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Abstract: This paper presents a latent-space dynamic neural network (LSDNN) model for the multi-
step-ahead prediction and fault detection of a geothermal power plant’s operation. The model
was trained to learn the dynamics of the power generation process from multivariate time-series
data and the effects of exogenous variables, such as control adjustment and ambient temperature.
In the LSDNN model, an encoder–decoder architecture was designed to capture cross-correlation
among different measured variables. In addition, a latent space dynamic structure was proposed to
propagate the dynamics in the latent space to enable prediction. The prediction power of the LSDNN
was utilized for monitoring a geothermal power plant and detecting abnormal events. The model
was integrated with principal component analysis (PCA)-based process monitoring techniques to
develop a fault-detection procedure. The performance of the proposed LSDNN model and fault
detection approach was demonstrated using field data collected from a geothermal power plant.

Keywords: fault detection; neural network; latent space dynamics; geothermal operations; power plant

1. Introduction

As transitions from fossil fuel-dependent to renewable sources of energy gain trac-
tion, technologies are being developed to improve the efficiency of energy production by
geothermal power plants [1]. With the increase in the utilization of geothermal energy,
it is projected that, by 2050, geothermal power plants will generate 8.3% of the world’s
power and will serve 17% of the world population [2]. Geothermal power plants recover
heat energy from hot underground rocks and convert it to electrical energy. The reliability
and efficiency of operating geothermal power plants can be improved by optimizing the
design of the power plants and by monitoring and controlling their operations. Modeling
and predicting a power plant’s performance under different operating conditions are im-
portant enabling tools for controlling and optimizing power plant design and operations.
Physics-based simulation models have traditionally been used to model the dynamics of
geothermal power plants [3,4]. However, these models are typically complex to construct,
since significant efforts and in-depth knowledge and expertise are required to model the
behavior of the underlying components and their interactions accurately [5]. In addition,
since the configurations and characteristics of geothermal power plants depend on the field
conditions and performance requirements [6], many uncertain parameters are involved
when building simulation models for different power plants.

A good alternative to physics-based simulation models is data-driven modeling, where
the model is trained using existing monitoring and performance data to learn the statistical
patterns and relationships among different components to predict their future behavior
and performance. Recently, the success of deep learning has renewed interest in the use of
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artificial neural networks (ANN) as data-driven proxy models for prediction in physical
systems. Various neural network architectures have been applied to model and predict the
performance of different energy systems. Multilayer perceptron (MLP) is used to forecast
the output power of a photovoltaic plant based on 48 h ahead weather forecasts [7]. The au-
toencoder structure has been combined with Long Short-Term Memory (LSTM) to forecast
the energy output of 21 solar power plants [8]. To model a large-scale supercritical boiler
plant, individual recurrent neural network (RNN) models have been built for different
subsystems and combined based on the subsystems’ input and output relationships [9].
Convolutional neural networks (CNNs) that offer significant efficiency in processing images
have also been applied to two-channel two-dimensional images containing information
related to the states and changes of states in a nuclear power plant for the classification of
abnormal events [10]. In the geothermal domain, MLP has been used to aid the design and
optimization of binary geothermal power plants by predicting the generated power of the
system and the required circulation pump power [11]. In addition, a deep neural network
model has been used to predict geothermal reservoir temperatures based on hydrogeo-
chemical parameters [12]. In [13], LSTM and MLP were used to predict the productivity
of a multilateral-well geothermal system, where the LSTM was used to learn the trend in
historical productions, and the MLP was used to make predictions based on the output of
the LSTM and the constraints of reservoir properties.

Although there have been many applications of ANN related to geothermal power gen-
eration, they mainly focused on subsurface processes. For the data modeling of geothermal
power plants, studies were focused on the steady-state surface processes. The drawback of
steady-state modeling is that it fails to capture the autocorrelation in time-series data and
the dynamics of the power generation process affected by ambient disturbances and control
adjustments. In addition, the underlying physics in the power generation process serve as
a constraint that relates measured quantities, such as temperature and pressure. As a result,
the existing relationships in the data imply that the main variations can be captured and
represented in a low-dimensional latent space. To achieve latent representation, the autoen-
coder (AE) structure has been used for applications, such as dimensionality reduction [14]
and system identification [15]. To capture the autocorrelations in the data and to describe
the nonlinear dynamics of a system, neural networks with a single hidden layer have been
used [16]. In addition, recurrent neural networks that use nonlinear autoregressive model
with exogenous inputs (NARX) have been implemented with a multilayer perceptron. It
was shown that the resulting network is often better at discovering long-term dependencies
than conventional recurrent neural networks, mainly due to the delays in the network
acting as jump-ahead connections during training [17]. In [18], the authors showed that, by
using output feedback, the NARX neural network was able to predict complex time series.

In geothermal power plants, faults, such as working fluid leakage, ingress of non-
condensable gases into working gas, and production pump failure, can lead to poor
performance or even catastrophic failure. Due to the time scale of the faults, some of
them are difficult to be spotted by the plant operators. In these cases, statistical process
monitoring (SPM) techniques can help by constantly monitoring data. SPM has been used
in many industrial processes, such as chemicals and semiconductor manufacturing [19],
but it has not been used for applications related to geothermal power generation. Fault
detection is an essential part of SPM. It is used to detect abnormal events within the process,
which is crucial for maintaining normal operating conditions and preventing catastrophic
failures. Principal component analysis (PCA) has been widely used for static process
monitoring [19–21]. However, as PCA assumes that the data samples are independent in
time, directly applying PCA-based monitoring techniques to time-series data may lead to
poor fault detection results due to the presence of autocorrelation. To deal with this issue,
fault-detection procedures were proposed in [22,23], in which the authors first extracted the
dynamics from multivariate time-series data, which removed the autocorrelations within
the data. As a result, the residuals only contain static variations, which can be modeled
using the PCA and lend themselves to detect faults.
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In this paper, we present a novel latent-space dynamic neural network (LSDNN)
architecture to exploit the characteristics of the data collected from geothermal power
plants. The LSDNN model combines the advantages of autoencoder structure and the
NARX neural network model to effectively capture the cross-correlation and autocorrelation
from multivariate time-series measurements. The dynamic model was trained to learn
the interactions and statistical relationships between different measured and exogenous
variables in the power generation process. The trained neural network was then used to
make multi-step-ahead predictions about the performance of each component in the power
plant. Furthermore, the predictions were used to formulate a fault detection algorithm for
the plant, where the autocorrelations were first removed through prediction, and static
process monitoring techniques were applied to monitor the prediction errors for detecting
abnormal events in the power generation process. To the best of our knowledge, this is
the first work to use neural network predictions and SPM to perform fault detection in
geothermal power plants.

The remainder of this article is organized as follows. Section 2 presents the structure
of the proposed LSDNN model. In Section 3, the prediction results of the LSDNN on field
data collected from a geothermal power plant are shown. The prediction performances
are compared with another commonly used RNN encoder–decoder neural network model.
In addition, some interpretations of the LSDNN model are represented. In Section 4, we
propose a fault-detection procedure using the LSDNN model to detect abnormal events in
a geothermal power plant. The performance of the fault-detection procedure was tested
using real data collected from a power-generation unit and data from a production well.
Section 5 presents the discussion and conclusion of the paper.

2. Methodology

In this section, we discuss the LSDNN model. Figure 1 shows the schematic of the
proposed LSDNN architecture, which consists of two parts: an encoder–decoder structure
for mapping the original data to latent variables (and vice versa) and a latent-space dynamic
model. In the LSDNN model, the encoder–decoder structure captures cross-correlations
among measurements and enables a latent-space representation. Let xt ∈ Rm denote a
vector of m measured variables at time t, zt ∈ Rh denote a vector of h dimensional latent
variables with h < m at time t, and ut ∈ Rn denote a vector of exogenous variables such as
control adjustments and ambient temperature at time t. In the beginning, the measurement
encoder brings the past measured variables into the h-dimensional latent space in which
the latent dynamics are propagated, and predictions are made. In addition, since the
dimensionality of the exogenous variables may be different from h, an input encoder is
used to map the exogenous variables u to a vector u′ ∈ Rh.

Figure 1. Latent-space dynamic neural network model structure.
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Once the predictions are made through the latent-space dynamic model, the decoder
maps them back to the original data space. For each time step, the model uses the same
measurement encoder, input encoder, and decoder. In our model, the encoders are rep-
resented using dense neural network layers followed by a hyperbolic tangent activation
function as follows:

zt = f me(xt) = tanh(Wmext + bme) (1)

ut
′ = f ie(ut) = tanh

(
Wieut + bie

)
(2)

where Wme ∈ Rh×m, bme ∈ Rh, Wie ∈ Rh×n, and bie ∈ Rh. The decoder is also a dense layer
that decodes the predicted latent state ẑt at time t to the predicted measured variables x̂t at
time t. As a result, the decoder can be represented as

x̂t = Wdeẑt + bde (3)

where Wde ∈ Rm×h and bde ∈ Rm.
To capture the autocorrelation, describe the evolution of the latent states, and account

for the effect of exogenous variables on the latent dynamics, a latent-space dynamic model
was used in the LSDNN model. The propagation of latent-space dynamics is represented
using a NARX, which has the form

ẑt = f
(
zt−1, . . . , zt−Dz , ut

′, . . . , ut−Du
′ ) (4)

where ẑt is the one-step-ahead prediction at time t, Dz is the order of the latent state, and
Du is the input order. To perform multi-step-ahead prediction in the latent space given the
trajectories of future exogenous variables, a recursive prediction strategy was used [24],
where the one-step-ahead prediction from the dynamic model was treated as a true latent
state and fed into the dynamic model recursively.

In this study, we considered a NARX network with an input order of k and set the
Dz to be k. In the neural network representations of NARX, the nonlinear function f is
approximated using a dense layer, where the input layer receives the concatenated vector
of past measured variables and exogenous variables. As a result, with this representation,
the number of weights of the dense layer is (kh + (k + 1)h)h. If the latent dimension
h is large, the large number of weights may lead to overfitting issues and take longer
to train the neural network. We decided to alleviate this problem by taking advantage
of the characteristics of the time-series data collected from the geothermal power plant.
The exogenous variables were highly correlated with the measured variables in the data,
which meant that they were also correlated with the series of encoded latent states. To
take advantage of this characteristic, we separated the effect of exogenous variables on
the latent states and the residual dynamics of the latent states, which made the model
more interpretable and less complex. This can be achieved by first forming residual states
z′ ∈ Rh by removing u′ from z, then concatenating past k residual states as an input to the
dense layer. After the dense layer produces a one-step-ahead prediction, the effect of the
exogenous variables at the new time step is added back. Following this approach, the dense
layer is used to approximate an autoregressive model of z′, representing the evolution of
the residual dynamics that is not accounted for by the encoded exogenous variables u′.
As a result, the number of weights in the dense layer is reduced to (kh)h. Furthermore,
since the effects of exogenous variables are already included in the encoded measured
variables, the effect of u′ must be removed from the encoded variables z prior to being fed
to the dynamic model. As a result, the model is able to properly separate the effects of the
exogenous variables and the residual dynamics.

In a geothermal power plant, there may be multiple power generation units that share
the brine produced by the production wells. Shutting down one of the production wells
or one power generation unit may cause sudden changes in brine flow that affect other
measured variables. In addition, these changes affect the exogenous variables, such as
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control setpoints, accordingly. As a result, in the time-series data collected from geothermal
power plants, sudden significant changes may occur in some measured variables and
exogenous variables. For our proposed dynamic model, oscillations in prediction can
occur when sudden changes are made due to the autoregressive nature of the dynamic
model. Furthermore, when significant changes happen, the next time step prediction
may not require all of the past k latent states, which act as the memory associated with
the past dynamics. Hence, we designed an attention mechanism to allow the model to
make adjustments, forget some of the past stored latent states, and focus on relevant latent
states based on the changes in exogenous variables. The attention mechanism has been
an essential part of sequence modeling and machine translation, where it has been used
to adaptively select a subset of hidden states while decoding the translation [25,26]. The
attention mechanism has also been applied for time-series-forecasting tasks. An attention
mechanism is used to combine hidden states to model nonseasonal dependency [27].
In [28], an input attention mechanism was designed to extract relevant input features at
each timestep based on the previous encoder’s hidden states. In addition, a temporal
attention mechanism was used to select relevant encoder hidden states across all time steps.
The attention mechanism can be expressed using dot product, similarity functions, or a
multilayer perceptron. In this study, we used a dense layer to implement the attention
mechanism. At the prediction step t, the input to the dense layer is the concatenated vector
of ut

′ and ut−1
′, which are the encoded exogenous variables. The output of the dense layer

is a k dimensional vector
[
a′t−1, . . . , a′t−k

]T ∈ Rk in which each element corresponds to a
residual state vector. A softmax function is then applied to the output to produce a vector of
attention scores [at−1, . . . , at−k]

T ∈ Rk. Finally, the adjusted residual states are at−iz′t−i ∈ Rh

for i = 1, 2, · · · , k. As a result, the attention mechanism allows the dynamic model to
scale the stored past k residual states based on the changes in encoded exogenous variables
between two consecutive time steps. When the exogenous variables change suddenly, the
model can focus on relevant past residual states for prediction.

Figure 2 shows the details of the latent-space dynamic model. Given the past k encoded
measured variables and the encoded exogenous variables, the one-step-ahead prediction
can be represented as[

z′t−1, . . . , z′t−k
]
= [zt−1, . . . , zt−k]−

[
u′t−1, . . . , u′t−k

]
(5)[

a′t−1, . . . , a′t−k
]T

= tanh
(
Wa[ut

′; ut−1
′]+ ba) (6)

at−i =
exp

(
a′t−i

)
∑k

j=1 exp
(

a′t−j

) , i = 1, 2, · · · , k (7)

ẑ′t = tanh
(

Wd[at−1z′t−1; . . . ; at−kz′t−k
]
+ bd

)
(8)

ẑt = ẑ′t + ut
′ (9)

where Wa ∈ Rk×2h, ba ∈ Rk, Wd ∈ Rh×kh and bd ∈ Rh. Once the model generates
the one-step-ahead prediction in latent space, the stored past k latent states are updated
by removing the last latent state and adding the newly predicted latent state. Further
predictions in the latent space can be made by recursively feeding the new prediction back
into the model and updating the past latent states.
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Figure 2. Details of the dynamic latent-space model for predicting in latent space.

3. Prediction Results

In this section, we first demonstrate the prediction capability of the proposed LSDNN
using real data collected from a geothermal power plant and discuss the design of the
LSDNN structure. The field data were collected from a binary cycle geothermal power
plant operated by Cyrq Energy Inc. (Salt Lake City, UT, USA). The data consist of five
years of hourly time-series measurements. After removing the missing data points and
data collected during shutdown periods, around 20,500 data points were used for training
and validation, and the remaining 4000 data points were used for testing. There were
19 measurements collected from the primary cycle, secondary cycle, and the turbine of
the power generation unit. Among the 19 variables, we selected the brine outlet flow,
the setpoint of the turbine inlet guide vane (IGV), and the R134a pump speed to be part
of the exogenous variables for incorporating the changes in the operational settings. In
addition, we used the ambient temperature as the fourth exogenous variable, since the
efficiency of the plant is highly related to the ambient temperature because of the air-cooling
system [4,29]. As a result, multi-step-ahead predictions were performed on the remaining
15 measured variables with given future operation settings and weather forecasts.

Before implementing the final LSDNN structure in PyTorch, sensitivity analysis was
first performed to determine the structure of the LSDNN model. There were two hyper-
parameters: the latent space dimension h and the number of past data points used for
predictions Dz. For each hyperparameter value, 10 models were trained, and the final
prediction accuracy was evaluated based on the validation dataset using the average of the
root mean squared errors. It can be observed from Figure 3 that, with a small latent space
dimension, the model could not capture all the dynamical patterns in the data, which led
to underfitting. On the other hand, if the latent states dimension was too large, the number
of parameters in the LSDNN model also increased, leading to overfitting. The sensitivity
analysis with respect to Dz showed that a small window size could not effectively encode
the information from the past data points to initialize the latent state used for prediction,
resulting in large prediction errors. In addition, beyond a window size of 12, further
increasing the window size did not help in improving the prediction performance. As a
result, after performing the sensitivity analysis, the latent space dimension h was selected
to be 10 and the order Dz was determined to be 12, which meant that the model used
information from the past 12 timesteps to make predictions. In addition, the prediction
horizon N was selected to be 12 during training. After normalizing the measured variables
and exogenous variables collected during normal operation between 0 and 1, sequences of
data with a length of 24 timesteps were generated for training. The measured variables
in the first 12 samples were used to initialize the encoded latent states, and 12 samples
of the exogenous variables were also included. The last 12 samples corresponded to the
future exogenous variables and measured variables. The model used the exogenous vari-
ables to make multi-step-ahead predictions, while the measured variables were used to
calculate the prediction errors for backpropagation. We used 15,800 sequences for training
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and 4000 sequences for validation. For the ith data sequence, we defined the objective
function as

minJi =
1
N

N

∑
k=1
‖ xk − x̂k ‖ 2 +

λ

N

N

∑
k=1
‖ zk − ẑk ‖ 2 (10)

where N is the length of the prediction horizon, x is the vector of the measured variables
in the future, x̂ is the predicted measured variables, z is the future latent state, which
is encoded from the future measured variables by the measurement encoder, ẑ is the
predicted latent state from the latent-space dynamic model, and λ is a hyperparameter
used to adjust the penalty on the second term. The first term in the objective function
is the mean-square-error of the N-step-ahead prediction. The second term penalizes the
derivation of the predicted latent states from the true latent states calculated using the
measurements encoder. When only the first term of the objective function is used, x̂ is
forced to stay close to x, while ẑ may be different from z, given x̂ is the output from the
decoder with independent weights to be adjusted. As a result, the second term was used to
separate the latent variables from the decoder so that the predicted latent states remained
in the latent space, and the decoder was only to map the latent variables back to the original
data space. During training, the parameters of the neural network were trained together
through standard backpropagation using Adam optimizer [30] with a learning rate of 0.001
and batch size of 128. With the loss function defined for each data sequence in Equation (10),
the overall objective function with M data sequences is defined as

minJ =
1
M

M

∑
k=1

Jk (11)

Figure 3. Sensitivity analysis for the LSDNN model with respect to the dimension of the latent states
and the look-back window size.

Figure 4 shows the one-step-ahead prediction from the LSDNN on the testing dataset.
For better presentation, we plotted the prediction of eight variables among the 15 predicted
variables. Similar plots are shown in Figure 5 for 12-step-ahead prediction. The top
eight subplots in each figure correspond to eight measured variables, and the bottom four
subplots show the exogenous variables. To better display the 12-step-ahead prediction
results, Figure 5 was generated in the following way: the model used 12 samples from the
past to perform 12-step-ahead prediction. After 12 timesteps, the model received the real
measurements from the past and used the most recent 12 samples for forward prediction.
As a result, during the 12-step-ahead prediction, the model did not continuously integrate
the incoming data at each timestep. It can be observed from the figures that the predictions
from the model followed the general trend in the data closely and showed consistent
responses to the changes in the operational settings and ambient conditions.
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Figure 4. One-step-ahead prediction results of testing data. Top eight subplots: predicted measure-
ments. Bottom four subplots: exogenous variables, including control inputs and ambient temperature.

Figure 5. Twelve-step-ahead prediction results of testing data. Top eight subplots: predicted measure-
ments. Bottom four subplots: exogenous variables, including control inputs and ambient temperature.

For comparison, we also trained the widely used RNN encoder–decoder model that
was proposed in [25], where one LSTM is used to map the input sequence to a vector of
fixed dimensionality and another LSTM is used to decode the vector for multi-step-ahead
prediction. During training, the inputs to the encoder were the measured and exogenous
variables in the past 12 timesteps, and the decoder received the future 12 timesteps of
exogenous variables for prediction. The dimension of the hidden vector in the RNN
encoder–decoder model was chosen to be 10. To measure the effectiveness of the LSDNN
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and RNN encoder–decoder for time-series prediction, we considered both the root mean
squared error (RMSE) and mean absolute percentage error (MAPE) as evaluation metrics.
Let L be the length of the time series. For each measured variable, the RMSE is defined as√

1
L ∑L

i=1(xi − x̂i)
2 and the MAPE is denoted as 1

L ∑L
i=1

∣∣∣ xi−x̂i
xi

∣∣∣× 100%. We took the average
of the prediction errors of 15 variables to obtain the overall prediction performance for
each model. We trained the LSDNN and RNN encoder–decoder 10 times and reported
their average performance and standard deviations on the test data. The prediction errors
of the 1, 6, 12, and 24-step-ahead predictions are shown in Table 1. The prediction errors
indicate that these two models have similar performances, and both can make accurate
multi-step-ahead predictions. In addition, due to the recurrent nature of LSDNN and
RNN encoder–decoder models and the similar number of parameters within the models,
there was not much difference in the training time. With the selected structures and
the same training data, the average time for training both models was around 50 min
using one NVIDIA Tesla P100 GPU. However, compared to the RNN encoder–decoder
model, the LSDNN model was more interpretable and flexible. It allowed the user to
define the dynamics in a low-dimensional latent space and offered the flexibility to use
different structures to represent the dynamic model. The use of gate mechanisms in the
RNN encoder–decoder model limited the ability to clearly separate the contribution of the
exogenous inputs from the hidden states. The design of the LSDNN’s structure lends itself
to a more flexible representation of the effect of exogenous variables on the latent states.

Table 1. Prediction results of the LSDNN and RNN encoder–decoder.

Prediction
Horizon

LSDNN
(MAPE)

RNN Encoder–Decoder
(MAPE)

LSDNN
(RMSE)

RNN Encoder–Decoder
(RMSE)

1 4.1 ± 0.2% 4.2 ± 0.2% 0.016 ± 0.001 0.017 ± 0.001
6 4.7 ± 0.2% 4.7 ± 0.1% 0.019 ± 0.001 0.02 ± 0.001

12 4.9 ± 0.2% 4.9 ± 0.1% 0.02 ± 0.001 0.02 ± 0.001
24 5.3 ± 0.3% 5.3 ± 0.1% 0.022 ± 0.001 0.022 ± 0.001

To further interpret the LSDNN model, Figure 6 shows the contribution of residual
dynamics and exogenous variables to the latent states when performing one-step-ahead
prediction. The blue line represents the contribution related to predicted residual dynamics
ẑ′t propagated using only the previous states without any effect of exogenous variables.
The red line represents the effect of exogenous variables ut

′ on the latent states. The final
predicted latent state ẑt was obtained by adding these two values. With a latent variable
denoting a sequence of latent states, for latent variables 1, 4, 5, 8, and 9, most of the
variations are explained by ut

′, whereas, for the rest of the latent variables, both ẑ′t and ut
′

contribute to the predictions, and the variations are split into the red line and blue line. The
grey dotted line is the true latent states that are mapped using the measurement encoder
f me(xt). It can be observed that the grey line stayed close to the black line, indicating that,
after linearly removing the effects of exogenous variables, making a prediction using the
residuals, and adding back the future effects of exogenous variables, the predicted latent
states did not deviate from the states encoded from the real measurements.
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Figure 6. Contributions of exogenous variables and residual dynamics to predicted latent states. The
predicted latent states stay close to the encoded latent states.

We used one latent variable as an example to visualize the role of the attention mecha-
nism during one-step-ahead prediction, as shown in Figure 7. The top left subplot shows
the past 12 latent states

[
z′t−1, . . . , z′t−12

]
at each timestep before the attention mechanism

is applied. Each row in the subplot represents the value of one past latent state. Due to
the nature of one-step-ahead prediction, one state value appears 12 times in the plot. For
example, if z′t−1 is the most recent state value at time t, it would show up as the last state
value z′t−12 after 12 timesteps. The subplot on the top right is the updated past 12 latent
states

[
at−1z′t−1, . . . , at−12z′t−12

]
after including the attention mechanism. The subplot on

the bottom left shows the attention weights [at−1, . . . , at−12] at each timestep. Since the
attention weights are related to the changes in the exogenous variables, we also show the
control adjustments, which contain sudden significant jumps. It can be observed that the
LSDNN model could adjust the attention weights based on the changes and the magnitude
of the exogenous variables. For example, for the first 300 time steps in which the controls
were not adjusted much, the attention mechanism put more weight on the second and
sixth past states. When large changes occurred between timestep 300 and timestep 400,
the weights were adjusted accordingly. The same behavior could also be observed when
the controls were adjusted at around timestep 550. As a result, the stored past latent states
were also scaled based on the attention weights.
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Figure 7. Changes between the input and output of the attention mechanism for one of the latent
variables. The attention weights are adjusted based on control adjustments. The latent state values
after applying attention are scaled by the attention weights.

4. Fault Detection in a Geothermal Power Plant

To perform fault detection, the general idea is to first build models from data collected
during normal operations. Then, control limits are established to define normal operation
regions. Finally, the models and the control limits are applied to new data for online fault
detection [22,31]. An abnormal event is detected if the output of the models is not within
the normal operation regions defined by the control limits. In this paper, the LSDNN model
was first trained using data collected from normal operations to extract dynamic variations.
As a result, after performing prediction, only normal static variations were present in the
prediction errors, where a principal component analysis model could be built to establish
the normal control limits on the residuals. When performing monitoring and fault detection
on new data, the same LSDNN model, PCA model, and control limits were used.

In this paper, we adopted the well-established PCA-based processing monitoring
techniques in [19] to monitor the LSDNN prediction errors. Denoting the one-step-ahead

prediction errors of the LSDNN as X̃
NN ∈ RL×m, each row of the error matrix represents a

sample at one timestep. Using PCA, the error matrix can be decomposed as

X̃
NN

= TPT + X̃
PCA

= TPT + T̃P̃
T

(12)

where T is the score matrix and P is the loading matrix corresponding to the first l leading
principal components (PC). As a result, span{P} is the principal component subspace (PCS)

and span
{~

P
}

is the PCA residual subspace (RS). To monitor the variability in the PCS,

Hotelling’s T2 index can be used. It measures the distance to the origin in the principal
component subspace, which contains normal variations. For each x̃NN ∈ Rm, the index is
defined as

T2 = x̃NNTPΛ−1PTx̃NN (13)

Λ = diag{λ1, . . . , λl} (14)

λi =
1

L− 1
tT

i ti (15)

where ti ∈ RL is the ith score vector. For a given significance level α, the sample is
considered normal if T2 is smaller than the corresponding control limit T2

α , where T2
α = χ2

l;α
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if L is large [19]. To monitor the variability in RS, the squared prediction error (SPE) index
can be used [19]:

SPE ≡‖ x̃PCA ‖ 2 = ‖
(

I− PPT
)

x̃NN ‖ 2 (16)

The SPE index measures variability that breaks the normal process correlation. The
sample is considered normal if SPE ≤ δ2

α = gχ2
h;α, where δ2

α is the control limit for the SPE
index and

g =
∑m

i=l+1 λ2
i

∑m
i=l+1 λi

, h =
(∑m

i=l+1 λi)
2

∑m
i=l+1 λ2

i
(17)

In addition, a combined index ϕ can be used as a global index that combines the SPE
and T2 indices [32]:

ϕ = T2
(

x̃NN
)
+ g−1SPE

(
x̃NN

)
(18)

The sample is normal if ϕ ≤ χ2
h+l;α.

We applied the fault detection approach to the field data in which two faults occurred
in the geothermal power plant. One of them was a fault that occurred in one of the power
generation units, and the other was a pump failure at one of the production wells. We
trained two LSDNN models for the power generation unit and the production pump using
data collected during normal operations. The LSDNN models were used to extract the
dynamics and the effects from exogenous variables from available data. Then, the one-
step-ahead prediction errors of the fault-free data were calculated. The prediction errors
were scaled to have zero mean and unit variance to apply PCA for monitoring the static
variations. We selected the number of leading PCs l so that the first l PCs captured 90% of
the variances. The SPE, T2, combined index, and their corresponding control limits were
then calculated. To monitor test data that contained faults, the trained LSDNN models
were applied to the test data and obtain the prediction errors of the test data. With the
loadings P and Λ from the PCA model built from the normal data, the monitoring indices
of the test data were calculated using Equations (13), (16), and (18). Finally, the indices
were compared with the control limits to detect the faults.

Figure 8 shows the monitoring results for the test data from the power generation unit.
The gaps between indices were due to the removal of data during the shutdown periods. At
the end of the plot, the power plant operator discovered the fault and stopped the unit for
repair. It can be observed that, before 11–19, most of the monitoring indices were below the
control limits for all three indices, indicating that the unit was operating normally and there
were no abnormal dynamics. A few samples had monitoring indices above the control
limits then dropped below the control limits quickly when there were sudden adjustments
in the control settings, or the unit was restarted. Since the adjustments were made by the
operators, they could easily distinguish these false alarms from the detection of the real
faults. In addition, when real faults occurred, the monitoring indices showed strong and
consistent signatures, which were different from the false detections. The fault document
that was provided by the operator showed that the unit was underperforming around
11–19, which could also be observed in the monitoring indices. Around 12–15, all three
monitoring indices rose above the control limits and stayed above the limits until the plant
was shut down for repair, which meant that a fault occurred around 12–15 and persisted
until the operators discovered the fault.
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Figure 8. Monitoring indices of the power generation unit. All three indices rise above the control
limits around 12–15, indicating the occurrence of faults.

After a fault is detected, the next step is to identify the location of the fault. Contribution
plots are well-known tools for fault identification [20,33,34]. From the definition of SPE,

SPE
(

x̃PCA
)
= ∑m

i=1 (x̃PCA
i )

2
= ∑m

i=1 SPEi (19)

where SPEi is the contribution of the ith variable in the contribution plot for SPE. For better
visualization, we plotted a 2D contribution plot that collected each variable’s contribution
for multiple timesteps, shown in Figure 9. On around 12–15, the variable turbo inlet
superheat showed the greatest contribution to the SPE. After 12–15, the variables turbo
inlet superheat, R134A outlet temperature of vaporizer B, and brine outlet temperature
at vaporizer B had the largest contributions, indicating that they were either the major
contributors to the fault or affected by the fault.
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Figure 9. Contribution plot of the power generation unit. “Turbo inlet superheat” and “R134A
outlet temperature vaporizer B” have the largest contributions, indicating that they are the possible
fault locations.

We followed the same fault detection procedure for monitoring a production well
pump. From the fault document, maintenance was performed on the pump from 03–20 to
03-27, and pump failure occurred on 09–26. Figure 10 shows the one-step-ahead prediction
results of the measured variables of the pump. Before maintenance, the trained LSDNN
model provided accurate predictions. However, offsets in the predictions could be observed
in some of the variables after maintenance, indicating changes in the pump’s performance.
While the pump components and the nature of the repair are unknown, maintenance, such
as sensor recalibration and replacing new components, can cause offsets in the prediction
results. However, the underlying physical relationships between different measured and
exogenous variables are expected to remain the same before and after maintenance. It can
be observed in the prediction results that, even though the offsets existed, the predictions
followed similar trends to the measured variables, indicating that the LSDNN model
learned the underlying dynamics. Since the dynamics remained the same and the fault
monitoring relied on the dynamic relationships and static correlations, we performed the
same fault monitoring procedure to determine if the proposed procedure could detect a
fault without retraining the LSDNN model. Figure 11 shows the three monitoring indices.
It can be observed that the T2 and the combined index rose above their corresponding
control limits immediately after maintenance was performed. However, the SPE index
gradually grew above the control limit between 08–06 and 08–21. Since the T2 index was
used to monitor the leading PCs, it measured the distance of the sample to the origin in
the PCS. If a sample exceeded the T2 control limit, it meant that the sample shifted away
from the origin in the PCS, but the correlation structure was not violated. On the other
hand, the SPE was used to monitor the RS and measure the variability that breaks the
correlation relationships. As a result, if the T2 index of a sample is above the T2 control
limit but the SPE index lies below the SPE control limit, it could indicate a fault or shift in
the operating region [19]. In this pump-related application, we know that maintenance
caused the offsets in the prediction errors, which then caused the shift in the PCs. As a
result, the T2 index exceeding the control limit did not indicate a fault. Since the combined
index was also related to the T2 index, we should only use the SPE for fault detection in this
case. Hence, the SPE index exceeding the control limit between 08–06 and 08–21 indicated
a fault occurred which broke the correlation structure.
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Figure 10. One-step-ahead prediction results of the production pump.

Figure 11. Monitoring indices of the production pump. The T2 index rises above the control limit
after maintenance, indicating a shift in the operation region. The SPE index exceeds the control limit
after 08–06, indicating a fault that breaks the correlation structure.

Both the fault detection results for the power generation unit and production pump
showed that the proposed fault detection procedure could detect abnormal dynamics before
the faults were discovered in the field by the operators. As a result, if the fault detection
procedure can be implemented in a geothermal power plant, it is able to detect faults earlier,
possibly preventing unscheduled shutdowns or catastrophic failures of equipment.

5. Conclusions

In this paper, a latent space dynamic neural network model was proposed for multi-
step-ahead prediction. The model structure was designed based on the characteristics of
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time-series data collected from geothermal power plants. An encoder–decoder structure
was implemented to map the original data to a reduced-dimension latent space in which the
dynamics of the power generation process were represented. The predictions were made in
the latent space using a dynamic model. In the dynamic model, the effects of the exogenous
variables were linearly separated from the latent states to reduce the model complexity
and improve interpretability. We also used an attention mechanism to adaptively change
the stored latent states based on changes in exogenous variables, which gave the model
more flexibility when predicting sudden changes in the measured variables. The prediction
performance of the LSDNN on a geothermal power plant dataset was compared with a
popular RNN encoder–decoder structure with LSTM. We also proposed a fault monitoring
procedure based on the one-step-ahead prediction results of the LSDNN model. First, the
LSDNN model was used to extract the dynamics and remove autocorrelations from the
time-series data. Then, PCA-based fault detection techniques were applied to the residuals
to monitor the static variations. The fault detection procedure was applied to two known
faults corresponding to a power generation unit and a production pump. The results show
that, in both cases, signatures of abnormal dynamics can be detected before the faults are
discovered in the field.

The proposed LSDNN model can be extended to include other structures for the
dynamic model in the latent space. Additional studies are needed to explore fault predic-
tion and the possibility of an advance fault warning system based on multi-step-ahead
prediction. In addition to fault prediction and detection, the model can be extended to
include fault diagnosis to inform possible causes of a potential failure or abnormal events.
Another topic that was not explored in this paper was retraining and updating the model
with incoming data, which is expected to improve the predictive power of the model. Fur-
thermore, in the case study of the production pump failure, the predictions were affected
by maintenance, and retraining could be used to adapt the dynamics to the changes due to
maintenance. Finally, the LSDNN model could also be used as a data-driven predictive
model in broader applications, such as model predictive control and optimization of the
geothermal power plants.
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