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Abstract: Traditional power grids are mainly based on centralized power generation and subsequent
distribution. The increasing penetration of distributed renewable energy sources and the growing
number of electrical loads is creating difficulties in balancing supply and demand and threatens
the secure and efficient operation of power grids. At the same time, households hold an increasing
amount of flexibility, which can be exploited by demand-side management to decrease customer
cost and support grid operation. Compared to the collection of individual flexibilities, aggregation
reduces optimization complexity, protects households’ privacy, and lowers the communication effort.
In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated
flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum
calculation is generally computationally prohibitive, various approximations can be found in the
literature. The main contribution of this paper is a comparative evaluation of several approximation
algorithms in terms of novel quality criteria, computational complexity, and communication effort
using realistic data. Furthermore, we investigate the dependence of selected comparison criteria
on the time horizon length and on the number of households. Our results indicate that none
of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the
application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some
inner approximations, namely that they may lead to situations in which not using the flexibility is
impossible, which may be suboptimal in certain situations.

Keywords: demand-side management; flexibility aggregation; Minkowski sum; energy storage;
smart grids

1. Introduction

Modern power grids must integrate a growing number of decentralized, small-scale
renewable energy sources. In addition, climate change, decreasing fossil reserves, and tax
regulations are leading to an increase in electrical demand, e.g., through the switch in
private mobility from conventional to electric vehicles. As a result, increasing intermittent
generation and demand lead to difficulties in balancing supply and demand, which in turn
threaten the secure operation of power grids. Many electrical devices such as air condition-
ers, heat pumps, water heaters and batteries provide operation flexibility and hence there is
a prospect for minimizing the operation cost or for providing ancillary services. However,
the coordinated control of a large number of flexible devices is challenging due to the
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computational complexity, communication effort and privacy issues. Therefore, to address
these issues, the concept of an aggregator is introduced in the literature.

An aggregator is an entity that can assess and control individual demand-side flexibil-
ities, cf. [1,2] for detailed information. The aggregator sells system services to a utility and
thereby acts as an intermediary between contracted consumers and the utility. To this end,
the aggregator calculates the aggregated flexibility, which is subsequently communicated
to the utility to perform optimization tasks. The utility sends back a requested power
profile which has to be disaggregated and distributed by the aggregator to the consumers’
devices. This approach reduces the utility’s optimization complexity and communication
effort as only aggregated variables and constraints are concerned. In addition, the privacy
of consumers is preserved if only the aggregator handles individual consumer data and
is allowed to control consumer devices. Therefore, a key challenge is the mathematical
modeling and tractable computation of the aggregated flexibility.

We consider a setting in which an aggregator controls household flexibilities provided
by batteries serving as electrical energy storages. However, our setting is extendable,
for example, to thermostatically controlled loads (TCLs) which can be described by general
battery models [3,4]. In mathematical terms, the flexibility of a household can be described
by the set of all power profiles by which the household’s demand profile can differ from
the default demand profile of no flexibility. The aggregated flexibility over all households
is then described by the Minkowski sum (M-sum) of individual flexibilities. However,
existing algorithms for M-sum calculations are very expensive [5]. Consequently, different
approximations of the aggregated flexibility have been proposed in the literature. These
methods range from one step ahead to multi-step ahead and from bottom-up to top—down
approaches. Top—down approaches attempt to directly capture the aggregated flexibility,
for example, by using probability distributions or Markov transition matrices [6-9]. In this
paper, we consider bottom—up multi-step ahead approaches which start from individual
flexibility sets. Approximations are further divided into inner and outer approximations.
Outer approximations typically overestimate the aggregated flexibility, while inner approx-
imations typically do not capture the full aggregated flexibility. Consequently, the main
disadvantage of outer approximations is that not all set elements can be disaggregated
among the individual flexibilities. For inner approximations, on the other side, some
flexibility is generally lost.

We very briefly review some typical approximation approaches. A more detailed
description of the approximations evaluated in this paper is given in Section 3. Outer ap-
proximations for linear, second-order cone, and semi-definite constraints were developed
in [4,10]. The authors determined the accuracy of their approximation by comparing the
volume of the approximation to the volume of the exact aggregated flexibility, where the
volumes were estimated using a Monte Carlo procedure. In addition, they compared the ap-
proximation for linear constraints with the approximation derived in [11] and reported that
their approximation is more accurate by a factor of 1.5-2. He Hao et al. [11,12] developed
approximations based on a generalized battery model, in which the battery parameters
are analytically derived to obtain inner and outer approximations. The authors in [13,14]
used zonotopes, which are centrally symmetric polytopes, as inner approximations to the
individual flexibility polytopes. The benefit of this approach is that the M-sum of zonotopes
is computationally efficient. Nazir et al. [15] introduced an inner approximation whereby
each individual polytope is decomposed into a collection of cuboid-homothets. Homothets
are scaled and translated sets of a prototype set, e.g., a cuboid, and also have the advantage
that their M-sum can be efficiently computed. The authors tested their approximation by
relating the estimated volume of the approximation to the estimated volume of the exact
aggregated flexibility. They reported that their approximation covered 44% of the exact
M-sum for stage 0 and 74% for stage 1. Zhao et al. [3] developed inner and outer approxi-
mations based on homothets where the difference to the latter approach is two-fold: first,
the authors used more general prototype sets than cuboids; and second, only one homothet
per polytope is fitted. The authors tested their approximation against the approximations
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developed in references [12,16] in a setting with 1000 heterogeneous TCLs, and reported a
better coverage of exact flexibility. The authors in [17,18] developed inner approximations
based on ellipsoidal projection. In this approach, the M-sum is first implicitly described
in a higher-dimensional space. An ellipsoid with a maximum volume is fitted into this
set. Subsequently, the projection of the ellipsoid on the original space represents an inner
approximation. Barot [17] reported, based on a volumetric consideration, that the approach
of Zhen and Den Hertog [18] provides a superior approximation. Zhao et al. [19] applied
a homothet projection method to obtain an inner approximation. Appino et al. [20] first
added the individual power and energy constraints which lead to an outer approximation.
In a second step, the approximations of the aggregated flexibility are constructed, whereby
feasible disaggregation is guaranteed.

Despite the large number of approximation strategies documented in the literature,
to the best of the authors” knowledge, no study exists that benchmarks and compares them.
The main contributions of this paper are:

*  We evaluate 10 inner and 3 outer M-sum approximations on real, publicly available
data with varying battery settings;

*  We propose novel practice-oriented criteria to assess the quality of approximations
and evaluate them on several algorithms;

*  We compare the computational complexity and the communication effort associated
with the selected algorithms;

¢ We make the code and the detailed results available in a publicly accessible repository
giving future authors a tool to evaluate and compare their approximations.

The remainder of this paper is organized as follows: The system model, the general
approximation problem and the data sources are described in Section 2. Section 3 describes
the M-sum approximations considered in this paper. Section 4 presents the evaluation
framework, i.e., the quality criteria to evaluate the accuracy of the approximations and
the simulation settings. Finally, we present and discuss the results in Section 5 and draw
conclusions in Section 6.

2. Preliminaries

This section presents the system model, i.e., the mathematical description of the
applied setting along with the assumptions made, the approximation problem, and the
data used.

2.1. System Model

We consider M quarter-hourly time periods and N households equipped with sta-
tionary batteries. Each household i € {1,..., N} has a demand profile d;(t) (kW), a power
exchange with the grid g;(¢) (kW) and a battery charge—discharge power x;(t) (kW) for
time periods t € {1,..., M}. Positive values of x;(t) and g;(t) correspond to charging the
battery and drawing electricity from the grid, respectively. Negative values correspond to
power flows in the opposite direction. Figure 1 illustrates the system model, the directions
of positive power flow, and sketches of two-dimensional household flexibilities.

Each household provides a flexibility, which is communicated to the aggregator.
The aggregator calculates an approximation to the M-sum of these flexibilities, which is
sent to the utility to perform optimization tasks. Note that we limit our considerations
to the flexibility in the active power, so the flexibility provided by the reactive part is not
considered. The power balance in each household i can be written as

gi(t) = xi(t)+di(t) vte{l,...,M} 1)

Each household battery i is subject to the following power and energy constraints
Vie{l,..., M}
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Xmini < X%i(t) < Xmax,i ()
Si(t) = Si(t = 1) +x;(t) At 3)
Si(0) = So,i (4)

0 < 5i(t) < Smax,i 5)
Send,i < Si(M) < Smax,is (6)

where Xpay i and Xpin ; represent the upper and lower power limits (kW), respectively, S;(t)
the battery energy (kWh) at time ¢, Sy, ; its capacity (kWh), S ; its initial energy (kWh),
and Sepq ; its minimum final energy (kWh). Constraints (3)-(6) are equivalently rewritten as

J
0<Spi+ Y xi(t)At < Smaxi VJe{l...,M—1} )
t=1
M
Send,i < So,i + Z xi(t)At < Smaxiis (8)
t=1

such that the flexibility of each battery is described by the polytope of vectors x; € RM
fulfilling Equations (2), (7) and (8). In matrix notation, the constraints are given by (9)

! —Xmin,i 1M
_I xmax,ilM
Smax,ist,i
S P T ©)
0
T A M1
50,i—Send,i
At

where I is the M x M identity matrix, I is an M x M lower triangular matrix with values
of one, and 1, is the n-vector of ones, cf. [21]. We identify the left matrix in (9) as A and
the right-hand side vector as b;. Hence, the flexibility of household i can be succinctly
written as

P(A,bi) = {xi c RM|Axi < bz} (10)

Note that the matrix A is the same for all households. Finally, the exact aggregated
flexibility of N households is expressed by the M-sum of individual flexibilities as follows.

N
Kexact = BN, P(A,b;) = {x € RM‘x =Y x, x € P(4, bi)} (11)
i=1

Flexibility 1

x1(2)
x1(1)

Flexibility 2

x2(2) :
x2(1)

Flexibility N

gi(t) di(t
@ xn(2)
xi(t)
xn(1)

Figure 1. System model, directions of positive power flow, and sketches of two-dimensional house-
hold flexibilities.

Aggregator
Utility

=

min f(x)
s.t. xeX

Power Flow
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2.2. Approximation Problem

The set Xexact represents the aggregate grid operation flexibility on the demand side.
Its computation is, however, in general intractable. Therefore, it is important to find accurate
and efficiently computable approximations. An approximation set Xapprox is called outer
approximation (OA) if Xapprox 2 Xexact and inner approximation (IA) if Xapprox C Xexact,
cf. Figure 2. Different measures for approximation accuracy can be conceived. In Section 4,
we define quality criteria which are relevant for grid operators and utilities who optimize
some objective function over Xapprox-

Outer Approximation

Figure 2. Sketch of the aggregation space: exact aggregation (M-sum), inner approximation, and
outer approximation.

2.3. Data

We used publicly available household demand data consisting of the half-hourly en-
ergy consumption of residential consumers from July 2009 to December 2010 in Ireland [22].
The publicly available hourly day-ahead prices for the Germany-Austria-Luxembourg
region from 2016 were used as energy prices [23]. Both data sets were resampled to quarter-
hourly data and time-synchronized with the publicly available code of [24]. The battery
parameters were uniforminimal final battery energy was set to half of its ily sampled from
the following intervals: Spay; € [10.5,13.5] (kWh), Sp; € [0,10.5] (kWh), xmaxi € [4,6]
(kW), and xpin; € [—6,—4] kW) Vi e {1,...,N}. The mnitial value: Senq; = So,i/2 V
ie{l,...,N}

3. Overview of Approximation Strategies

In this section, we present the implemented inner and outer approximations in a
unified notation and adapted to our system model, such that expressions for computational
complexity and communication effort can be derived on a common ground. The approx-
imations are presented in a mathematically coherent order. First, the summation-based
approximations are presented, followed by the zonotope- and homothet-based approxima-
tions, and finally the projection based approximations. More detailed descriptions of the
algorithms can be found in the literature references.

3.1. Outer Approximation by Right-Hand Sides Summation
This outer approximation was developed by Barot and Taylor [4,17]. Let N households

with feasible regions P (A, b;) be given, then an outer approximation to the M-sum is
described by the set:

N
Xapprox = {x c ]RM’Ax < Zbl}. (12)
i=1

For M time periods, 4M (N — 1) summations are needed. Note that 4M is the amount
of rows in A for the setting described in Section 2.1. The communication effort consists of
sending the 4M x M matrix A and the 4M-vector Zf\il b; of the right-hand sides (RHSs)
summation to the utility.



Energies 2022, 15, 2501

6 of 25

3.2. Outer Approximation by Right-Hand Sides Summation with Preconditioning

This approximation of Barot and Taylor [4,17] is an extension of the previous approx-
imation, where each b; is maximally shrunk before summation. The flexibility, which is
given by the feasible region of the constraints, is not changed by this preconditioning (PC).
The hyperplanes describing these constraints are shifted such that each one supports the
feasible region P(A,b;). In detail, let aj be the jth row of A, then the following linear
program is solved to recompute the jth entry of b;:

b:(j) = max a] x
i(j) = maxa; a3
s.t. Ax < b;

In total, 4MN linear programs with each 4M constraints and M variables have to be
solved. The outer approximation to the M-sum is described by the set:

N
Xapprox = {x cRMlax< ), b,}. (14)
i=1

The communication effort again consists of transmitting the 4M x M matrix A and
the 4M-vector YN | b; to the utility.

3.3. Inner Approximation with Zonotopes

Miiller et al. [13,14] used zonotopes to obtain an inner approximation to the M-sum.
Zonotopes are centrally symmetric polytopes described by

Z:(G, v, A;) = {xeRM|x:vi+G/\,—/_\i §A§7\i}, (15)

where G is a matrix with normalized column vectors serving as generating directions; A is
a vector of scaling factors; and v; is the zonotope center. Following the approach of [13], we
choose the M unit vectors and additional M — 1 vectors of the form

1 T
O~ 50

as generating directions.

To compute the matrix C of the zonotope half-space representation {x € RM|Cx < u;},
Miiller et al. [14] showed that at most M2 + M normals, i.e., rows in C, have to be computed.
Subsequently, the offsets u; are calculated by shifting the zonotope hyperplanes such that
each one supports the given polytope P (A, b;). This step is analogous to problem (13) and
requires the solution of at most M? + M linear programs per household. The final step is to
find inner approximation zonotopes with respect to a given objective. The constraint that
enforces a zonotope to be a subset of a given polytope is given in [14] as

Zi(G, 1/1',/_\1') - P(A, bl) — Av;+ |AG|/_\Z < bi (16)

where |AG]| is the element-wise absolute value of the matrix AG. In [13], the optimal inner
zonotopes are found by minimizing the distance between the offsets in a given norm:

min ||u; — 67 (vi, Aj)|];
Viihi
st. Av; + |AG|A; < b; 7
A >0

with I € {1,2,00}. Here, u; are the previously calculated offsets and:



Energies 2022, 15, 2501

7 of 25

oz(vi, Ai) = < _FF )Vi+< Iigi >/_\i (18)

are the offsets in terms of the center v; and the vector of scaling limits A;, cf. [13,25]. The
matrices F and —F contain the zonotope normals.

Miiller et al. [14] also proposed a slightly different approximation where problem (19)
is solved instead of (17):

max w' A
Vi
s.t. Av; + |AG|}\1‘ <b; (19)
Ai>0
with w = ﬁﬁj |CG|, where ii; is the element-wise reciprocal of u;. Finally, the M-sum

of these optimal inner zonotopes can be efficiently calculated by summing up the v; and A;
to obtain an aggregate inner approximation:

N N
Xapprox - @£1Zi(cz Vi, /\1) =Z (G/ Z Vi, Z /\1> ’ (20)
i=1 i=1

A maximum of (M? + M)N linear programs with 4M constraints and M variables
must be solved. In addition, N linear programs with 2M? + 8M — 1 constraints and M? +
4M — 1 variables for /] norm, N linear programs with 2M? + 8M — 1 constraints and 3M
variables for /o, norm, N convex programs with 6 M — 1 constraints and 3M — 1 variables
for I norm and N linear programs with 6 M — 1 constraints and 3M — 1 variables for
problem (19) are solved. The communication effort consists of transmitting the M x 2M — 1
matrix of generators G, the sum of M dimensional centers v; and the sum of 2M — 1-vectors
A; to the utility.

3.4. Inner Approximation with Cuboid Homothets

Nazir et al. [15] used unions of homothets to compute an inner approximation to the
aggregate flexibility. Given a compact convex set Py, a homothet of P is defined as the set:

BiPo+ti:={x¢€ RM’x =BiC+t, €Po} (21)

with B; > 0. The key idea is to decompose each polytope P(A,b;) into a collection
of homothets. Following [15], the maximum volume cuboid that fits into, for example,
the first polytope P (A, by) is taken as the prototype set Py by solving:

M
max [[xf —x
A =

st. ATxT — A x™ <y
xk_gx;, for k=1,..., M,

(22)

where AZT;T = max(0, 4;;) and A = max(0, —A;;), cf. [26]. The objective in (22) can
be equivalently replaced by Y, log(x;" — x;°), which leads to a convex problem that
can be solved by CVXPY [27]. Subsequently, the edge distances &) = (x;7 — x; ) for
k € {1,2,..., M} and the distance ratios pcl),k = 69/60 for k € {2,..., M} are calculated.

The following optimization problems find the maximum volume homothets of Py in all
P(A,b;) forie{1,...,N}:
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M
max I_ka+ — x]:
YA k=1
st. ATxT —A"x™ < (23)

X Sxk*, for k=1,.... M

(xf —x7) :p(l),k(x;r—x;), for k=2,...,.M

Note that the last constraint enforces the solution to be a homothet of P,.

This procedure can be applied in several stages to cover more flexibility: in stage zero,
a maximum volume homothet of Py is fitted into each P (A, b;). In stage one, maximum
volume homothets of Py are fitted into regions not covered by the stage zero solution. This
is performed by extending matrix A and vector b; by a row of the half-space inequalities of
the stage zero solution multiplied by —1. The procedure is shown for stages zero and one
in Figure 3.

-2 -1 0 1 2 3 4 5 6
x(1)

Figure 3. Inner approximation with cuboid homothets. Solid line: feasible region of the household;
dashed line: stage zero solution; dashed-dotted and dotted lines: stage one solutions.

Each stage s requires the solution of at most (2M)* optimization problems leading to a

total of at most Y3_,(2M)’ = % convex problems per household.

Finally, the distributive property of the M-sum is used to obtain an inner approxima-
tion to the aggregated flexibility, i.e., instead of first forming the union and then the M-sum,
the M-sum is performed first and then the union. Nazir et al. [15] proposed to only use
corresponding combinations for axis-aligned cuboids, e.g., the kth cuboid of the sth stage
in P(A, b;) is added to the kth cuboid of the sth stage in (A, b;). The M-sum of homothets

is given by
11 ﬁP0+t Z,BPO+2t (24)

When using cuboids, this can be simplified to the summation of the right-hand vectors
in the half-space representation.

The total computational effort consists of solving N(2M)° convex problems with
(6M — 1) constraints and 2M variables for stage 0, N(2M)! convex problems with
(6M —1+1) constraints and 2M variables for stage 1, up to N(2M)* convex problems
with (6M — 1+ s) constraints and 2M variables for stage s. In addition, one convex
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problem with 5M constraints and 2M variables has to be solved. The communication effort

consists of sending the 2M x M matrix (I, —I) T, the 2M-vector (x*, —x~) T as solutions to

problem (22) and a maximum of % scaling factors f; and M dimensional offsets ¢;

to the utility.

3.5. Inner Approximation with Battery Homothets

Zhao et al. [3] used the battery model (9) as the prototype set Py to obtain inner homo-
thet approximations. They used the average individual battery parameters as prototype
battery parameters which we denote with by, i.e., Py = {x € RM|Ax < b,}. To find the
maximum volume homothet of Py in P (A, b;) one solves:

P
st. BPo +t; C P(A,b;) (25)
Bi > 0.

In [3], it is shown that the solution to this problem is given by g7 = sl* and t7 = — % if
(s7,rf, G*) is the solution of:

i
st. GA=A (26)
Gby <s;b; + Ar;
s; >0, G>0,

where G > 0 means element-wise inequality. Once the inner approximation for all
P(A,b;) is obtained, the M-sum of these homothet approximations can be calculated
using Equation (24). The overall computation effort is given by solving N linear programs
with 20M? + 4M + 1 constraints and 16 M2 + M + 1 variables. The communication effort
consists of transmitting the 4M x M matrix A, the 4M-vector by, the sum of the scaling
factors B;, and M dimensional offsets ¢; to the utility.

3.6. Outer Approximation with Battery Homothets

Zhao et al. [3] also developed a homothet outer approximation using the same proto-
type set Py = {x € RM|Ax < b, }. To obtain the outer approximation to P (A, b;), one has
to solve:

in b
st. BiPy+t;i D P(A,b;) (27)
Bi>0
which can be reformulated as
Jnin Bi
Gb; < ,Bibp + At;
i>0,G>0

The M-sum of the homothet approximations is again calculated by (24). Similarly to
the previous approximation, the overall computation effort is given by N linear programs
with 20M2 4 4M + 1 constraints and 16 M? + M + 1 variables. The 4M x M matrix A,
the 4M-vector by, the sum of the scaling factors 8;, and M dimensional offsets t; must be
transmitted to the utility.
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3.7. Inner Approximation by Ellipsoid Projection

Barot [17] assumes that N households with feasible regions P (A, b;) are given. The M-
sum can be implicitly written as

A —A —A ... —A —A
0 A 0 .. 0 0 z by
M X1 bl
zeR : < ) . (29)
0 0 0 ... A 0 N )
o0 0 0 .. 0 A N-1 N-1

where z = Zfi 1 Xi. We denote the left 4MN x MN matrix as Q and the right vector as p;
hence, the feasible region is written as P(Q, p). The main idea is to fit an ellipsoid with
maximum volume in this set. An ellipsoid can be written as the image of the unit ball under
an affine transformation as

E={Gu+h]||ull, <1}, (30)

where the positive definite matrix G and the center / are partitioned as
GZ GXZ >
G= 31
(o & ey

h:<Zi> (32)

with x = (x1,...,xy_1) . The volume of the ellipsoid is proportional to det(G), hence the
problem of finding an ellipsoid with maximum volume in P(Q, p) can be formulated as
follows, cf. [28]:

log(det(G
max og(det(G))

st. |Ggilla+q7 h < p; for i=1,...,4AMN (33)
G+0

where g; is the ith row in Q and the notation G > 0 denotes a positive definite matrix G.
Barot [17] proposes to maximize the determinant of the submatrix G, associated with the
M-sum rather than that of G, leading to the following semi-definite program:

log(det(G
max og(det(G;))

st ||Ggilla+q k< p; for i=1,...,4MN (34)
G>0

Solving this problem yields an ellipsoid in the z—x space which is projected back on
the z space to derive an inner approximation of the aggregate flexibility. Problem (34) can
be solved by CVXPY [27]. The computation effort is given by one semidefinite program
with 4MN constraints and M?>N? + MN variables. The communication effort consists of
transmitting the M x M matrix G, and the M dimensional center /;, to the utility.

3.8. Inner Approximation by Ellipsoid Projection with Linear Decision Rule

Zhen and Den Hertog [18] developed an inner approximation based on ellipsoidal
projection where the inclusion constraint is only defined in z space:

max log(det(G;))
z,Y,Gz

(35)
<

7

StquBMayERM(Nl)Q< hz+qu )

y
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where BM = {u € RM| |lu|, < 1} is the unit ball of dimension M and P(Q, p) the
implicitly described M-sum with matrix Q and right-hand vector p, cf. (29). This problem
can be interpreted as a robust optimization problem, where &, and G, are the here and now
decision variables and y the wait and see variable. Assuming a linear decision rule (LDR)
y = Vu + w, the above problem can be reformulated as

log(det(G
mgg/%(ﬂzﬂ

+ﬂ<$)§mbM:LmAMN (36)

Gz>‘0

Solving this problem yields an ellipsoid in z space which is an inner approximation of
the aggregate flexibility. The overall computation effort is given by a semidefinite problem
with 4MN constraints and M2N + MN variables. The M dimensional center &, and the
M x M matrix G, needs to be transmitted to the utility.

3.9. Inner Approximation by Homothet Projection with Linear Decision Rule

Zhao et al. [19] developed an inner approximation based on homothet-projection.
Similar to the previous approach, the implicit M-sum description in (29) is used, where the
matrix is denoted as Q and the right vector as p, which allows to write the feasible region
as P(Q, p). The battery model derived in (9) is chosen as the prototype set Py = {x €
RM|Ax < by} where again the battery parameters are taken as the average of the individual
battery parameters. For a fixed vector ug € RM(N=1) let Py = {(x,uy) " € RMN|Ax < by}
denote the corresponding lift of Py in MN dimensional space. The problem of finding a
maximal homothet of Py in P(Q, p) is formulated as

max

Bt,uo

st. BPy+EC P(Q,p) (37)
B>0

where f = (t,0) " is the lift of t in MN dimensional space by setting the additional dimen-
sions to zero. This problem is transformed by the authors to the following linear program:

min s
s,G,r,ug
MGA_(8“>
21 (38)
7
<
Gby < Q( —up > +sp
s>0,G>0,
where s = %, r= —é and G > 0 mean element-wise inequality. The above formulation is

conservative, since only solutions contained in the homothet of Py are allowed. However,
for the approximation, only the following condition is required:

Vu € BPy+ t i(u) such that (u,i(u)) € P(Q,p) (39)

This can be cast into a robust optimization problem. The function ii(u) is used as
decision rule which is assumed to be linear, i.e., ii(#) = Wu + V. Using these ideas,
the problem is restated by the authors as
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min s
s,Gr,W,V

s.t.GA—Q( VI\/ >

,
GbpSQ( _V>+sp
s>0 G>0,

(40)

where I is the M x M identity matrix. The computation effort is given by solving a
linear program with 20M2N + 4MN + 1 constraints and M?(17N — 1) + MN + 1 variables.
The 4M x M matrix A, the 4M-vector by, the scaling factor 8, and the M dimensional offset
t must be transmitted to the utility.

3.10. Comparison of Communication and Computation Effort

In this section, we compare the overall communication and computation effort of the
presented algorithms. Table 1 shows that for all algorithms, the communication effort is
quadratic in M with a factor varying between 1 and 4 and independent of N. The ellipsoid-
based algorithms have the lowest communication effort. On the other hand, the highest
communication effort is reached when the Battery Homothet algorithms or the IA with
Cuboid Homothets Stage 1 algorithm is used. For comparison, the communication ef-
fort without aggregation consists of sending the 4M x M matrix A and N 4M-vectors b;,
i.e., 4M? + 4MN, which increases with M and N.

The computational effort is presented in Table 1 in terms of linear programs (LPs),
convex programs (CPs) and semidefinite programs (SDPs) as a function of N and M.
We specified the problem dimensions in the columns Constraints and Variables. Where
possible, we provided the problem-defining equation numbers. The computation effort
for the algorithm OA by RHS Summation is left out, as this only requires the summation
of right-hand vectors in the half-space representation. It can be seen that the problem
dimension increases with M and N for the projection-based algorithms, while for the non-
projection-based algorithms, the problem dimension is a function of M only. On the other
hand, the number of problems to be solved increases with N for the non-projection-based
algorithms, which is not the case for the projection-based algorithms.
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Table 1. Communication effort given by floating point numbers that have to be sent to the utility, and computation effort in dependence of the number of households

N and number of time periods M.

Algorithms Ref. Communication Effort Problems Constraints Variables
IA by Ellipsoid Projection [17] M2+ M 1SDP (34) 4MN M?2N? + MN
IA by Ellipsoid Projection with LDR [18] M2+ M 1 SDP (36) 4MN M2N + MN
. N LPs (17), 2M? +8M —1 M?+4M -1
2 _ ’ ’
IA with Zonotopes Iy [13] 2M*+2M -1 N( M2+ M) LPs AM M
. N LPs (17) 2M2% +8M —1 3M,
2 _ ’ 7
IA with Zonotopes I« [13] 2M=+2M —1 N( M2+ M) LPs AM M
. N CPs (17) 6M—1 3M -1
2 _ ’ ’ ’
IA with Zonotopes I, [13] 2M* +2M —1 N (M2 + M) LPs AM M
. . N LPs (19) 6M—1 3M -1,
2 _ ’ ’
IA with Zonotopes weighted [14] 2M* +2M —1 N(M2 + M) LPs AM M
. . N CPs (23) 6M—1 2M,
2 , ,
IA with Cuboid Homothets Stage 0 [15] 2M*+3M+1 1CP (22) 5M oM
OA by RHS Summation [4,17] 4M? +4M
OA by RHS Summation with PC [4,17] 4M? +4M 4MN LPs (13) 4M M
IA with Battery Homothets [3] 4M? +5M +1 N LPs (26) 20M2 +4M +1 16M? +M+1
OA with Battery Homothets [3] 4M? +5M +1 N LPs (28) 20M? +4M + 1 16M? + M +1
[A by Battery Homothet Projection [19] AM2 +5M + 1 11LP (40) 20M2N + 4MN + 1 M2(17N — 1) + MN +1
with LDR
N CPs (23), 6M—1, 2M,
IA with Cuboid Homothets Stage 1 [15] 4M? +5M +1 N(2M) CPs, 6M, 2M,
1CP (22) 5M 2M
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4. Evaluation Framework

In this section, we introduce novel quality criteria to compare the accuracy of approx-
imations and state the used simulation settings. We distinguish between quality criteria
for inner and outer approximations since both situations are handled differently in prac-
tice. The power profiles of inner approximations are always disaggregable; therefore, the
amount of unused flexibility potential by using the inner approximation is relevant. On the
other hand, the power profiles of outer approximations are not always disaggregable, so
additional energy may have to be purchased on the market to achieve the desired power
profile. Therefore, for outer approximations, the minimum imbalance energy required for
the profile to be disaggregable is relevant.

4.1. Quality Criteria for Inner Approximations

Let Xapprox denote the aggregate flexibility of some M-sum approximation, and let the
utility optimize the objective function f(x) over Xapprox:

Zapprox — xef/aiplgmx f(X) (41)

Similarly, the same objective function is minimized over the exact M-sum by solving:
Zexact = mxin f(x)
N
s.tx=) x (42)
i=1
Ax; <b; for i=1,...,N,

cf. Equations (10) and (11). In this paper, we consider the objective functions:

flx)=c' <x—0—idi>At

i=1

for cost minimization and:

f(x)

N
x+ Edi
i=1

for peak power minimization. The expression x + YN | d; represents the total power trade
with the grid, cf. Equation (1) and Figure 1. Furthermore, we denote the function values
when x = 0 aggregated flexibility is used as zy,, flex, meaning that:

[e9)

N
Zno flex = ¢’ <Z dl) At (43)
i=1

for cost minimization and:
N

Y

i=1

(44)

Zno flex =

(0]

for peak power minimization.

The optimal value zexact for the exact M-sum flexibility is always less than or equal
to the corresponding optimal value zapprox for an inner approximation since the inner
approximation flexibility is a subset of the exact M-sum flexibility. Analogously, it holds that
Zexact < Zno flex- 1f the latter inequality is strict, we define the unused potential ratio (UPR):

UPR :— Zapprox — Zexact (45)

Zno flex — Zexact
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as our quality criterion for an inner approximation corresponding to the chosen objective
function. If the zero vector x = 0 is contained in an inner approximation flexibility, then
the optimal value zapprox for the approximation is less than or equal to the correspond-
ing optimal value z,, ey Of no flexibility. In this case, and if Zexact < Zno flex, We Obtain
0<UPR<LL

4.2. Quality Criteria for Outer Approximations

Let Xapprox be the flexibility of an outer approximation. First, the optimization problem
defined in (41) is solved resulting in an optimal solution X, that minimizes the objective
function. However, this solution may be infeasible with respect to the exact flexibility,
in which case an additional power exchange is needed to make the solution feasible.
The corresponding minimum imbalance energy (MIE) is given by

R : * _
MIE := mxm Hxapprox leAt
N
s.tx=) x (46)
i=1

Ax;i <b; for i=1,...,N

Note that one could also consider to measure the cost of imbalance energy. Let x%,

denote the optimal solution to (46). If ||x},|[1 > 0, we define the imbalance energy
ratio (IER):
MIE
IFR == — (47)
erxactHlAt

as our quality criterion for an outer approximation corresponding to the chosen objective
function. It represents the MIE as a fraction of the feasible aggregate energy used for
that purpose.

4.3. Simulation Settings

Since the evaluation of the objectives depends on the choice of the cost vector c, the set
of demand profiles d;, and on the battery parameters Xpin i, ¥max,i» Smax,i and Sg ;, the opti-
mizations were performed on different days and with varying battery parameters. For that
purpose, we randomly generated 10 synthetic villages, each of which comprised 50 house-
holds. Uniformly distributed battery parameters and demand profiles, cf. Section 2.3, were
assigned to each household. For each examined number of time periods M and examined
number N of households per village, in each village, the first N of the 50 previously gen-
erated households were selected and M time periods centered at noon in the middle of
each month of one year were used as data inputs to the computations. The cost vectors
were determined by the chosen days and the number of time periods M. The time periods
were chosen quarter-hourly according to the data. For each of these settings and for each
algorithm, the aggregate flexibility approximations were calculated and the objective func-
tions were optimized. Furthermore, the times required to calculate each approximation
were measured.

On the supplement website [29], we provide the complete Python code as well as a
template to add and compare new approximation algorithms. The code is licensed under a
Creative Commons Attribution 4.0 International License @@®. All linear programs in this
framework were solved with Gurobi 9.5.0 [30], and all nonlinear programs with CVXPY
1.1.18 [27]. An AMD Ryzen 7 5700G processor was used for all computations. Finally,
to keep the overall computation time within limits, the framework was configured to skip
those calculations of an algorithm with more households and more time periods if the
approximation and the optimizations for an (N, M)-setting took more than 60 s.

The quality criteria were subsequently calculated from the stored computation results.
To that end, the two additional algorithms “no flexibility” and “exact” were analogously
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evaluated, where “no flexibility” represented the setting without household batteries, i.e.,
x = 0, and “exact” the exact M-sum, cf. (42).

5. Results and Discussion

Due to space limitations, only the most important results are presented in this paper.
However, the interested reader can download all numbers, figures and tables for each
algorithm from the supplement website [29]. For readability, the values of the quality
criteria UPR and IER are stated in percent.

5.1. Outer Approximations

In this section, we compare the computation times and quality criteria UPR and IER
for the cost and peak power minimization. Since there is more than one way to compare the
approximations and visualize the results, we first show the quality criteria and computation
time for fixed numbers of households and time periods. Then, we present the results for
all numbers of households and time periods for one selected algorithm in a table. Finally,
we compare the rows or columns of this table for multiple algorithms to illustrate the
dependence on the number of households and the number of time periods. Except for the
boxplots, we reduce the distributions with respect to the sampling over the 10 villages and
the 12 days by computing median values.

Table 2 shows the evaluation results for 50 households and 24 time periods. The best
overall results were obtained by the algorithm OA by RHS summation with PC.

Table 2. Median values for outer approximations with N = 50 and M = 24.

Algorithms Peak Power IER (%) Algo Time (s) Cost IER (%)
OA by RHS Summation 0.00 0.00 211.17
OA by RHS Summation with PC 0.00 7.90 103.47
OA with Battery Homothets 175.80 45.79 744 .44

The median cost IER values for all periods and households are shown for this algorithm
in Table 3.

Table 3. Median cost IER values for algorithm OA by RHS Summation with PC.

Periods 4 8 12 16 20 24
Households

2 0.00 0.00 0.00 0.00 0.00 1.30
6 0.00 0.00 0.00 417 10.75 11.20
10 0.00 0.00 0.00 14.96 21.46 18.64
20 0.00 0.00 5.81 34.77 36.06 39.78
30 0.00 0.00 11.16 48.05 50.52 62.78
40 0.00 0.00 19.93 79.21 70.50 83.01
50 0.00 0.00 26.68 99.57 88.32 103.47

As can be seen in Table 3, the values increase with households and time periods. The
peak power IER is not presented as it is constantly approximately zero. Figure 4 shows the
spread of the quality measures cost IER and algo duration as boxplots.
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Figure 4. Spread of the quality measures cost IER and algo duration for the algorithm OA by RHS
Summation with PC using boxplots ordered by households from left 2 to right 50.

The computation time dependence is shown in Figure 5 for 12 time periods and
increasing numbers of households at the top and 20 households and increasing numbers of
time periods at the bottom. It can be seen that the algorithm OA by RHS Summation is the
fastest and the algorithm OA with Battery Homothets is the slowest in both cases.

—— OA by RHS Summation
W 15 OA by RHS Summation with PC
5 —&— OA with Battery Homothets
=
© 10
=}
°
& 5-
©
0 ? T T - - - -
2 6 10 20 30 40 50
households
—— OA by RHS Summation
W 15 OA by RHS Summation with PC
g —&— OA with Battery Homothets
® 101
S
°
& 51
©
0 y T - - = -
4 8 12 16 20 24
periods

Figure 5. Time to calculate the approximation—(top): computation time dependence on number
of households for 12 periods; (bottom): computation time dependence on number of periods for
20 households.

The quality criteria cost IER and peak power IER are shown with an increasing number
of households and 12 time periods in Figure 6.

It can be seen that the OA with the Battery Homothets algorithm generally leads
to the highest values while OA by RHS Summation with PC leads to the lowest values.
The same is true when the number of households is fixed and the number of periods
increases, as shown in Figure 7.
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Figure 6. (Top): cost IER dependence on the number of households for 12 time periods; and
(bottom): peak power dependence on number of households for 12 time periods.
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Figure 7. (Top): cost IER dependence on the number of time periods for 20 households; (bottom): peak
IER dependence on the number of periods for 20 households.

Although only selected columns and rows of the tables have been presented here, our
results have shown that these observations are also valid for other fixed values of up to
50 households and 24 time periods.

5.2. Inner Approximations

This section presents the results for the inner approximations following the same
format as the previous section.
The results for N = 10 households and M = 8 time periods are shown in Table 4.

For higher (N, M) values some approximations were skipped because of the chosen com-
putation time limit.
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Table 4. Median values for inner approximations with N = 10 and M = 8.

Algorithms Peak Power UPR (%)  Algo Time (s)  Cost UPR (%)
IA with Cuboid Homothets Stage 1 25.87 1.38 6.85
IA with Zonotopes Weighted 139.01 0.67 7.57
IA with Zonotopes [ 156.32 0.74 7.73
IA with Cuboid Homothets Stage 0 25.87 0.08 8.77
IA with Zonotopes I, 84.32 0.74 8.97
IA with Zonotopes I 0.00 2.12 10.89
‘INAit?yL]]S;It{tery Homothet Projection 0.00 377 18.61
IA with Battery Homothets 0.00 0.72 19.86
IA by Ellipsoid Projection with LDR 0.00 1.11 27.75
IA by Ellipsoid Projection 0.18 75.52 29.00

Table 4 shows that the algorithms IA with Cuboid Homothets Stage 0 and IA with
Cuboid Homothets Stage 1 perform moderately well for the quality criteria cost UPR and
peak power UPR. It is also evident that the ellipsoid-based algorithms perform poorly
at cost UPR, but well for peak power UPR. Moreover, the ranking of the algorithms is
different for different objectives which indicates that the approximations should be chosen
according to the purpose.

For the algorithm IA with Cuboid Homothets Stage 1, the median cost UPR values for
all households and time periods are given in Table 5 which shows increasing values with
the number of time periods and the number of households.

Table 5. Median cost UPR values for algorithm IA with Cuboid Homothets Stage 1.

Periods 4 8 12 16 20 24
Households
2 1.31 6.33 13.55 17.57 22.06 25.89
6 1.33 5.98 12.78 17.51 21.02 24.47
10 1.53 6.85 13.27 18.22 21.43 24.72
20 1.50 6.23 12.57 16.94 22.23 24.87
30 1.56 6.30 12.61 17.53 23.26 25.69
40 1.55 6.63 12.63 17.33 23.64 25.82
50 1.62 6.77 12.83 17.44 23.67 26.06

Figure 8 shows the spread of the quality measures cost UPR, peak power UPR and algo
time as boxplots.

Note that there are UPR values beyond 100%, which indicates that the inner approxi-
mation gives larger values than without flexibility cf. Equation (45). Our results indicate
that this is especially true when the peak power objective is used. The reason is that the
inner approximation does not always contain the element corresponding to not using
the flexibility, i.e., in our setting, the M-vector of zeros. Figure 9 shows this for two time
periods and the algorithm IA with Cuboid Homothets Stage 0. We used S.nq = S ; for this

experiment as for Sepng = %, the problem described occurs in dimensions higher than two.
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Figure 8. Spread of the quality measures cost UPR, peak power UPR, and algo duration for algorithm
Cuboid Homothets Stage 1 using boxplots ordered by households from left 2 to right 50.
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® sol approx, obj min peak=2.64kW
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Figure 9. Example for peak power UPR value greater than 1 for the algorithm IA with Cuboid
Homothets Stage 0: The polytope with solid lines represents the M-sum of two household flexibilities
and the polytope with dashed lines the inner approximation to the M-sum. The solution obtained for
peak power minimization is indicated with a circle for the inner approximation, with a star for the
M-sum, and with a cross for no flexibility, i.e., x = (0,0) . The case with no flexibility leads to less
peak power than the solution for the inner approximation.

Figure 10 shows the computation time with increasing time periods for 20 households.

It can be seen that the approximations based on projection methods, i.e., IA by Ellipsoid
Projection, IA by Ellipsoid Projection with LDR, and IA by Battery Homothet Projection
with LDR exhibit the slowest computation times. The best computation times are achieved
by the Cuboid Homothets algorithms of stage 0 followed by stage 1.

We observed the same order for an increasing number of households and fixed time
periods. The only difference in this case is that all algorithms except for the projection-based
ones exhibit linear increasing behavior.



Energies 2022, 15, 2501

21 of 25

f

IA with Cuboid Homothets Stage 0

IA with Battery Homothets

IA by Battery Homothet Projection with LDR
IA with Zonotopes /«

IA with Zonotopes I,

IA with Zonotopes /I,

IA with Zonotopes weighted

IA with Cuboid Homothets Stage 1

IA by Ellipsoid Projection with LDR

—<— |A by Ellipsoid Projection

80

bttt

60

IN
o

algo duration (s)

\

periods
Figure 10. Computation time dependence on the number of periods for 20 households.

Figure 11 shows the cost UPR with increasing numbers of households for 12 time
periods. It can be seen that the ellipsoid-based approximations generally do not perform
well, while the zonotopes and the cuboid homothet-based approximations generally give
good results. We found that for other fixed time periods, the order is maintained, except
that the algorithms IA with Zonotopes I, and IA by Battery Homothet Projection with
LDR improve:

f

IA with Cuboid Homothets Stage 0
35 IA with Battery Homothets
—+— |A by Battery Homothet Projection with LDR
—=—|A with Zonotopes /.,
30 —— A with Zonotopes /1
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IA with Zonotopes weighted
—e— |A with Cuboid Homothets Stage 1
IA by Ellipsoid Projection with LDR
20 —<— |A by Ellipsoid Projection

cost UPR (%)
N
w

15 —

2 6 10 20 30 40 50
households

Figure 11. Cost UPR dependence on number of households for 12 time periods.

For increasing time periods and a fixed number of households, the overall same order
can be observed; however, with a linearly increasing dependence of cost UPR.

Figure 12 shows an improvement of the ellipsoid-based methods for peak power UPR
compared to cost UPR.

The battery and ellipsoid-based algorithms perform best for peak power while the
zonotope-based approximations do not perform well compared to the other algorithms. We
found that this is also true for other values of fixed time periods, except that the Zonotope
I algorithm slightly improves. The overall order of best and worst performing algorithms
is maintained for the fixed number of households with increasing time periods.
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Figure 12. Peak power UPR for an increasing number of households and 12 time periods.

5.3. Overall Ranking

In practice, high N and M values are typically of greater interest. For this rea-
son, we applied the following procedure to obtain an overall ranking of the inner and
outer approximations:

*  We only include approximations that returned results for all N and M values within
the chosen computation time limit.

*  For these approximations, the median values of the cost and peak power quality
criteria were computed over all days, samples and N > 30 and M > 16 settings.

Table 6 shows the remaining approximations, their median quality criteria values,
and in brackets, the rankings depending on the approximation type (inner and outer) and
objective function.

Table 6. Overall ranking: median overall quality criteria values for preselected approximations and
N and M values, and in brackets, the rankings depending on approximation type (inner and outer)
and objective function.

Algorithms Cost UPR/IER (%) Peak Power UPR/IER (%)
IA with Cuboid Homothets Stage 0 23.80 (4) 150.32 (4)

IA with Cuboid Homothets Stage 1 21.99 (3) 148.19 (3)

IA with Battery Homothets 43.97 (5) 32.15(1)

IA with Zonotopes [ 21.60 (2) 221.35 (6)

IA with Zonotopes I 23.80 (4) 112.66 (2)

IA with Zonotopes weighted 17.40 (1) 156.42 (5)

OA by RHS Summation 192.79 (2) 0.00 (1)

OA by RHS Summation with PC 76.32 (1) 0.00 (1)

OA with Battery Homothets 519.69 (3) 160.22 (2)

Table 6 shows the application-dependent performance of the inner approximations.
Well-performing approximations for cost UPR do not perform well in peak power UPR
and vice versa. For example, the algorithm IA with Zonotopes weighted ranks first in
cost UPR but fifth in peak power UPR. Only mid-ranking algorithms, such as the cuboid-
based algorithms, do not show such an extreme deviant behavior. Values above 100%
for peak power UPR show that not using the flexibility is more efficient than using the
approximation which makes the approximation useless for that purpose. This is the case
for all inner approximations expect IA with Battery Homothets. For outer approximations,
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the algorithm OA by RHS Summation with PC ranks first for both cost and peak power IER.
However, for cost IER, approximately 75% of the flexibility energy needs to be purchased
as imbalance energy, which is generally expensive.

6. Conclusions

In this paper, we investigated several published approximation methods for aggregat-
ing demand-side flexibilities given by energy storage devices. The different approximations
were described and compared with respect to communication and computation efforts.
Furthermore, we defined and evaluated novel quality criteria to assess the quality of the
approximations for their use in practice. Finally, the evaluation framework was made pub-
licly available such that researchers can compare future approximations with the current
state of the art.

The evaluation results show that the projection-based algorithms exhibit the highest
computation times. The ellipsoid-based algorithms showed the lowest communication
effort. For inner approximations, we suggest application-dependent-choices, cf. Table 6. The
best results were obtained for outer approximations when the OA by RHS Summation with
PC was used. We conclude that not one of the presented approximations fits all purposes.

Only the cuboid homothets algorithm can configure its accuracy, namely by increas-
ing the number of stages. This, however, is accompanied by an exponential increase in
computational effort.

We found a crucial weakness of many inner approximations, especially when min-
imum peak power is considered, namely that they do not always contain the element
corresponding to not using the flexibility and may therefore lead to solutions that perform
worse compared to the case where no flexibility is available. Thus, future work should
yield inner approximations that overcome this deficiency in all cases.

Our evaluation model is extendable in several ways. First, renewable energy genera-
tion can be subsumed into the demand profiles. The inclusion of self-discharge rates < 1
changes the submatrix I' in Equation (9) and results in possibly different A matrices for
different households. This can be transformed in our model with equal A-matrices by
introducing redundant constraints through PC, cf. [17]. Finally, as TCLs can be described
by battery models with a self-discharge rate < 1, they can also be modeled with different
A-matrices, cf. [3]. Future work should investigate how an increased diversity of indi-
vidual flexibilities influences the accuracy of aggregation approximations. Furthermore,
the control of reactive power, e.g., by inverters, is becoming more important with the
increasing number of PV systems in smart grids. Therefore, future studies should consider
the flexibility of active and reactive power simultaneously.

We did not include charging and discharging efficiencies < 1 because if simultaneous
charging and discharging is not allowed, their inclusion leads to non-convex sets. This
aspect of real storage devices as well as uncertainties in data and parameters and model
predictive control approaches should also be considered in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

UPR Unused potential ratio

MIE Minimum imbalance energy
IER Imbalance energy ratio

OA Outer approximation

IA Inner approximation

RHS Right-hand sides

PC Preconditioning

LDR Linear Decision Rule
M-sum Minkowski Sum
TCLs Thermostatically controlled loads
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