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Abstract: This paper presents a flux-weakening model predictive control (FW-MPC) for the interior
permanent magnet synchronous motor (IPMSM) drive system. The FW control is a strategy to
extend the IPMSM’s operating region. However, the primary FW needs to track the torque reference
and maximize the electrical torque per current amplitude with the current and voltage limitations.
The two objects make it impossible to solve the FW problem using the optimization method. We
proposed an equivalent optimization problem to simplify the complex FW problem, including two
objective functions. The MPC is selected as the controller due to its high robustness and transient
performance. The constraints from the equivalent optimization problem are added in the MPC
to control the IPMSM in the FW region. The simulation and experiment results indicate that the
proposed FW-MPC is feasible and effective in driving the IPMSM in the FW region. The proposed
FW-MPC can find the optimal point with the maximum electrical torque satisfying the current and
voltage limitations. Therefore, the proposed FW-MPC can extend the IPMSM’s operating region,
benefiting the IPMSM’s application.

Keywords: IPMSM; flux-weakening drive; model predictive control

1. Introduction

The interior permanent magnet synchronous motor (IPMSM) is widely applied, due
to its advantage over the power density and high efficiency [1–3]. However, the maximum
current and voltage have limited the maximum torque and speed, which can affect the
IPMSM’s power density and application. Hence, many researchers work to solve the
flux-weakening (FW) problem of IPMSM to extend the operating region. The IPMSM
operating region is shown in Figure 1, and the maximum torque per ampere (MTPA) is an
operation to minimize the copper loss of the IPMSM, containing permanent magnet torque
and reluctance torque [4–6]. Besides, the MTPA has a maximum electrical torque compared
to other strategies.

Figure 1. IPMSM operating region.

Energies 2022, 15, 2543. https://doi.org/10.3390/en15072543 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15072543
https://doi.org/10.3390/en15072543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3115-1517
https://doi.org/10.3390/en15072543
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15072543?type=check_update&version=2


Energies 2022, 15, 2543 2 of 14

The flux weakening (FW) control based on the MTPA can improve the maximum
torque and extend the operating region, i.e., both the MTPA region and the FW region [7–9].
The advantage of high speed has an attraction for the applications of a wide speed range,
e.g., the electric vehicle, rail transit, and the turbo drive. Additionally, the FW operation
can reduce the design difficulty of the IPMSM with limited volume and weight since the
FW operation can increase the rotor speed. However, the FW has not been widely applied
due to its complexity.

The feedback FW always utilizes the feedback signals (e.g., the feedback currents,
the back-EMF, or the dq-voltage commands) to limit the voltage [10–13]. However, due
to the mechanical time delay being far greater than the electrical time delay, the transient
performance is not excellent. Nicola Bedetti et al. utilized the feedback voltage regulation to
limit the back-EMF within the maximum voltage in the FW region [14]. Yuzheng Chen et al.
utilized three complex look-up tables (LUT), a hysteresis regular, and the feedback voltage
reference to limit the whole flux, aiming at limiting the back-EMF within the maximum
voltage and realizing FW [15]. Silverio Bolognani et al. utilized an adaptive current angle
to limit the maximum voltage [16]. However, according to the electrical function, the
stator current amplitude (is) is not positively correlated to the electrical torque. Besides,
the simulation results in their paper indicate the system is unstable to provide a negative
electrical torque. Similarly, with [16], the main flux was controlled to limit voltage [17],
which is unstable to track a complex torque reference, i.e., the negative reference.

The feedforward FW control has better dynamic performance, which often utilizes
the current or torque. In [18], S. Jung et al. utilized the Ferrari method to solve two
quartic equations with three nonlinear systems. Hao Ge et al. utilized the LUTs, optimized
offline, to extend the MTPA speed region [9]. Although the LUT is a way to overcome
the complex online calculation, the complexity of the calculation is not the main issue
with the development of the microprogrammed control unit (MCU). Tae-Suk Kwon et al.
proposed a hybrid FW, combined with feedback and feedforward signals, to improve the
speed with limited voltage [19]. However, three complex LUTs were utilized to store the
current trajectories.

In practice, the FW problem can be regarded as an optimization problem with con-
straints. Meanwhile, model predictive control (MPC) with constraints is often utilized to
solve the optimization problem. Hence, the FW with MPC (FW-MPC) is an intelligent
method to solve the FW problem. However, due to the MPC’s complexity, it’s not accessible
to implement the MPC for the FW problem. Z. Mynar et al. proposed an MPC strategy
for FW control [20]. However, this strategy can’t drive the IPMSM with the optimal states.
Although the assumption (Ld ≈ Lq) can linearize the IPMSM model, the optimal point
with the maximum torque can’t be obtained. Besides, a constant rotor speed substituted
for the real-time speed also results in solid nonlinearity and current ripple. What’s more,
the method in [20] needs massive calculation without explicit functions. The common
flux-weakening strategy for IPMSM is listed in Table 1.

Table 1. Flux-weakening drive for IPMSM.

Strategy
Type Feedback FW Look-Up Tables FW-MPC

Advantages Simple Algorithm Simple Optimal FW

Disadvantages Time Delay Current Ripple;
Need Lots of Data Complex

In this paper, we propose a new FW-MPC to solve the FW problem and drive the
IPMSM. In practice, the FW problem has the following two objective functions: tracking
the torque reference and maximizing the electrical torque per current amplitude within
the current and voltage limitations. We transformed the FW problem into an equivalent
optimization problem with a standard form. With the equivalent method, the proposed
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FW-MPC can improve the IPMSM’s speed and electrical torque. What is more, the simu-
lation and the experiments indicate that the proposed FW-MPC has more advantages for
improving the IPMSMs speed and electrical torque in the FW region.

2. IPMSM Model

The IPMSM model is often given in a discrete-time form for the MPC implementation
using the forward Euler method. With the discrete-time IPMSM model, the MPC can
optimize the control vector, subject to the constraints. The discrete-time IPMSM model is
defined as follows:

xi(k + 1) = Axi(k) + Bu(k) + C + W (1)

where,

A =

[
1− RsTs

Ld

ωe LqTs
Ld

−ωe LdTs
Lq

1− RsTs
Lq

]
B =

[ Ts
Ld

0
0 Ts

Lq

]

C =

[
0

−ωe ϕ f Ts
Lq

]
u =

[
ud
uq

]
xi =

[
id
iq

]
A, B, and C are the parameter matrices, W is the disturbance parameter matrices,

xi is the state vector, and u is the control vector. Let k ∈ N+ identify the discrete-time
instant t = kTs. The parameters (Ld, Lq, and ϕf) can be estimated with the motor design
software [2,21]. In practice, the electrical torque function is often defined as follows:

Te = p
(

ϕ f + ∆Lid
)

iq (2)

where, ∆L = Ld − Lq.
The IPMSM drive system has its own unique feasible domain. The feasible domain is

defined by the maximum current (Im) and maximum voltage (Um). The schematic diagram
of the constraints (Im and Um) is shown in Figure 2. The current and voltage limitations are
defined as follows:  fi := id

2 + iq
2 − I2

m ≤ 0

fU : = u2
d + u2

q −U2
m ≤ 0

(3)

where, 
ud = Rsid −ωeLqiq

uq = Rsiq + ωe

(
ϕ f + Ldid

) (4)

Figure 2. Feasible domain. Electrical torque: Te2 > Te1, Um1 and Um2: voltage limitations, and Im:
maximum current limitation.

In Figure 2, Um1 and Um2 are the voltage limitations fU (ωe1) and fU (ωe2), ωe1 > ωe2.
Im is the current limitation. The feasible domain of the IPMSM system is the intersection
of the current and the voltage limitations. As can be seen, the voltage limitation shrinks
as speed (ωe) increases. Hence, driving IPMSM within the feasible domain is a complex
optimization problem.
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3. Control System

The FW strategy can extend the operating region of IPMSM, which helps adopt IPMSM
to different applications. The IPMSM drive system diagram is shown in Figure 3. This paper
mainly focuses on the torque loop, which is implemented to track the torque reference. The
traditional PI is introduced as the speed controller to implement the experiment [3,22], but
it is not the research objective. The FW problem can be given as follows:

min: ‖Te− TeR‖2 (5)

min: ‖xi‖2 (6)

s.t.: fi : = i2d + i2q − I2
m ≤ 0 (7)

fU : = u2
d + u2

q −U2
m ≤ 0 (8)

Figure 3. IPMSM drive system diagram.

3.1. Equivalent Optimization Problem

Herein, ‖·‖2 is the Euclidian norm of a vector, and TeR is the torque reference. The
first objective function, defined by Equation (5), is the torque loop’s primary purpose. As
can be seen from Figure 2, there are many state points to track the torque reference. Hence,
the second objective function, defined by Equation (6), is added to the FW problem to
reduce the current. Unfortunately, the FW problem becomes a nonstandard optimization
problem with two objective functions, which cannot be solved directly. However, this
problem can be transformed into an equivalent optimization problem with a standard
optimization form.

As seen from Equation (6), the second objective function is the same as the MTPA
problem, which can be given as follows:

min : ‖xi‖2 (9)

s.t. : Te − TeR = 0 (10)

With the optimization process, the MTPA Formulas (11) and (12) can be reached [5,23].

fMTPA := ϕ f id + ∆L
(

id
2 − iq

2
)
= 0 (11)

s.t. : id ≤ 0 (12)

Hence, the optimal point of Equation (6) has the minimum distance to the MTPA
trajectory, defined by Equations (11) and (12), along the torque trajectory. Let us assume
that the optimal point of the FW problem Equations (5)–(8) is P*, which is drawn in Figure 4.
The yellow region is the feasible domain. As seen, Figure 4-Left shows the MTPA problem
without voltage limitation, and P* is on the MTPA trajectory. Figure 4-Right shows the
FW problem, and P* is the intersection of the electrical torque trajectory and the voltage
limitation. Therefore, the whole FW problem has a feasible and unique optimal point.



Energies 2022, 15, 2543 5 of 14

Figure 4. Primal optimization problem for FW. Um: voltage limitation; Im: current limitation; Te:
electrical torque trajectory; MTPA: MTPA trajectory.

Accordingly, the FW problem can be transformed into finding the optimal point (P*).
The FW problem can be divided into the following two conditions: TeR 6= 0 and TeR = 0.
When TeR 6= 0, we can use the following optimization problem to replace the FW problem
equally. The diagram is shown in Figure 5.

min: f0 =
∥∥iq − iq0

∥∥
2 (13)

s.t. : f MTPA = ϕ f id + ∆L
(

i2d − i2q
)
≤ 0 (14)

fi= i2d + i2q − I2
m ≤ 0 (15)

fid= id ≤ 0 (16)

fU= u2
d + u2

q −U2
m ≤ 0 (17)

fTe= sgn(TeR)(Te − TeR) ≤ 0 (18)

iq0 = TeR/
(

pϕ f

)
(19)

sgn(TeR) =

{
1, TeR >0
−1, TeR ≤ 0

(20)

Figure 5. Equivalent optimization problem, TeR 6= 0.

The point Q0: = XQ0 (iq0, 0) is the torque trajectory and q axis intersection, and
the yellow region is the feasible domain. Obviously, Equations (13)–(20) is an equivalent
optimization problem for the FW problem Equations (5)–(8), when TeR 6= 0. If the maximum
voltage has limited the optimal point (P*), as in Figure 4-Right, we can obtain the same
equivalent optimization problem.

When TeR = 0, we can use the following optimization problem to replace the FW
problem equally. The diagram is shown in Figure 6.

min: f0 := ‖id‖2 (21)
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s.t.: fMTPA := ϕ f id + ∆L
(

i2d − i2q
)
≤ 0 (22)

fi : = i2d + i2q − I2
m ≤ 0 (23)

fid : = id ≤ 0 (24)

fU : = u2
d + u2

q −U2
m ≤ 0 (25)

fTe : = iq ≤ 0 (26)

Figure 6. Equivalent optimization problem, TeR = 0.

Similarly, the yellow region is the feasible region. The optimization problem Equations (21)–(26)
is proposed to find the optimal point (P*), when TeR = 0.

3.2. Proposed FW-MPC Strategy

The proposed FW-MPC (PFW-MPC) strategy contains the equivalent optimization
problem, defined by Equations (13)–(26), and the MPC. The whole FW-MPC problem is
given as follows:

min: g0 := f0 + ‖Q∆xi‖2 + ‖R∆u‖2 (27)

s.t. : h:=xi(k)−Axi f − Bu(k)−C + W = 0 (28)

g1 : = f MTPA ≤ 0 (29)

g2 : = f i ≤ 0 (30)

g3 := fid ≤ 0 (31)

g4 := fU ≤ 0 (32)

g5 := fTe ≤ 0 (33)

Herein,

f0 =

{ ∥∥iq − iq0
∥∥

2, TeR 6= 0
‖id‖2, TeR = 0

(34)

fTe =

{
sgn(TeR)(Te − TeR), TeR 6= 0
iq, TeR = 0

(35)

iq0 = TeR/
(

pϕ f

)
(36)

∆xi = xi(k + 1)− xi(k), k ≥ 1 (37)

∆u = u(k)− u(k− 1), k ≥ 1 (38)

The positive matrix Q and R are the turning parameters of MPC that define the states’
importance; xif is the feedback state variables; W denotes the uncertainty of the system
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Equation (1). The constraint Equation (28) comes from the discrete-time IPMSM model
Equation (1). Let us define the Lagrangian function of the MPC as follows:

L(x,λ,µ) := g0(x) +
5

∑
m=1

λmgm(x) +
2

∑
m=1

µmhm(x) (39)

s.t. : x =
[
xT

i , uT
]T

(40)

λ = [λ1, λ2, . . . , λ5]
T (41)

µ = [µ1, µ2]
T (42)

Let x* and (λ*, µ*) be any primary and dual optimal point with the zero-duality gap.
Since (x*, λ*, µ*) minimizes L(x, λ, µ), the gradient of Equation (39) must vanish at (x*, λ*, µ*).

L(x∗,λ∗,µ∗) = max
(λ,µ)

min
x

L(x,λ,µ) (43)

∇L = ∇g0(x∗) +
5

∑
m=1

λ∗m∇gm(x∗) +
2

∑
m=1

µm∇h∗m(x
∗) = 0 (44)

s.t.: h(x∗) = 0 (45)

λ∗m ≥ 0, m = 1, 2, . . . , 5 (46)

gm

(
x*
)
≤ 0, m = 1, 2, . . . , 5 (47)

λ∗mgm

(
x*
)
= 0, m = 1, 2, . . . , 5 (48)

Equation (43) is called the duality formula, and Equations (44)–(48) is called the
Karush–Kuhn–Tucker (KKT) conditions [24,25]. Then, with the Newton method, we can
obtain the optimal point.

x(k + 1) = x(k) + ∆x (49)

λ(k + 1) = λ(k) + ∆λ (50)

µ(k + 1) = µ(k) + ∆µ (51)

where,
∆x = −∇2L+·∇L (52)

∆λ = [g1, . . . , g5]
T (53)

∆µ = h (54)

Herein, ∇2L is the Hessian matrix of L(x, λ, µ), and ∇2L+ is the Moore–Penrose
pseudoinverse matrix of ∇2L. From upper analysis, the proposed strategy needs IPMSM’s
parameters. According to [26], the MPC, aiming to track the current, is asymptotically
stable despite the system distance. However, the feasible domain will be decreased with
the parameter error. Despite the suboptimality of the problem, the proposed strategy has
asymptotical stability.

3.3. Classical FW-MPC

In the classical FW-MPC (CFW-MPC), the voltage limitations are added into the
explicit MPC as the constraints. However, the cost function of CFW-MPC is the same as
the explicit MPC. Besides, the CFW-MPC often utilizes the multi-parametric toolbox (in
MATLAB) and the large-scale optimization tool (e.g., Gurobi version 6.0.0) as the controller,
which needs massive calculations [20]. Therefore, CFW-MPC often needs a high-speed
controller, e.g., a dual-core i7 processor. Different from CFW-MPC, the PFW-MPC does
not need lots of calculations thanks to the equivalent optimization problem, which has a
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succinct and definitive purpose. The equivalent optimization problem has a single optimal
point. However, the CFW-MPC does not take the problem that there are multiple optimal
points for the traditional FW problem into account in general. The optimization problem of
the CFW-MPC problem can be given as Equations (55)–(58) to compare with PFW-MPC.

min: g0 := qidi2d + q
(
iq − iq0

)2
+ uTRu (55)

s.t. : h:=xi(k)−Axi f − Bu(k)−C + w = 0 (56)

g2 : = f i ≤ 0 (57)

g4 := fU ≤ 0 (58)

Herein, R is a symmetrical positive semidefinite, which can reduce the voltage ripple.
However, the matrix R can not affect the primary goal. Hence, the primary goal of CFW-
MPC is to minimize the distance (Dum) from Q0 to Um, which is shown in Figure 7. As
seen, point (P1) is the optimal point of CFW-MPC. Besides, the operating conditions (e.g.,
speed and torque) are the same as in Figure 4-right. Obviously, the CFW-MPC cannot
obtain the optimal point (P*) for the FW control without Equations (9) and (10).

Figure 7. The optimization problem of CFW-MPC. Um: voltage limitation; Im: current limitation; Te:
electrical torque trajectory.

4. Simulation Results

In the upper section, the PFW-MPC strategy with the equivalent optimization is
given. The simulations with PFW-MPC and CFW-MPC are implemented to analyze the
performance, and the system parameters are shown in Table 2. The simulation results are
shown in Figures 8–11. The simulation was implemented to maximize the electrical torque
at the given speed, as shown in Figure 8. As can be seen, the PFW-MPC has higher electrical
torque than the CFW-MPC, especially in the FW region.

Table 2. Parameters.

Udc 70 V

Im 6 A

Ld 9 mH

Lq 27.4 mH

Rs 0.83 Ω

ϕf 122 mWb

p 2

Ts 100 µs
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Figure 8. Speed and maximum torque. From top to end: given speed and maximum electrical torque.

Figure 9. Current and dq-voltage. From left to right: PFW-MPC and CFW-MPC.

Figure 10. Current trajectories. iMax: maximum current, iMTPA: MTPA trajectory, iUm: current
trajectory of fU = 0, and TeM: maximum electrical torque’s trajectory.

The dq-currents and the input voltages are shown in Figure 9. Besides, the dq-currents
are redrawn together to analyze PFW-MPC and CFW-MPC in Figure 10. With the speed
increasing (PFW-MPC: ts5–ts6 and CFW-MPC: ts4–ts6), the maximum voltage starts to
limit the operating states (id and iq). Obviously, both the PFW-MPC and the CFW-MPC
can make the IPMSM operate in the FW region. However, the PFW-MPC has the optimal
dq-current because of the equivalent optimization problem Equations (27)–(33). Hence, the
PFW-MPC has more advantages in extending the operating region.

The multipliers (λ and µ) are presented in Figure 11. As can be seen, the PFW-
MPC starts to limit the voltage (λ4 > 0) at ts5, later than the CFW-MPC. The simulation
results, from Figure 8 to Figure 11, indicate that the PFW-MPC has more advantages in the
FW region.
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Figure 11. Multiplier. λ and µ.

5. Experimental Results

In this paper, an IPMSM, shown in Figure 12, is applied to evaluate the proposed FW-
MPC. Besides, the whole experimental platform is presented in Figure 13. The parameters
of the experiment system are shown in Table 2. The VSI module is an IPM (PM50RLA060),
and the TMS320F28335 was chosen as the control processor, which is widely applied to the
IPMSM drive system. The PFW-MPC takes 72 µs, and the CFW-MPC takes 60 us. Both PFW-
MPC and CFW-MPC can complete the calculation within a control period. The sensors’
data (including the current sensors and the torque transducer) and the rotor speed were
translated to the computer by the serial communication interface (RS485). The servomotor
and the servomotor driver can provide the load torque. The driver board, (2) in Figure 13,
is implemented to drive the IPMSM, shown in Figure 12.

Figure 12. IPMSM. (a): Rotor; (b): Installation diagram. (1) Motor shaft; (2) Permanent magnet;
(3) Rotor lamination; (4) Stator winding; (5) IPMSM body.

Figure 13. Experimental platform. (1) Computer; (2) Driver board; (2a) Current sensor; (3) IPMSM;
(4) Encoder; (5) Torque sensor; (6) Servomotor; (7) Power source; (8) Servomotor Driver.
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In the experiments, the servomotor was set to provide a load torque (0.6 Nm), and
a high-speed reference was given as 4 krpm, which the IPMSM cannot reach with the
maximum voltage (70 V), to test the performance of the different strategies in the FW
region. In practice, the maximum electrical torque must be limited to protect the mechanical
system. Hence, in our experiment, the maximum torque was set at 1.7 Nm. The experiments’
results are presented in Figures 14–16. Figure 14 is speed and torque, Figure 15 is IPMSM
dq-currents, and Figure 16 presents the current trajectory, drawn in dq-frame.

Figure 14. Speed and torque.

Figure 15. IPMSM dq-currents.

Figure 16. Current trajectory. Left: PFW-MPC (blue), Right: CFW-MPC (orange). iMax: maximum
current, iMTPA: MTPA trajectory, iUm: current trajectory of fU = 0, and TeM: maximum electrical
torque’s trajectory. t1: 0.44 s, t2: 0.46 s, t3: 3 s, t4: 3.13 s, t5: 3.2 s, t6: 3.32 s, t7: 3.46 s.
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5.1. Speed and Torque

As seen from Figures 14 and 15, the IPMSM operated in the FW region from 0 s to
3 s, both with PFW-MPC and CFW-MPC. However, the PFW-MPC has higher speed and
electrical torque than the CFW-MPC. Both the PFW-MPC and the CFW-MPC can operate
the IPMSM in the FW region, e.g., PFW-MPC at 3.13 s (t4) and the CFW-MPC at 3 s (t3).
However, the PFW-MPC has a higher speed with a higher flux-weakening current (id).
Besides, it took more time (about 2 s) to track the speed command in the FW region (high
speed) because the maximum voltage can limit the dq-currents and the electrical torque,
according to Section 3. However, this result is caused by the IPMSM drive system, e.g.,
the maximum voltage, the maximum current, and the IPMSM. What is more, the PFW-
MPC can provide higher electrical torque than the CFW-MPC because of the equivalent
optimization problem.

5.2. Current Trajectory

The current trajectory is used to analyze the operating states of IPMSM. The dq-
currents (Figure 15) are redrawn into dq-frames (Figure 16) to analyze the performance.
iMax is the maximum current trajectory, iMTPA is the MTPA trajectory, iUm is the current
trajectory of fU = 0, and t1–t7 is the time series. Figure 16 indicates that both the PFW-MPC
and the CFW-MPC can drive the IPMSM in the FW region, satisfying the maximum current
and voltage limitations (iMax and iUm). All iMax, iMTPA, and iUm are considered as
the constraints in the PFW-MPC. The PFW-MPC worked in the FW region from t1 to t7,
and the CFW-MPC worked in the FW region from t2 to t5. Besides, the electrical torque
has been limited to the maximum torque (TeM: 1.7 Nm). However, the PFW-MPC has a
more appropriate current state. From the analysis in Section 3, the optimal current point
should have the minimum distance to the maximum torque trajectory (TeM in Figure 16).
The primary goal of CFW-MPC is to minimize the distance from Q0 to fU = 0. As seen
from Figure 16, the experimental trajectories validate the analysis in Section 3. Hence, the
PFW-MPC has higher electrical torque, as shown in Figure 14.

6. Conclusions

The FW control can improve the IPMSM’s speed and extend the operating region,
which can benefit the IPMSM’s application. In this paper, an equivalent optimization
problem is utilized to simplify the complex FW problem, including two objective functions.
The constraints from the equivalent problem are added into the MPC, ensuring the IPMSM
operating in the FW region and maximizing the electrical torque to control the IPMSM.
The simulation and the experiments indicate that the proposed FW-MPC is feasible and
effective. What is more, the proposed FW-MPC has more advantages in improving the
IPMSM’s speed and electrical torque.
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Nomenclature

id, iq Stator dq-axis currents.
ud, uq dq-axis stator voltages.
Ld, Lq dq-axis inductances.
Rs Stator winding resistance.
Ts Sampling period.
ωe Rotor electrical angular speed.
Te Electrical torque.
ϕf Flux linkage.
θe Rotation angle.
p Pole pairs.
A, B, C State parameter matrix
W Disturbance parameter matrix
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