tec [43],
with 0.22 Nm3/h at an electrical nominal load of 1 kWh for the S-Series in relation to the
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upper heating value. This led to an efficiency factor of 78%, which was close to the average
value determined by Thema et al. [4] for hydrogen projects implemented.

4 H2 (g) + CO2 (g)→ CH4 (g) + 2 H2O (L) (1)

Figure 2. Abstract concept for a Power-to-Methane (PtM) unit implemented in Calliope from
Valdes et al. [20].

The thermo-dynamical efficiency achievable by methanation in relation to the upper
heating value regarding the Equation (1) was 78%. Graf et al. [6] stated that the efficiency
factor is further influenced by own electrical and heat consumption and give a range for
electrical own consumption of 0.4–1.8 kWh/m3

SNG for biological methanation. In this
study, biological methanation was assumed due to its flexible load cycling characteristics
and robustness to gas impurities. This allowed for us to easily use digester gas from the
digester towers present in the wastewater treatment plants without additional gas cleaning.
In addition, biogas from biogas plants could be used for upgrading. The whole PtM plant
was assumed conservatively with an electrical energy requirement of 11% of an available
electricity surplus for pumps, heating, and supporting systems. This means that a power
input of 100 kW led to 89 kW for electrolysis and 11 kW for methanation and supporting
systems. This led to an output of 0.539 kW methane per 1 kW of power input and lowered
the overall efficiency of bioPtM to 53.9%. This value was in line with the efficiency value of
54% for bioPtM reported by Götz et al. [5] and Graf et al. [6]. The by-product oxygen and
the input of water for the electrolysis were calculated, but only the water consumption was
monetized. Nevertheless, the cost of water was minimal, so the influence on the economic
performance of the PtM plant was negligible.

The amount of CO2 needed for the methanation was also calculated, but because
the investigated regions had biogas plants and digesters at the sewage plant for biogas
upgrading, it was assumed that the required CO2 was provided cost-neutrally by those.
Trading CO2 certificates could generate income with CO2 consumption. However, if no
nearby sources are available, then CO2 consumption can generate costs. The waste heat
produced during the electrolysis and methanation was directly set to the usable standard
value of 80%, as published by Friedl [44].

2.3. Case Studies

SR is a city with approximately 48,000 inhabitants and is compactly populated (see
Figure 3). VOF, with approximately 16,000 inhabitants, is considerably smaller than SR and
is more of a sprawling rural region (see Figure 4). Both regions have diverse renewable
energy production but lack wind power. They were chosen because they contain an indus-
trial area that includes an energy-intensive enterprise. As in a previous report [20], they
may present an opportunity to develop energy communities or other infrastructure devel-
opment between existing industries and nearby urban residential areas. Instead of using
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data from official sources, following Alhamwi [45], the model input data were based on the
open-source OSM data and consumption data for 2019. OSM is often used for geographic
information system (GIS) modeling, spatial analysis, or statistics. OSM data were obtained
from Geofabrik GmbH. It was already proven by the work of Alhamwi et al. [46] that the
quality and availability of OSM data meet scientific requirements and are comparable to
commercial geodata.

Figure 3. Map of Straubing.

Figure 4. Map of Vilshofen at the Danube.

The available OSM data were processed according to Valdes et al. [20] to determine
building classes and their number in the considered districts, SR and VOF (see Appendix A).
In this process, the building roof polygons were transferred to points in the averaged
building centroids. Buildings were assigned directly to building classes according to
the type and POIs classifications available in the OSM data. If this was not possible, an
assignment was made using the land-use category and polygon roof area.
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2.4. Scenarios

PtM and battery system size were calculated for 30 different scenarios for SR and VOF,
where two sets of demand profiles were considered and the study period was modified,
as well as the modification for PtM. In the case studies, the period from 2015 to 2019 was
examined for SR and VOF to investigate the influence of weather data. The overall con-
sumption of the building categories for electricity and heat was always the same. Similarly,
the technologies were kept the same for all simulations, and only the PtM varied for three
scenarios. In the first variant, the PtM was not used to investigate the effect on the use of
the gas grid. The second variant used PtM without a gas grid connection so that there was
no storage option for the gas produced and it had to be directly used. The third variant
was simulated with the gas grid connection as a storage option. In addition, we optimized
the system size using the SLP and RLPs for the same periods (see Appendix B).

Load profiles are necessary to calculate the demand for electricity, gas, and heat from
consumers in simulations. In principle, load profile data can be requested from network
operators or companies, but companies do not provide the data lightly because the data
are sensitive. Within this study, cooperation agreements were concluded with several
companies to be able to use their data in the simulation. Additionally, standard load
profiles (SLPs) for electricity and gas were created by BDEW [32,33]. SLPs were used to
analyze the load behavior of consumers without power metering and to make predictions
about the consumption behavior of different customer groups [47] (p. 379). The SLPs
were divided into different consumer groups with different load behavior. There were
residential, commercial, agricultural, and industrial groups based on SLPs.

Standard and Real Load Profiles

The building classifications shown in Table A1 (see Appendix A) were based on the
BDEW [22], Schröder et al. [48], and the assumptions in this study. The BDEW classification
must be adapted for various reasons. The segregation of classification H0 follows Schröder
and, therefore, has been extended into single-family houses (H1) and multifamily houses
(H2). The big industries (BI) profile is one of the most important categories because it
reflects the energy-intensive industrial sector. The profile contains all buildings with very
high electricity consumption [20]. Most buildings in the BI profile cannot be divided into
G1-G6 because they are no longer SLP customers but RLM customers. In addition, a class
for small buildings with zero demand was introduced, which is not listed in Table A1.
This class included garages, barns, or buildings under a specific roof area for each class to
minimize the error in the building number. The building classes based on SLP electricity
were assigned to the corresponding SLP gas. These gas profiles were also provided by
the BDEW [32] (p. 144), [49]. Because no unique SLP gas was available for G1 and BI, a
correlation calculation was used to assign the best matching SLP gas. Because no data on
annual gas consumption were available for profiles G6 and G3, profile G0 was created. This
profile was obtained from a summary of the available group profiles.

The BDEW did not provide SLPs for heat. Schellong [47] (p. 379) explains that the SLPs
for gas are based on the heat demand of consumer groups. Since natural gas in the area
of SR and VOF is mainly used for building heating, the SLP gas was used in this study to
create heat load profiles. Various examples are provided in the literature on how heat load
profiles can be created. Ruhnau et al. [50] created heat load profiles for different countries
in Europe, consisting of hourly data, to compare them with the coefficient of performance
time series of heat pumps and to improve their efficiency. Schüler et al. [51] referred to
data from the Canton of Geneva in Switzerland for the development of heat profiles, which
provides a great deal of publicly available information for the entire building sector. The
available data were divided into different building categories, and regression analysis of
different parameters was used to develop heat demand projections. In this study, the heat
load profiles were calculated using SLP gas in combination with the efficiency factor of 0.98
of a gas condensing boiler.
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3. Results

The total annual electricity demand needed to generate the Load Profiles was provided
by the Bavarian State Ministry [27]. Class-specific demand ratios were then determined
using the respective building areas. The annual heat demand was determined using
anonymized annual consumption data for gas and district heating from the SR and VOF
municipal utilities. For a given district heating consumption, losses during heat transfer
were neglected, as neither the topology of the grid nor current measurements were available.
Because different building types were included in the commercial profiles, the annual
consumption was averaged over all included buildings of each class. The total heat demand
was then calculated according to the percentage distribution of heating type for private
dwellings in Germany, as determined by the BMWi [52] and BDEW [53] (p. 23). Therefore,
48% of the total heat demand was transferred to the gas demand for heating, and 14% was
used for the district heating demand. For this study, not the heat sector in general but the
gas and district heating sectors were of interest because PtM has an input potential there.
As a result, Figure 5 shows the annual energy demand in MWh. The gas consumption
consisted of the amount consumed in private households for heating. Figure 6 shows the
distribution of energy demand among the building classes, while Figure 7 contains the
general building distribution of the regions. Here, it became clear that even a few big
industrial buildings have a large impact on the energy consumption of the region.

Figure 5. Aggregated demand for different energy carriers in MWh/a.

Figure 6. Demand share by region and building category ((a) Straubing and (b) Vilshofen):
H1 (single family house), H2 (multiple family house), G1 (business weekdays), G2 (business evening),
G3 (business 24/7), G4 (trade), G5 (bakery), G6 (business weekend), and BI (industry).

Figures 8–11 show the exemplary course of the demand curves for electricity and heat
from the 1–7 February 2019, a typical winter week. They show that the electricity demand
(in kWh) was significantly lower on weekends than the average weekly consumption.
As Figures 8 and 9 show, by prioritizing the use of the RESs, heat demand led to an excess
of electricity generation in the winter. The proposed model reduced the use of existing
fossil power generation by giving priority to RES sources because of the regulations in
Germany that renewable power generation is preferred over fossil power generation [54].
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The optimization model first activated the renewable electricity generation sources to meet
the electricity demand. To meet the heat demand (Figures 10 and 11), the CHP plants
were activated, producing heat and electricity. As the demands are not the same and some
technologies generate heat and/or electricity, heat and electricity sources can generate
a surplus. In the case that more heat than necessary is produced, the excess is released
into the environment. The electricity surplus is stored in a battery and/or converted to
methane in the PtM. The methane production by PtM, in turn, can be used to meet gas
demands. The difference in the resulting hourly demand between SLP and RLP is best seen
in Figures 8 and 9. The red line represents the electricity demand showing more irregularity
and more consumption peaks.

Figure 7. Share of building category by region ((a) Straubing and (b) Vilshofen): H1 (single family
house), H2 (multiple family house), G1 (business weekdays), G2 (business evening), G3 (business
24/7), G4 (trade), G5 (bakery), G6 (business weekend), and BI (industry).

Figure 8. Power demand line of Straubing in February with RLP.

Figure 9. Power demand line of Straubing in February with SLP.
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Figure 10. Heat demand line of Straubing in February with RLP.

Figure 11. Heat demand line of Straubing in February with SLP.

3.1. Results for Standard Load Profiles

Tables A2–A7 in Appendix B show the aggregated results of the SLP simulations of
SR and VOF. As we were interested in the use of conversion and storage technologies, we
reported here an overview of these technologies and associated metrics.

The first scenario served as a first assessment of the resulting electricity surplus
potential and the withdrawal from the gas grid without PtM in the regions. This allowed
for a comparison of how PtM will impact these areas.

Figure 12 shows, at the upper left side, the results for the PV power output, which
varied by the electricity generated in different years. In comparison to the resulting power
surplus in the different scenarios, it can be seen that PV had an impact on the power
surplus in the first years, even if the trend diverged in 2019. This may be surprising at first
glance because only the solar radiation data changed. However, it was due to the excess
electricity generated through CHP to meet the heat demand. The use of PtM reduced the
general potential electricity surplus considerably, and it could be further reduced with
suitable storage or grid access. The use of PtM significantly reduced gas withdrawal, even
exceeding the amount of gas produced through PtM. With a storage opportunity, the gas
production of PtM could be made more efficient to reduce the gas withdrawal even more,
although less gas was produced. The profile of the battery mirrored, relatively closely, that
of the PV in all scenarios. The lower production of the PtM was compensated by better
utilization of the battery.

Figure 13 shows the main results for PtM for the load profiles for SR on the left side
and for VOF on the right side. The upper left side shows the potential electricity surplus.
In SR and VOF, the power surplus showed a similar range over the different years with
only a 3% difference between the maximum and minimum simulation result. The battery
and PtM utilization were relatively constant over the years. Although there was much less
excess power potential in VOF, the runtime of the conversion and storage capacity of PtM
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did not decrease to the same extent. This may be because the times for a power surplus
were the same for both regions. However, the size of the surplus potential correlated in a
plausible dimension in VOF.

Figure 12. Simulation results comparing the PtM scenarios for SR.

Figure 13. Simulation results for PtM, for SLP, and for RLP in SR and VOF.
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3.2. Real Load Profiles

Tables A8–A13 in the Appendix B show the aggregated results of the RLP simulations
of SR and VOF. The use of the RLP increased the resulting power surplus for SR (Figure 13).
This also resulted in a slightly increased runtime of the conversion and storage technologies
compared with the SLP. For VOF, the use of RLP led to a drastic decrease in the electricity
surplus. This inevitably led to reduced conversion and storage utilization. Thus, the results
must be directly related to the RLP and the particular region. RLPs used for commercial
and industrial applications showed larger jumps and changes in the load curves compared
to the SLPs. In contrast, RLP households showed less variation over the day. This led to a
smoothing of the load curve for regions containing a large share of electricity demand from
households and smaller shares of commerce and industry. Because this is the case for the
rural region of VOF (Figure 6), the demand composition had a much greater influence on
the potential electricity surplus than at the SR site when RLP was considered.

Regarding the conversion and storage technologies, the battery and PtM runtime
increased slightly in SR with the RLP data but remained on the same order of magnitude
as for the SLP data. However, in VOF, the runtime of the PtM dropped by a third in com-
parison. This is a major problem from an economic point of view because the investment
only pays off with an adequate runtime.

As already stated before, there was a difference between SLP and RLP. Figure 14 shows
this difference over the year 2019 for SR by subtracting the power RLP from the SLP in
kWh. Any value above zero means that the SLP was predominant and vice versa. It can
be seen that, in winter, power demand via the RLP tended to be overestimated, while
in summer, underestimation tended to occur in the regions. Nevertheless, it shows that
strong peaks occurred over the entire year, which were mainly in the positive range. These
peaks are decisive in the power sector when it comes to the necessary power storage for
peak shaving. Due to this fact, it was important not only to take a top-to-bottom view
with standardized values. Through a precise site analysis with the collection of local data,
a much more concrete evaluation and design of storage facilities and their capacity can
be made.

Figure 14. Mean deviation between SLP and RLP power for SR during 2019.

4. Discussion

From the case study results, general statements can be made as to whether energy
storage systems should be used in the regions under consideration and which installable
capacity should be used. It was shown that the PtM and battery concepts can be combined
and were not mutually exclusive. An economically viable runtime and size were demon-
strated for both technologies and datasets in SR. In VOF, the SLP variant had a runtime
below 4000 h for the PtM and was therefore already economically difficult to represent.
The decline in the RLP data to values less than 2500 h showed that detailed data collection
at a local level is essential for a precise placement study to ensure economical operation.
Because hydrogen generation was omitted in the model, the runtime determined for PtM
can be increased by suitable H2 storage, further optimizing the utilization rate and the
capacity to be installed.
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4.1. Effects of Spatial and Temporal Choices

The weather influences on the extended system over several years were examined
using different years for the solar radiation data. These differences are often described as
decisive when it comes to power surpluses [55]. It was shown that these weather influences
almost did not affect the PV runtime and PV output, and they may play a subordinate role
regarding other factors such as the demand curves or technological efficiencies.

This means that, if the district heating supply is to be expanded with CHP technologies,
electricity must be produced accordingly. Therefore, PtM can only be meaningfully depicted
holistically in a larger context, considering the input and output flows.

The simplifications concern both the data input from the OSM data and the available
consumption data. It is known in the scientific community that OSM data are mainly
collected by amateur geographers and non-specialists, which raises doubts about the
quality of the OSM data used [56] (p. 514). The larger a city, the better the quality of
the data because the number of volunteer mappers increases significantly with the city
size [57].

Further deviations in the consumption data occur because of the standardization of the
building classification, mainly owing to missing information about building type, building
characteristics, or mixed building use. The larger the selected geographic energy cell under
consideration, the larger the required simplifications. Depending on how one determines
the number of buildings, there may be corresponding deviations here as well. Many factors
must be included to determine the number. For example, a large garage falls into the
category of a single-family house and is thus charged with nonexistent energy demand.
While this case would not affect the year-end consumption in the study because it was
determined elsewhere, it would affect the calculated average consumption for the building
category. This leads to a change in the load curve. The effects of such a change can be
clarified in the RLP comparison of VOF. Therefore, appropriate measures must be taken
for building classification. In this study, buildings with less than a certain roof area were
assigned to a building category without a demand.

Another problem is the use of the SLP or RLP. In Valdes [20], the partly strong varying
correlations between SLP and RLP were examined. SLPs come close to real consumption
only if the corresponding building numbers are more than 400 [58]. Because this is not the
case for all building classes (Figure 6), RLPs are a potential possibility here. However, the
RLPs should also originate from these buildings and also represent a group of different
buildings, e.g., schools with office buildings fall into one group. Thus, the RLP assignments
are also subject to certain fluctuations in the local area. Here, a further splitting below the
district level could provide even more valuable factors in the decentralized supply. If this
level of detail cannot be performed because of missing measuring equipment or sensitive
data, one must rely on assumptions and simplifications.

4.2. Effects of Technological Choices

Another problem is the complex technology of PtM. Calliope can only integrate
PtM technology with a fixed set of parameters. However, because the efficiency strongly
depends on runtime, location, electricity costs, H2/CO2 availability, and usability of waste
heat and methane, the actual gas and heat yield from this storage technology may differ
significantly from the simulation result. An improvement in the results could be achieved
by a simulation combination. For this purpose, the respective local framework parameters
could be determined in a first Calliope simulation, which would then be transferred to
another simulation tool suitable for a PtM simulation. The resulting output would then
have to be incorporated into a second Calliope simulation to determine whether the result
changed significantly. For this, however, the simulation tool would also require suitable
interfaces to communicate with Calliope.

The battery was assumed to be a single unit with a size of 10% of the installed PV
power. In times of ever better and cheaper electricity storage systems, which are also
increasingly found in private households [59], the storage size of the battery could be
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considered decentralized. This would circumvent the limitation of fast charging to 25% of
a single battery and could increase the used charging speed in the region.

A novelty of this study is the shift of the system boundary of the consideration of
PtM to the injection of gas and heat into their respective grids, as well as the interaction
with other technologies that take gas from the natural-gas grid and technologies that feed
into a district heating grid. In the present case, renewable methane was only used in the
CHP plants or for the general gas demand in the building heating sector. However, the
production of biomethane is too complex and expensive to use only for the heat sector or
for re-electrification. Other areas such as the mobility or chemical sector, which also rely on
C-based applications, could benefit better from this methane.

4.3. Co-Products and Other Factors

In this study, it was shown that electricity surplus potential exists in small cities and
rural regions and that the required electricity surplus already exists, even in regions without
wind power plants. To increase the economic attractiveness of PtM, waste heat must be
integrated in a meaningful way. To achieve this, district heating networks must be expanded
consistently. This expansion can be performed more easily in densely populated regions
than in rural areas. In Germany, municipalities and cities can also impose a connection
obligation [60]. However, higher district heating utilization reduces heat released to the
atmosphere from conventional power plants and CHP technologies, and it increase the
utilization rate of waste heat.

With further PV expansion, the demand for conventional power plants and CHP
for electricity production in summer should decrease, and the unmet heat demand can
be reduced. This would counteract excess district heating in the summer. However, the
increasing periods of energy surplus with such technologies as PtM lead to RNG, which can
be stored and distributed in the natural-gas grid and used for CO2-neutral CHP production
on demand in the winter. On the other hand, the need for balancing power and energy
storage increases with the further expansion of RES. PtM can provide this balancing power
and additionally provide valuable renewable methane for other sectors. With gas and
electricity prices currently rising dramatically, the shown reducing gas withdrawals can be
attractive across the board.

5. Conclusions

In this study, it was shown that the holistic evaluation of surplus power conversion
from renewable sources through PtM makes a high overall usage of decentralized available
renewable energies possible. Two different regions for potential energy surplus were
examined to operate the storage technologies. The three major energy sectors (power, heat,
and gas), which are important for the energy transition, were coupled with a PtM and a
battery unit. The coupling could provide valuable information regarding the electricity
surplus and storage capacity needed for this surplus, which occurs in the context of gas-
fired CHP and renewable energy generation in a wind-poor part of Germany, and how this
can support the heating sector in the energy transition. This shows that PtM could help to
increase the efficient use of renewable energy in energy cells, especially to meet heat and
power demands.

PtM technology can make a major contribution to the energy transition because the
issue of sector coupling is becoming increasingly important in terms of CO2 savings as
well as efficient energy usage. The technical feasibility and practicability have been proven
several times. Although the legal regulations and the profitability issue are the biggest
obstacles to the implementation of the technology [61], there is also a shortage of potential
analyses, in the large context, where PtM can be sensibly placed and applied and from
which the required input comes. Therefore, in different projects, the regional framework
conditions are analyzed to determine the best sites for PtM while using different hydrogen
sources, such as hydrogen from the thermochemical conversion of biological residuals [62].
There have also been efforts to increase this to a global scale [63].
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Furthermore, the solar influence over several years on energy generation and storage
technologies was investigated. The underlying consumption data and time series were
critically reviewed, and their influence on the results was presented. The simulation
program Calliope was found to be suitable for the difficult optimization of sector coupling.
Further work could focus on appropriate simulation combinations to integrate the topic
of PtM into Calliope with higher quality. Further investigations are needed to assess the
holistic contribution of PtM in climate-friendly energy systems, including the CO2 balance
of emissions.
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Appendix A. Annual Energy Demand by Building Category

Table A1. Annual energy demand by building category for Straubing and Vilshofen.

B. Class Definition Building Demand Demand Demand Demand Building Demand Demand Demand Demand

SLP SLP Building SR H SR G SR D.H SR P SR VOF H VOF G VOF D.H
VOF P VOF

P G/H [n] [MWh/a] [MWh/a] [MWh/a] [MWh/a] [n] [MWh/a] [MWh/a] [MWh/a] [MWh/a]

H1 GHEF03 Detached
house 6985 87,899 42,192 12,306 47,484 5081 63,939 30,691 8952 16,208

H2 GHMF03 Apartment
building 3417 94,104 45,170 13,175 23,229 2557 70,420 33,801 9859 8156

G1 GGMK03
Business

weekdays
0800–1800

598 172,368 82,736 24,131 54,321 171 49,289 23,658 6900 21,877

G2 GGGA03 Business
evening 38 9964 4783 1395 3452 8 2098 1007 294 1023

G3 G0 Business
24/7 243 43,488 20,874 6088 22,074 57 10,201 4896 1428 7292

G4 GGHA03 Trade 9 468 225 66 818 2 104 50 15 256
G5 GGBA03 Bakery 2 227 109 32 182 0 0 0 0 0

G6 G0 Business
weekend 28 5011 2405 702 2543 17 3042 1460 426 2175

BI GGKO03 Industry 139 234,350 112,488 32,809 139,426 42 70,811 33,989 9913 51,560

Appendix B. Load Profiles Results

Table A2. Simulation results for standard load profiles in Straubing without PtM.

Year Power PV Power Battery Power Gas Grid
Surplus Runtime Output Runtime Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a]

2015 62,167 4390 56,625 2724 3401 603,269
2016 60,837 4367 53,691 2749 3349 606,163
2017 61,789 4380 55,053 2767 3385 605,389
2018 60,944 4379 54,895 2754 3407 603,783
2019 60,652 4379 55,047 2820 3429 603,292
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Table A3. Simulation results for standard load profiles in Straubing without PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 52,338 4390 56,625 2726 3300 552,237 4005 −51,579 27,816 16,017
2016 51,286 4367 53,691 2730 3240 552,119 3953 −50,541 27,257 15,695
2017 51,922 4380 55,053 2814 3273 553,189 3984 −51,169 27,596 15,890
2018 51,090 4379 54,895 2866 3290 555,054 3946 −50,333 27,145 15,630
2019 50,941 4379 55,047 2744 3320 550,905 4031 −50,178 27,061 15,582

Table A4. Simulation results for standard load profiles in Straubing with PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 51,078 4390 56,625 2796 3331 549,177 3996 −50,312 27,133 15,623
2016 50,050 4367 53,691 2742 3276 553,358 3949 −49,296 26,585 15,308
2017 50,809 4380 55,053 2783 3313 551,665 3981 −50,047 26,990 15,541
2018 49,981 4379 54,895 2772 3329 550,598 3943 −49,215 26,541 15,283
2019 49,865 4379 55,047 2821 3348 550,762 4016 −49,095 26,477 15,246

Table A5. Simulation results for standard load profiles in Vilshofen without PtM.

Year Power PV Power Battery Power Gas Grid
Surplus Runtime Output Runtime Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a]

2015 17,705 4381 24,628 2491 1381 263,116
2016 17,057 4368 23,507 2465 1375 263,938
2017 17,617 4383 24,073 2480 1383 263,931
2018 17,070 4376 23,884 2541 1386 263,041
2019 17,136 4385 24,087 2494 1378 263,040

Table A6. Simulation results for standard load profiles in Vilshofen without PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 14,382 4381 24,628 2531 1334 247,239 3462 −14,074 7590 4370
2016 13,883 4368 23,507 2497 1331 248,706 3449 −13,576 7322 4216
2017 14,286 4383 24,073 2507 1332 248,123 3488 −13,979 7539 4341
2018 13,825 4376 23,884 2521 1344 247,708 3437 −13,515 7289 4197
2019 13,828 4380 24,087 2507 1329 247,631 3479 −13,521 7292 4199

Table A7. Simulation results for standard load profiles in Vilshofen with PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 14,178 4381 24,628 2502 1412 247,087 3318 −13,489 7275 4189
2016 13,673 4368 23,507 2499 1418 248,522 3323 −12,983 7002 4032
2017 14,117 4383 24,073 2490 1411 247,969 3344 −13,429 7242 4170
2018 13,675 4376 23,884 2516 1420 247,567 3264 −12,983 7002 4032
2019 13,685 4380 24,087 2472 1411 247,471 3346 −12,997 7010 4036
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Table A8. Simulation results for real load profiles in Straubing without PtM.

Year Power PV Power Battery Power Gas Grid
Surplus Runtime Output Runtime Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a]

2015 63,395 4390 56,625 3007 3621 597,721
2016 61,720 4367 53,691 2985 3564 599,991
2017 62,568 4380 55,053 2962 3592 599,083
2018 62,015 4379 54,895 2935 3626 598,094
2019 62,101 4379 55,047 2938 3627 598,365

Table A9. Simulation results for real load profiles in Straubing without PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 53,837 4390 56,625 2946 3502 545,043 4188 −53,001 28,583 16,458
2016 52,536 4367 53,691 2948 3444 548,928 4114 −51,713 27,889 16,058
2017 53,013 4380 55,053 2951 3459 546,911 4122 −52,186 28,144 16,205
2018 52,420 4379 54,895 2972 3503 546,207 4136 −51,584 27,819 16,018
2019 52,637 4379 55,047 2968 3492 546,610 4211 −51,803 27,937 16,086

Table A10. Simulation results for real load profiles in Straubing with PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 50,707 4390 56,625 2726 3508 547,656 4132 −49,936 26,931 15,507
2016 49,456 4367 53,691 2730 3442 551,614 4054 −48,701 26,264 15,123
2017 50,035 4380 55,053 2814 3472 549,755 4080 −49,273 26,573 15,301
2018 49,467 4379 54,895 2866 3502 549,070 4070 −48,698 26,263 15,122
2019 49,650 4379 55,047 2744 3507 549,484 4142 −48,880 26,361 15,179

Table A11. Simulation results for real load profiles in Vilshofen without PtM.

Year Power PV Power Battery Power Gas Grid
Surplus Runtime Output Runtime Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a]

2015 8853 4381 24,628 2138 1033 246,616
2016 8528 4368 23,507 2077 1019 247,209
2017 8809 4383 24,073 2119 1027 247,086
2018 8535 4376 23,884 2066 1022 246,504
2019 8568 4380 24,087 2119 1035 246,892

Table A12. Simulation results for real load profiles in Vilshofen without PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 7363 4381 24,628 2138 1033 238,111 2305 −7129 3845 2214
2016 6814 4368 23,507 2077 1019 239,445 2243 −6583 3550 2044
2017 7132 4383 24,073 2119 1027 238,878 2314 −6899 3721 2142
2018 6822 4376 23,884 2066 1022 238,710 2272 −6590 3554 2046
2019 7044 4380 24,087 2119 1035 238,713 2301 −6809 3672 2114
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Table A13. Simulation results for real load profiles in Vilshofen with PtM stored.

Year Power PV Power Battery Power Gas Grid PtM Power Gas Heat
Surplus Runtime Output Runtime Output Output Runtime Input Output Output

SLP [MWh/a] [h] [MWh/a] [h] [MWh/a] [MWh/a] [h] [MWh/a] [MWh/a] [MWh/a]

2015 7130 4381 24,628 2193 1061 237,992 2135 −6597 3558 2049
2016 6575 4368 23,507 2174 1050 239,303 2055 −6047 3261 1878
2017 6871 4383 24,073 2180 1053 238,737 2165 −6341 3420 1969
2018 6578 4376 23,884 2156 1053 238,542 2089 −6049 3262 1878
2019 6852 4380 24,087 2194 1060 238,550 2087 −6319 3408 1962
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