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Abstract: In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function
evaluations and the resulting calculation time depend on the initial solution to the nonlinear opti-
misation task. Since calculations must be performed fast on-line, the objective is to minimise these
indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three
categories of strategies are discussed: (a) five simple strategies, including constant and random
guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a
neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original
methods developed by the authors in which an auxiliary quadratic optimisation task is solved or
an explicit MPC controller is used; in both approaches, linear or successively linearised on-line
models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor
benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable
process. Two strategies are found to be the fastest and most robust to model imperfections and
disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller
based on a successively linearised model and the method which uses the optimal solution obtained
at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is
used in the auxiliary controller, they perform much better than the approximation-based ones with
complex neural networks. It is because the auxiliary controller has a negative feedback mechanism
that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC
controller based on a successively linearised model is available, it may be successfully and efficiently
used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural
approximator are very disappointing.

Keywords: model predictive control; optimisation; computational efficiency; neutralisation reactor;
robot manipulator

1. Introduction

In Model Predictive Control (MPC), a dynamical model is utilized for prediction and
optimisation of the current and future control scenario [1–3]. The decision vector is calcu-
lated on-line as a result of an optimisation procedure, the objective of which is to minimise
the predicted control errors. Such a problem formulation has two essential advantages:
the ability to effectively control multivariable processes and take into account different
kinds of constraints. Due to their advantages, MPC control methods have been applied to
various processes. Typical process control applications include chemical plants [4], distilla-
tion towers [5] and waste-water treatment systems [6], but currently other applications of
MPC are reported in the literature, e.g., electromagnetic mills [7], robots [8], solar plants
[9], heat pumps [10], microgrids [11], fuel cells [12], hybrid vehicles [13], driver-assistance
systems [14], freeways traffic networks [15] and stochastic systems [16].
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The application of MPC for energy management has become very popular lately.
The review of applications of the MPC in hybrid electric vehicles (HEVs), containing many
interesting sources, can be found in [17]. Recently, an overview of MPC applications for
microgrids was also pretested in [18]. Interesting applications of MPC can also be found
in the case of electric vehicles (EVs). An energy management strategy in a hybrid electric
vehicle may be realised by an MPC algorithm, bringing noticeable improvement in fuel
economy compared to reference approaches as shown in [19]. The MPC algorithm applied
in adaptive cruise control for a pure electric vehicle is described in [20]; a multiobjective
algorithm takes into consideration tracking capability, safety, energy consumption and
driving comfort. The MPC strategy used in the energy management system of microgrids
with EVs being elements of them is considered in [21,22]. Optimal strategies for charging
EVs in parking lots are often based on the MPC; examples of such strategies are proposed
in [23,24].

In many cases, a nonlinear model of an electric system is used in MPC to increase the
efficiency of the designed system. In such a case, a natural approach is to use nonlinear
optimisation, such as in the case of a centralised approach to control microgrids using the
MPC [25] or in an application of MPC in HEVs; see, e.g., [19,26]. Then, the fundamental
problem is to appropriately initialise the optimisation problem solved in each iteration of
the MPC algorithm to reduce the time needed to generate the control action and the number
of calculations performed by the algorithm in each iteration. Otherwise, the complexity
of the problem may be reduced by using the approximate approaches, such as succes-
sive linearisation-based MPC [27,28], approximation of the performance function with a
quadratic polynomial in each iteration of the algorithm, to obtain a quadratic programming
(QP) problem solved at each iteration of the MPC algorithm [29] and application of dynamic
programming (DP) with a method of computation time reduction [29,30]. However, if such
suboptimal approaches are applied, their limitations must be considered when designing
the MPC algorithm to avoid too significant degradation of the control quality offered by
the developed algorithm.

This work is concerned with nonlinear MPC algorithms in which a nonlinear dy-
namical model is used for prediction calculation. In consequence, the predictions of the
controlled variables are nonlinear functions of the calculated decision vector, i.e., the sce-
nario of the manipulated variables. The fundamental problem is the significant compu-
tational difficulty of the nonlinear constrained MPC optimisation task. There are several
techniques, the objective of which is to reduce computational complexity and calculation
time of nonlinear MPC:

1. The control horizons may be as short as one; as a result, the number of optimised
decision variables is reduced. Unfortunately, it may badly affect the control quality.

2. Compression of the set of constraints leads to a simpler optimisation task [31].
3. When the predictions are determined from cascade block-oriented models, the inverse

models may be used to cancel the effect of process nonlinearity. Such a method
may be used for the Hammerstein model [32], for the Wiener model [33–35] or the
Hammerstein–Wiener one [36,37]. As a result, a much simpler quadratic optimisation
MPC problem is obtained, but the MPC algorithm may be not robust [38].

4. A linear model approximation may be successively computed on-line. Linearisation
leads to quadratic optimisation tasks. In particular, efficient implementation of such
control approaches are available for neural [39,40] and fuzzy models [41,42].

5. For Linear Parameter Varying (LPV) models, a convex Linear Matrix Inequalities
(LMIs) optimisation task is possible [43,44].

6. Explicit nonlinear MPC algorithms may be utilized [45,46]. In this approach, a set
of explicit, unconstrained controllers are used in place of the general constrained
nonlinear MPC scheme. Unfortunately, the necessary number of such controllers may
be significant in practice.

7. A neural approximator may be utilised to mimic the whole MPC controller [47,48].
Unfortunately, the resulting control scheme may be not robust.
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8. An initial solution to the nonlinear optimisation task may be chosen carefully to
shorten the calculation time. Such a choice is essential when, deliberately, the full
nonlinear model is used for prediction and optimisation, without any simplifications,
e.g., on-line linearisation.

It is important to emphasise that reduction in computational complexity of the MPC
optimisation task results in decreasing the energy used by the microcontroller-based hard-
ware platform that is used for on-line calculations.

The last of the techniques mentioned above is thoroughly considered in this work.
In nonlinear optimisation [49,50], the choice of the initial point is crucial since it influences
the number of evaluations of the MPC cost-function and the necessary calculation time.
This work has three objectives:

1. Five simple initialisation methods, known from the literature and frequently used
in practice, are summarised. Moreover, two modern methods that utilise a neural
approximator [51] and one method that uses an inverse nonlinear static model of the
process are discussed.

2. Four original hybrid initialisation methods developed by the authors are presented.
The initial solution for the nonlinear MPC optimisation task is determined by an
auxiliary simplified MPC controller. A linear approximation of the process model
is used for prediction in such a controller; it can be parameter-constant or succes-
sive on-line linearisation may be used which results in a linear time-varying model.
The auxiliary controller may use quadratic optimisation, or an analytical solution is
possible. Implementation details for all four configurations are presented.

3. Advantages and disadvantages of all initialisation methods are thoroughly discussed
for a Single-Input Single-Output (SISO) neutralisation reactor benchmark process.
Furthermore, some of the methods are evaluated for a robot manipulator, which is a
Multiple-Input Multiple-Output (MIMO) process.

The contribution of this work is twofold. Firstly, four new hybrid initialisation methods
are formulated. Secondly, we analyse universal properties and limitations of all methods.
The simulation results confirm the analysis. Finally, we answer the title question whether
or not we really need sophisticated initialisation methods in nonlinear MPC, namely those
that utilise a neural approximator or an auxiliary controller.

2. Nonlinear Model Predictive Control Optimisation Set-Up

Let us shortly recall mathematical formulation of the MPC optimisation
problem [1–3]. We deal with a MIMO process with nu manipulated variables (process
inputs) and ny controlled variables (process outputs). It means that the manipulated vari-

ables’ vector is u = [u1 . . . unu ]
T, the controlled variables’ vector is y =

[
y1 . . . yny

]T
. In this

work, the vector of decision variables that is computed at each discrete sampling instant,
k = 0, 1, . . ., is

u(k) =

 u(k|k)
...

u(k + Nu − 1|k)

 (1)

u(k + p|k) is the vector of manipulated variables for the future sampling instant k + p
calculated at the current instant k. The scenario of manipulated variables is calculated over
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the control horizon Nu. The decision variables (1) are found from numerical optimisation.
In this work, we consider the following MPC optimisation problem

min
u(k)

{
J(k) =

N

∑
p=1
‖ysp(k + p|k)− ŷ(k + p|k)‖2

Ψp
+

Nu−1

∑
p=0
‖4u(k + p|k)‖2

Λp

}
(2)

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1 (3)

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1 (4)

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N (5)

The first part of the cost-function J(k) measures the control errors predicted over the
prediction horizon N. The symbol ysp(k + p|k) stands for the vector of set-points of the
controlled variables for the future sampling instant k + p known at the current instant k.
The symbol ŷ(k + p|k) stands for the vector of controlled variables for the future sampling
instant k + p predicted at the current instant k. For prediction, a dynamical model of the
controlled process is used. The objective of the second part of the function J(k) is to penalise
big changes of the manipulated variables. The symbol4u(k + p|k) stands for the vector of
increments of the manipulated variables for the future sampling instant k + p calculated at
the current instant k. The positive semidefinite matrix Ψp is ny × ny, the positive definite
matrix Λp is nu × nu.

Typically, MPC optimisation is carried out subject to some constraints that take into
account the specificity of the process. Usually, the constraints related to the magnitude of
the manipulated variables are necessary to deal with the physical limitations of actuators.
They are defined by the vectors umin and umax. Furthermore, the constraints may be put
on the rate of changes of these variables. They are defined by the vectors 4umin and
4umax. In some cases, the predicted values of the process outputs must be additionally
limited. Such constraints are defined by the vectors ymin and ymax. Some other constraints,
e.g., imposed on the predicted terminal state vector, may be included. Although in MPC
as many as nuNu decision variables (1) are computed at every algorithm’s execution k,
only the first nu of them, i.e., the values of the process inputs for the current instant,
i.e., u(k|k), are actually applied to the process. In the following discrete sampling instants,
the described optimisation procedure is repeated.

We assume that the dynamical model used for prediction of the controlled variables
is nonlinear. It means that the MPC cost-function (2) that is minimised at each sampling
instant is a nonlinear function of the decision variables’ vector, u(k). Let us stress that
the limitations of the magnitude and the rate of change of the manipulated variables,
defined by Equations (3) and (4), are linear in terms of the vector of the decision variables.
Conversely, the limitations related to the predicted values of the controlled variables,
defined by Equation (5), are nonlinear.

In the next three sections, twelve different approaches to initialisation of the nonlinear
optimisation solvers are presented and shortly discussed. The described methods are
considered starting from the simplest ones, through moderately complex and the most
demanding. The vector u0(k) stands for the initial solution to the MPC optimisation
task (2)–(5)

u0(k) =

 u0(k|k)
...

u0(k + Nu − 1|k)

 (6)

3. Classical Initialisation Methods of Optimisation Solvers

This section summarises five classical and well-established strategies used by practi-
tioners [1–3].
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3.1. Strategy 1

In strategy 1, the initial vector u0(k) is chosen randomly. Three cases must
be distinguished.

Firstly, when there are only magnitude constraints (3), the elements of the vector u0(k)
must be randomised from that set.

Secondly, when, additionally, there are also some limits imposed on the rate of change
of the manipulated variables, defined by Equation (4), the vector u0(k) is also calculated in
a simple way because these two types of constraints are linear in terms of the vector u0(k).

Thirdly, when the nonlinear constraints (5) imposed on the predicted values of the
controlled variables are present, calculation of the initial vector requires solving a set of
nonlinear equations, which is likely to be very difficult. In such a case, it is advised not to
consider the nonlinear constraints (5), which means that the initial point may not belong to
the feasible set, but the constrained nonlinear solver generates a new point that is feasible.
Alternatively, satisfaction of the nonlinear constraints can be checked for a random vector
u0(k); when they are not satisfied, a new vector is randomised.

In strategy 1, the current set-point vector over the prediction horizon, i.e., ysp(k + p|k)
for p = 1, . . . , N, or the vector of the set-points for the current sampling instant only,
i.e., ysp(k), are not taken into account.

3.2. Strategy 2

In strategy 2, the initial vector is set to a zero vector of length nuNu. Satisfaction of
the MPC constraints (3)–(5) is deliberately not verified in this approach. Alternatively,
a different constant value may be used. A straightforward choice is to assume the initial
vector to be defined by the values of the manipulated variables corresponding to the
typical process’s operating point, which may work well if the set-point does not change
significantly and the variability of disturbances is limited. Such a choice may satisfy all
constraints, but an infeasible point is also possible. The constrained nonlinear solver
generates a new feasible point in such a case. In this strategy, no information of the current
set-point is used.

3.3. Strategy 3

In strategy 3, the initial vector is assumed to be in the centre of the set determined
by the linear constraints related to the magnitude and the rate of change constraints of
the manipulated process inputs, i.e., Equations (3) and (4). As a result, the initial point
is always feasible provided that the predicted controlled outputs are not limited, as in
Equation (5). However, if they are present, it may happen that the determined initial point
does not satisfy the nonlinear constraints. In this strategy, the current set-point vector is
not used.

3.4. Strategy 4

The first three initialisation strategies discussed so far ignore the information repre-
sented by the current operating point of the process. To make it possible, in strategy 4,
the initial vector is set to the vector of manipulated variables calculated and utilised in
control at the previous sampling instant, k− 1. Because the control horizon is typically
longer than 1, it is assumed that the same vector is repeated Nu times

u0(k) = u(k− 1) =

 u(k− 1)
...

u(k− 1)

 (7)

In such a case, the magnitude and rate of change constraints associated with the manipu-
lated process inputs are satisfied. Alas, the limitations put on the predicted process outputs
can be not satisfied. In this strategy, the current set-point vector is not used.



Energies 2022, 15, 2483 6 of 21

3.5. Strategy 5

In strategy 5, the initial vector is formed using the “tail” of the optimal control sequence
calculated at the previous sampling instant, i.e., its the last nu(Nu − 1) elements

u0(k) =


u(k|k− 1)

...
u(k + Nu − 3|k− 1)
u(k + Nu − 2|k− 1)
u(k + Nu − 2|k− 1)

 (8)

The vector u(k− 1|k− 1) is not used because it has been utilised in control at the sampling
instant k − 1. The vector u(k + Nu − 2|k − 1) must be used twice since the vector u(k +
Nu − 1|k − 1) is not known at the sampling instant k − 1. The discussed initialisation
strategy is called a warm start of the MPC solver [3]. The magnitude and the rate of change
limitations of the manipulated variables are satisfied. Unfortunately, the limitations put
on the predicted process outputs can be not satisfied. In this strategy, the current set-point
vector is not used. As a result, poor results are expected for the sampling instant at which
the set-point changes.

4. Approximator-Based and Inverse Model-Based Initialisation Strategies of
Optimisation Solvers

This section describes three strategies that utilise a neural approximator and an inverse
nonlinear static model of the process. The neural networks are more and more popular for
initialisation of MPC [51,52]. The initialisation method based on an inverse model is used
by practitioners.

4.1. Strategy 6

In strategy 6, similarly to the solution presented in [51], a specialised approximator is
used to serve as a tool to find on-line the initial solution to the nonlinear MPC optimisation
task. In general, the approximator is described by the following equation

u0(k) = g(x(k)) (9)

The vector of the approximator’s inputs takes into account past process inputs that have
been utilised at the previous sampling instants, the current and past measurements of the
of the process outputs as well as the current set-point vector

x(k) = [u(k− 1) . . . u(k− nB) y(k) y(k− 1) . . . y(k− nA) ysp(k)]T (10)

Of course, it is possible to use the approximator in which the whole trajectory of the set-
points over the prediction horizon, ysp(k + p|k), is used in place of the current set-point,
ysp(k). The approximator’s mapping function g : RnunB+ny(nA+2) → Rnu Nu may be realised
by the simple linear equation

u0(k) = ax(k) + b (11)

where a is an nuNu × (nunB + ny(nA + 2)) matrix and b is a vector of nuNu elements. As it
will be demonstrated in Section 6, the initial solution to the MPC optimisation task is a
nonlinear function. Hence, a nonlinear approximator is necessary. In this work, a nonlinear
approximator is used. Assuming that the neural network is of the Multi Layer Perceptron
(MLP) with one nonlinear hidden layer and a linear output, such a neural approximator is
characterised by the following equation

u0(k) = w2,0 + w2 ϕ(w1x(k) + w1,0) (12)
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Let the number of hidden nodes be denoted by K and ϕ stands for the nonlinear transfer
function, e.g., of the tanh type. w2,0 is a vector of nuNu elements, w2 is an nuNu× K matrix,
w1 is a K× (nunB + ny(nA + 2)) matrix and w1,0 is a vector of K elements.

A reasonably “rich” data set is necessary to identify the approximator. To collect
such data, simulations of the MPC algorithm must be carried out for various operating
conditions and set-points. Alternatively, experiments using the real process are possible.
Measurements are collected to form the argument vector x(k) and the target vectors u0(k).

In this strategy, full information of the current operating condition of the process and
the current set-point vector are used.

In addition to the MLP neural networks mentioned above, alternative approaches are
possible, in particular, soft computing ones [53], e.g., Radial Basis Function (RBF) neural
networks [54] or random forest and decision tree regressors [55].

4.2. Strategy 7

In strategy 7, strategies 5 and 6 are used. For the sampling instants for which the set-
point vector does not change, the last nu(Nu − 1) elements of the optimal control sequence
calculated at the previous sampling instant are applied, i.e., strategy 5. When a significant
set-point change occurs, the approximator determines the initial vector, i.e., strategy 6 is
used. Strategy 7 eliminates a straightforward weakness of strategy 5 which is the inability
of taking into account the current change of the set-point.

4.3. Strategy 8

In strategy 8, the input set-point vector corresponding to the current output set-point
vector is found by means of an inverse nonlinear static model

usp(k) = f̃ (ysp(k)) (13)

where the function f̃ : Rny → Rnu represents the inverse static model. Next, the initial
vector is set to the calculated vector. Because the control horizon is typically longer than 1,
it is assumed that the same vector usp(k) is repeated Nu times

u0(k) =

 usp(k)
...

usp(k)

 (14)

If the inverse model is correct, the limitations put on the magnitude of the manipulated
process inputs are satisfied. Unfortunately, the constraints imposed on the rate of change of
these variables and on the predicted controlled ones can be not satisfied.

The discussed strategy has two structural weaknesses. Firstly, it may work for fast
systems, for which a new set-point is reached within a few sampling instants. For slower
systems, the obtained initial solution corresponding to the required set-point may be far
from the optimal solution for numerous sampling instants. Secondly, although the current
set-point vector is used, the current state of the process is not taken into account.

5. Hybrid Initialisation Strategies of Optimisation Solvers

Let us discuss four hybrid initialisation methods developed by the authors of this work.

5.1. Strategy 9

In strategy 9, an auxiliary simple explicit MPC algorithm is used to generate the initial
point for the nonlinear MPC optimisation task. In the auxiliary MPC controller, to make
calculations as simple as possible, a constant linear model is used for prediction. Moreover,
no constraints are considered during calculation. As a result, we obtain the classical explicit
control law [3]

4u0(k) = K(ysp(k)− y0(k)) (15)
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where the nuNu × nyN matrix is obtained from

K = (GTΨG + Λ)−1GT (16)

The nyN × nuNu step-response matrix G is calculated for the parameter-constant
linear model. The diagonal matrices of weighting quotients

Ψ = diag(Ψ1, . . . , ΨN) (17)

Λ = diag(Λ0, . . . , ΛNu−1) (18)

are nyN × nyN and nuNu × nuNu, respectively. The set-point vector

ysp(k) =

 ysp(k + 1|k)
...

ysp(k + N|k)

 (19)

and the free-trajectory y0(k) are both of nyN elements; the latter one is calculated from the
linear model assuming no changes of the manipulated variables from the current sampling
instant. As calculation of the matrix G and the vector y0(k) belongs to standard textbook
material, the reader is referred to the literature [1–3]. The vector4u0(k) calculated from
Equation (15) is next utilised to compute the initial solution to the nonlinear MPC problem

u0(k) = J4u0(k) + u(k− 1) (20)

where the vector u(k− 1) is given by Equation (7) and the nuNu × nuNu matrix is

J =


Inu×nu 0nu×nu 0nu×nu . . . 0nu×nu

Inu×nu Inu×nu 0nu×nu . . . 0nu×nu
...

...
...

. . .
...

Inu×nu Inu×nu Inu×nu . . . Inu×nu

 (21)

Since calculation of the vectors4u0(k) and u0(k) is performed without any constraints,
they should be considered afterwards. When there are only magnitude constraints (3) and
the rate of change constraints (4), a simple procedure projects the vector u0(k) on the
admissible set. Because a linear model is used in the auxiliary controller, the original
nonlinear constraints (5) put on the predicted process outputs become linear ones. Hence,
they may also be used for definition of the admissible set. However, accuracy of the
underlying linear model may be low, which means that satisfaction of linear constraints
does not result in satisfaction of rudimentary nonlinear ones, defined by Equation (5).

Of course, full information of the current set-point vector and the current operating
point of the process are used in the discussed strategy.

5.2. Strategy 10

In strategy 10, similarly to the previous approach, an auxiliary simple explicit MPC
algorithm is used, but the model used in the auxiliary MPC controller is not parameter-
constant, linear, but a linear approximation of the rudimentary nonlinear model is de-
termined on-line at each sampling instant for the current operating point of the process.
In consequence, the explicit control law (15) becomes [3]

4u0(k) = K(k)(ysp(k)− y0(k)) (22)

Hence, the step-response matrix G(k) is recalculated on-line. The matrix that defines the
explicit control law is no longer constant as in Equation (16), but it is found from

K(k) = (GT(k)ΨG(k) + Λ)−1GT(k) (23)
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In this approach, the free-trajectory y0(k) is calculated from the time-varying linearised
model or from the full nonlinear model.

Similarly to strategy 9, the vector u0(k) is projected onto the set determined by the
constraints. Conversely to the previous approach, since a linearised model is used in the
auxiliary controller in place of a constant linear one, satisfaction of linearised constraints
imposed on the controlled variables may give a good result, i.e., their satisfaction is likely
to lead to satisfaction of the original nonlinear constraints (5).

In the discussed strategy, the current set-point vector and the current process operating
point are used.

In strategy 10, simple model linearisation is used. Of course, to improve the auxiliary
controller, more precise trajectory linearisation is possible [38,39,56]. Unfortunately, it is
much more complicated. Hence, in this work, we only discuss a simple, yet quite efficient
model linearisation case.

5.3. Strategy 11

Strategy 11 is similar to strategy 9 since an auxiliary MPC controller based on a
parameter-constant linear model is used, but the initial vector4u0(k) and next the vector
u0(k) are not determined from the explicit Formula (15). In order to precisely take into
account the constraints, a quadratic optimisation task is solved to find the vector4u0(k).
Unfortunately, when the imprecise linear model is used in the constraints put on the
controlled variables, the determined initial point may not satisfy the original constraints (5).

In the discussed strategy, the current set-point vector and the current process operating
point are used.

5.4. Strategy 12

Strategy 12 is similar to strategies 10 and 11: a successively linearised model is used
for prediction in the auxiliary MPC controller and a quadratic optimisation task is solved
that takes into account all constraints.

In the discussed strategy, the current set-point vector and the current process operating
point are used.

Let us summarise limitations of the above methods. Simple strategies 1, 2 and 3 do
not take into account the current set-point and the process operating point. Strategies 4
and 5 do not use the current set-point. Strategy 8 does not use the current operating point.
The approximator-based methods 6 and 7 need the performing of many experiments (or
simulations) and training an approximator, method 8 can be used provided that an inverse
static model exists; the hybrid strategies are pretty complex. Namely, hybrid methods 11
and 12 require a quadratic optimisation solver; strategies 10 and 12 assume that the process
model may be successively linearised.

6. Simulation Results

In this section, efficiency of the initialisation strategies described above is thoroughly
discussed for a SISO neutralisation reactor benchmark process; some of the methods are
also checked for a MIMO robot manipulator.

6.1. SISO Process: Neutralisation Reactor

The first considered process is a neutralisation reactor [57] which is a classical bench-
mark used to evaluate and compare performance of different nonlinear MPC strategies,
e.g., [38,40,56]. The process input is the base (NaOH) stream flow-rate q1 (mL/s), the output
is pH of the product.

The fundamental model of the plant is solved using the Runge–Kutta 45 solver to
obtain training, validation and test data sets; each of them has 2000 samples. Next, a Wiener
model (a linear dynamic block connected in series to a nonlinear static one represented by
a neural network with 10 hidden nodes of the tanh type and a linear output) [58] is trained
off-line and next used on-line for prediction in MPC. The sampling time of the discrete-time
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model and MPC algorithms is 10 s. Details of model training, validation and selection are
given in [38].

In this work, to discuss efficiency of all twelve initialisation methods, two simulation
scenarios are used:

1. In the first case, the model utilised in MPC is precise and no external disturbances
occur. Let us stress that the model is precise but not perfect, i.e., there is always
some model error. The simulation model and the model used in MPC have different
structures, i.e., a set of differential equations and a Wiener structure, respectively.

2. In the second case, the model is imperfect and disturbances affect the process. The fol-
lowing model imperfection is considered: the steady-state model gain is decreased by
25%. As far as the disturbance scenario is concerned, two unmeasured step distur-
bances that act on the process output are used. The first of them is activated at k = 30
and it has the value 0.5, the second one is activated at k = 70 and it has the value −0.5.

In all simulations, the MPC controller has the same tuning parameters. The prediction
horizon (N) is 10, the control horizon (Nu) is 5 and the penalty quotient λ is 0.1. As tun-
ing of MPC is standard textbook material [1–3], this issue is not considered in this work.
The magnitude of the manipulated process input variable is limited: qmin

1 = 0, qmax
1 = 30.

MATLAB is used to perform all simulations. The fmincon function is used for nonlinear
optimisation, whereas the quadprog function is used for solving auxiliary MPC quadratic
tasks in initialisation strategies 11 and 12. Figure 1 depicts the trajectories of the manipu-
lated and controlled variables for a series of set-point changes. Of note, the MPC algorithm
has an integral action, similarly to the classical PID controller, since an imperfect model
and disturbances do not result in a steady-state error.
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Figure 1. The SISO process: the trajectories of the process controlled by the MPC algorithm in two
cases: precise model and no disturbances, imprecise model and disturbances.

At first, simple strategies 1–5 are considered. The results are given in Tables 1 and 2
for two cases of model accuracy and disturbances. For each of the considered strate-
gies, the total number of cost-function evaluations and the calculation time are specified;
both measures are scaled to provide hardware-independent results. Since the initial vec-
tor is chosen randomly in the case of strategy 1, five runs are performed. The following
observations are possible:



Energies 2022, 15, 2483 11 of 21

1. In the case of random strategy 1, interestingly, variability in the number of cost-
function evaluations is quite low.

2. Strategy 3 (the initial vector is in the centre of the set determined by the linear
constraints imposed on the magnitude of the manipulated variable) turns out to be
most inefficient both in terms of the cost-function evaluations and the calculation time.

3. Random strategy 1 is slightly better, strategy 2 (all elements of the initial vector are
0) is better, strategy 4 (the initial vector is set to the vector of manipulated variables
calculated and utilised at the previous sampling instant) is better and strategy 5 (the
initial vector is the “tail” of the optimal control sequence from the previous sampling
instant) is the best one.

As far as assessing the influence of model inaccuracy and the external disturbance on
the computational burden is concerned, we observe that:

1. For the chosen model inaccuracy and disturbances scenario, strategy 1 needs slightly
fewer function evaluations when the model is imprecise and disturbances occur, but,
in general, the opposite may also be true.

2. A similar phenomenon is observed for strategies 2 and 3. Conversely, in the case of
strategies 4 and 5, the function evaluation numbers are very similar for the two con-
sidered scenarios. The explanation of this phenomenon is straightforward: strategies
1, 2 and 3 do not take into account the current process operating point for initialisation
of the MPC optimisation task.

3. The simpler strategy 4 which relies only on the values of the process inputs applied at
the previous sampling instant gives noticeably worse results than strategy 5 in which
the part of the last optimal solution is utilised.

Table 1. The SISO process (precise model and no disturbances) for simple strategies 1–5: the number
of cost-function evaluations and the time of calculation.

Strategy Cost-Function Evaluations (%) Calculation Time (%)

1 96.9 ∗ 97.4
2 92.9 93.1
3 100.0 100.0
4 71.8 76.1
5 59.9 65.6

∗ The average value, the range is 95.3–99.2%.

Table 2. The SISO process (imprecise model and disturbances) for simple strategies 1–5: the number
of cost-function evaluations and the time of calculation.

Strategy Cost-Function Evaluations (%) Calculation Time (%)

1 91.2 ∗∗ 91.2
2 82.4 84.2
3 90.9 91.6
4 72.2 75.6
5 63.3 68.4

∗∗ The average value, the range is 90.6–91.9%.

Next, let us discuss the results given by strategies 6 and 7. In this work, we consider
the linear approximator (11) and the neural one (12). We consider three configurations of
the approximator’s input (Equation (10)): in the first case, nA = 0, nB = 0, hence

x(k) = [y(k) ysp(k)]T (24)

in the second case, nA = 1, nB = 1, hence

x(k) = [u(k− 1) y(k) y(k− 1) ysp(k)]T (25)

in the third case, nA = 2, nB = 2, hence
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x(k) = [u(k− 1) u(k− 2) y(k) y(k− 1) y(k− 2) ysp(k)]T (26)

The classical neural network with one hidden layer containing K hidden nodes of the tanh
type and a linear output is used as the neural approximator. For identification of linear and
neural approximators (training), 5000 data samples for different operating conditions of
the process are used. The available set is randomly divided into three parts: the training
set consists of 3000 samples, the validation and test sets are comprised of 1000 samples,
respectively. The classical least squares method is used to identify the linear approximator.
For training of the neural approximators, the Levenberg–Marquardt algorithm is used.

Table 3 shows accuracy of linear and neural approximators in terms of the mean
squared error (MSE), i.e., the sum of squared errors for all data samples divided by the
number of samples. Additionally, the number of approximators’ parameters is specified.
The approximators with three different input vectors, defined by Equations (24)–(26),
respectively, are considered. Each configuration of the neural approximator is trained as
many as ten times and only the best results are presented in this work. All approximators
are assessed taking into account the error for the validation data set, which is not used
during training. From Table 3 we may find out that:

1. In general, the approximators that determine the initial point for MPC optimisation as
the function of only the current values of the set-point and process output (i.e., their
arguments are defined by Equation (24)) have low quality.

2. The approximators that additionally take into account the values of process manipu-
lated and controlled variables from the previous sampling instant (Equation (25)) are
characterised by significantly lower errors.

3. Further lengthening of the vector x(k) as in Equation (26) does not improve the
resulting approximators’ accuracy much.

4. The linear approximators have large errors while the errors of the neural ones are much
lower. Of course, the more the hidden nodes K, the lower the approximation errors.

Figure 2 demonstrates the relation between the validation data set and the output of
linear and neural approximators with 5, 10, 15, 20, 25 and 30 hidden nodes; all approx-
imators use the input vector defined by Equation (25). We may assess that the neural
approximator should be used rather than the imprecise linear one. Moreover, the neural
approximator with only five hidden nodes should also be avoided. Of course, the higher
the number of hidden nodes, the better the approximation accuracy.

Tables 4 and 5 present effectiveness of MPC initialisation strategy 6, i.e., the scaled
total number of cost-function evaluations and the scaled calculation time are specified; two
cases of model accuracy and disturbances are considered. We find out that:

1. In general, we can observe that the higher the number of hidden nodes, the lower the
number of cost-function evaluations, but 20 hidden nodes seem to be completely sufficient.

2. Furthermore, there is no point in using the longest vector of approximators’ input
given by Equation (26), it is sufficient to use the inputs defined by Equation (25).

3. Taking into account Tables 1 and 2, it is very interesting to note that all neural ap-
proximators lead to significantly lower numbers of cost-function evaluation than the
simple initialisation strategies 1–3 and noticeable lower numbers possible in the case
of strategy 4, but only when the model is accurate and no disturbances occur.

4. When the model is imprecise and disturbances are present, the linear and neural
approximators give noticeable higher numbers of cost-function evaluations. When the
approximators are used, all results are worse when compared with those obtained
when initialisation strategy 5 is applied; this observation is true in both model accuracy
and disturbances cases. Hence, we find out that the pure approximation of the initial
solution to MPC is not robust when the properties of the model change and there
are unexpected disturbances (i.e., the results for two considered models of model
accuracy and disturbances are very different).
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5. Initialisation strategy 7, which is a combination of strategies 5 and 6, gives really good
results, much better than the pure strategy 6. We can observe that strategy 7 is quite
robust to model errors and disturbances that affect the controlled process.

Table 3. The SISO process: accuracy of linear and neural approximators in terms of MSE errors.

Approximator Arguments Parameters MSEtrain MSEval MSEtest

Linear

Equation (24)

15 5.3373 × 10−3 4.9654 × 10−3 4.9513 × 10−3

Neural, K = 5 45 1.2773 × 10−3 1.3381 × 10−3 1.0132 × 10−3

Neural, K = 10 85 7.3032 × 10−4 7.2437 × 10−4 6.0605 × 10−4

Neural, K = 15 125 5.4709 × 10−4 5.1918 × 10−4 4.9427 × 10−4

Neural, K = 20 165 4.5691 × 10−4 4.3918 × 10−4 4.4869 × 10−4

Neural, K = 25 205 4.1833 × 10−4 4.5292 × 10−4 4.3530 × 10−4

Neural, K = 30 245 3.9074 × 10−4 4.2546 × 10−4 4.3211 × 10−4

Linear

Equation (25)

25 3.6782 × 10−3 3.3738 × 10−3 3.4537 × 10−3

Neural, K = 5 55 7.2419 × 10−4 6.6889 × 10−4 5.8716 × 10−4

Neural, K = 10 105 2.9651 × 10−4 3.3246 × 10−4 2.7288 × 10−4

Neural, K = 15 155 1.8590 × 10−4 2.3223 × 10−4 1.4656 × 10−4

Neural, K = 20 205 1.4377 × 10−4 1.8215 × 10−4 1.3796 × 10−4

Neural, K = 25 255 9.6805 × 10−5 1.2252 × 10−4 9.4940 × 10−5

Neural, K = 30 305 6.8775 × 10−5 1.0455 × 10−4 9.1554 × 10−5

Linear

Equation (26)

35 3.5254 × 10−3 3.2598 × 10−3 3.3680 × 10−3

Neural, K = 5 65 1.1606 × 10−3 1.1889 × 10−3 9.4163 × 10−4

Neural, K = 10 125 3.2301 × 10−4 3.5967 × 10−4 2.7965 × 10−4

Neural, K = 15 185 1.7700 × 10−4 2.0761 × 10−4 1.3671 × 10−4

Neural, K = 20 245 1.0715 × 10−4 1.4289 × 10−4 1.1296 × 10−4

Neural, K = 25 305 8.8876 × 10−5 1.3037 × 10−4 9.2147 × 10−5

Neural, K = 30 365 5.4820 × 10−5 1.1215 × 10−4 7.5876 × 10−5
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Figure 2. The SISO process for approximator-based strategy 6 and different approximators with
arguments defined by Equation (25): the relation between the validation data set and the output of
linear and neural approximators.
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Table 4. The SISO process (precise model and no disturbances) for approximator-based strategies 6
and 7: the number of cost-function evaluations and the calculation time.

Strategy Approximator Cost-Function Evaluations (%) Calculation Time (%)

6 Linear, arguments (25) 69.8 74.2
6 Neural, K = 10, arguments (25) 64.3 69.6
6 Neural, K = 20, arguments (25) 62.1 67.5
6 Neural, K = 30, arguments (25) 62.0 67.9
6 Linear, arguments (26) 69.5 67.9
6 Neural, K = 10, arguments (26) 64.4 69.7
6 Neural, K = 20, arguments (26) 61.8 67.1
6 Neural, K = 30, arguments (26) 61.0 66.7
7 Neural, K = 20, arguments (25) 58.7 64.8

Table 5. The SISO process (imprecise model and disturbances) for approximator-based strategies 6
and 7: the number of cost-function evaluations and the calculation time.

Strategy Approximator Cost-Function Evaluations (%) Calculation Time (%)

6 Linear, arguments (25) 74.5 78.3
6 Neural, K = 10, arguments (25) 75.5 78.9
6 Neural, K = 20, arguments (25) 76.2 80.0
6 Neural, K = 30, arguments (25) 77.2 80.4
6 Linear, arguments (26) 74.1 78.1
6 Neural, K = 10, arguments (26) 76.0 79.5
6 Neural, K = 20, arguments (26) 75.3 79.3
6 Neural, K = 30, arguments (26) 76.7 80.6
7 Neural, K = 20, arguments (25) 63.3 68.8

Efficiency of the inverse model-based initialisation strategy 8 and hybrid strategies
9–12 is compared in Tables 6 and 7 in terms of the numbers of the cost-function evaluations
and the calculation time. We can draw the following conclusions:

1. Strategy 8, which uses an inverse static model and the current value of the set-point,
is quite inefficient, in particular, for the imprecise model and disturbances.

2. Hybrid strategies 9 and 11, in which an auxiliary MPC controller based on a fully
linear model is used, give bad results. They are robust to model imperfections and
disturbances, but, generally, many cost-function evaluations are necessary in nonlinear
MPC. It is because a very rough linear representation of the nonlinear process is used
in the auxiliary MPC. The results are poor no matter if the auxiliary controller is the
explicit one (strategy 9) or quadratic optimisation is used (strategy 11).

3. Excellent results, the best of all compared in terms of the number of the cost-function
evaluation, are obtained when strategies 10 and 12 are used. The auxiliary MPC
controller uses a time-varying linear representation of the nonlinear process. The fu-
ture control policy determined by such a controller, when used as the initial point
in the nonlinear MPC optimisation, needs the lowest number of the cost-function
evaluation. Taking into consideration the calculation time, it is evident that it is better
to use strategy 10 in which an explicit auxiliary MPC controller is used rather than the
more time-consuming quadratic optimisation necessary in strategy 12. The explicit
controller is sufficient for the simple box constraints used in this study.

4. Two further advantages of strategy 10 (and strategy 12) must be stressed. Firstly,
they need a significantly lower number of the cost-function evaluations than all
simple strategies 1–5, the approximator based strategies 6 and 7 as well as the inverse
model-based strategy 8. Even strategy 5, i.e., the use of the “tail” of the previous
optimal sequence, is slightly worse. Secondly, strategies 10 and 12 prove to be very
robust to model errors and process disturbances. The only drawback of strategies 10
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and 12 is that the calculation time is significantly longer than the one needed when
strategy 5 is used.

5. Strategies 10 and 12 are the best in terms of the need for the cost-function evaluations.
However, in their case, the calculation time is considerably larger than in the case of
strategy 5. Unfortunately, this problem grows with the number of decision variables
in the optimisation problem solved at each iteration of the MPC algorithm. Therefore,
in the case of multivariable control plants, strategy 5 seems to offer the best solution
to minimise the energy consumption needed to solve the MPC optimisation task.

Table 6. The SISO process (precise model and no disturbances) for hybrid strategies 8–12: the number
of cost-function evaluations and the calculation time.

Strategy Cost-Function Evaluations (%) Calculation Time (%)

8 70.9 75.5
9 83.3 86.0
10 56.0 63.1
11 83.7 98.8
12 56.0 76.0

Table 7. The SISO process (imprecise model and disturbances) for hybrid strategies 8–12: the number
of cost-function evaluations and the calculation time.

Strategy Cost-Function Evaluations (%) Calculation Time (%)

8 81.1 83.6
9 86.9 89.1
10 55.7 63.4
11 85.3 101.5
12 54.9 75.4

For the neutralisation reactor, initialisation strategy 10 that uses an auxiliary explicit
MPC controller with successive model linearisation performs best. Nevertheless, simple
strategy 5 that uses the part of the optimal solution from the previous sampling instant gives
only slightly worse results. Both strategies are robust to model errors and disturbances.

6.2. MIMO Process: Robot Manipulator

The second considered process is 7DOF KUKA LWR 4+ robot arm [59] mounted on
a rotating torso (column). It is a multivariable control plant; the manipulated inputs are
joint torque residuals after gravity removal τg,i, i = 2, . . . , 8; the controlled outputs are
three components of the position of the end effector xce, yce, zce, and the constrained outputs
are joint angles qi, i = 2, . . . , 8. It is assumed that the column is not moved (τg,col = 0).

The full model of the robot is implemented in the open-source robot simulator en-
vironment Gazebo [60]. It is based on differential equations motivated by physical laws.
In MPC, the simplified model of the control plant is used. It has the Hammerstein–Wiener
structure, i.e., a dynamic block is surrounded by two static blocks; a static block preced-
ing the dynamic block realises gravity compensation, and the static block following the
dynamic block calculates forward kinematics for the end effector. Such a model has been
derived from analysis of reactions of the full model available in Gazebo and behaviour
of the real process. The sampling time of the MPC model and the MPC arm algorithm is
50 ms.

The limitations related to the magnitude of the manipulated variables are
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τmin
g,2 = −88, τmax

g,2 = 88,

τmin
g,3 = −88, τmax

g,3 = 88,

τmin
g,4 = −50, τmax

g,4 = 50,

τmin
g,5 = −50, τmax

g,5 = 50, (27)

τmin
g,6 = −50, τmax

g,6 = 50,

τmin
g,7 = −19, τmax

g,7 = 19,

τmin
g,8 = −19, τmax

g,8 = 19

The constraints imposed on the joint angles are

qmin
2 = −154, qmax

2 = 154,

qmin
3 = −104, qmax

3 = −26,

qmin
4 = −154, qmax

4 = 154,

qmin
5 = 26, qmax

5 = 104, (28)

qmin
6 = −154, qmax

6 = 154,

qmin
7 = −104, qmax

7 = −26,

qmin
8 = −154, qmax

8 = 154

The horizons used in MPC are: N = 25, Nu = 5, which means that the MPC optimisation
task has 35 decision variables. It is a fundamental change compared with the much simpler
neutralisation reactor case with only five decision variables.

Taking into account the results obtained for the neutralisation process, strategies 1 (the
random initialisation), 4 (the vector of manipulated process inputs determined and applied
to the process at the previous sampling instant is used) and 5 (the initial vector is formed
using the “tail” of the optimal control sequence from the previous sampling instant) are
chosen for comparison in the case of the robot. It is because they are simple, yet the last of
them is expected to be efficient. As many as 20 simulations for each initialisation strategy
are performed, consisting of one set-point change, i.e., movement of the manipulator
to a different position. Figures 3 and 4 depict the scaled number of MPC cost-function
evaluations and the scaled time of calculation of MPC in the consecutive 20 simulations.
Moreover, Table 8 reports average values of these performance indicators for all simulations.
We can draw the following observations.

1. In terms of two considered indicators, initialisation method 1 is the worst one, method
4 gives slightly better results and strategy 5 is the best one. It is important that
strategy 5 is much better than strategy 4; the relation ismuch more favourable than
the comparison between strategies 1 and 4, respectively.

2. Of note, variability of the number of cost-function evaluations and the calculation time
is larger in the case of initialisation methods 1 and 4 when compared with strategy 5.

3. When compared with the results obtained for the neutralisation reactor (Table 1),
despite that in two considered benchmark processes the number of process input
and output variables as well as the length of the optimised MPC decision vector are
different, the results are quite similar.
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Figure 3. The MIMO process for initialisation strategies 1, 4 and 5: the number of MPC cost-function
evaluations in the consecutive 20 simulations.
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Figure 4. The MIMO process for initialisation strategies 1, 4 and 5: the calculation time of MPC in the
consecutive 20 simulations.

Table 8. The MIMO process for initialisation strategies 1, 4 and 5: the average number of cost-function
evaluations and the calculation time in the consecutive 20 simulations.

Strategy Cost-Function Evaluations (%) Calculation Time (%)

1 100.0 100.0
4 92.9 93.3
5 64.7 64.1

We can see that efficiency of methods 1, 4 and 5 is similar for both the SISO neu-
tralisation reactor and MIMO process, as shown in Tables 1, 2 and 8. It is crucial since
the recommended method 5 can be applied for different processes, with different proper-
ties and the number of inputs and outputs. It is evident that method 1 is the worst one,
method 4 is slightly better and strategy 5 is significantly better. Hybrid methods 10 and
11 are not available for the MIMO case but, bearing in mind the results obtained for the
SISO process (Tables 6 and 7), method 5 is only slightly slower than the hybrid methods,
yet much simpler.

7. Discussion of Obtained Results and Properties of the Initialisation Strategies

Among the classical initialisation methods, strategy 5, which uses the “tail“ of the
optimal solution found at the previous sampling instant, is the best in terms of the cost-
function evaluations and the time of calculation. It is necessary to stress that the method
works very well when disturbances affect the process and its parameters change.

Approximator-based methods 6, 7 and inverse model-based method 8 give fairly good
results in terms of both considered quality indicators only in the nominal model case.
Unfortunately, their efficiency decreases when the model imperfections are present and
process disturbances occur.

As far as the hybrid methods are concerned, methods 10 and 12, which use an auxiliary
MPC controller with a successively linearised model, are the best in terms of the calculation
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time and the cost-function evaluations. Moreover, strategy 10 is faster because the solution
to the auxiliary MPC problem is obtained analytically, without any on-line optimisation.
Methods 9 and 11 are worse since a parameter-constant linear model is used in the auxiliary
MPC task. Importantly, all hybrid methods are very robust when the process is disturbed
and the model is not precise.

Let us shortly discuss the universal properties of the defined strategies. Simple meth-
ods 1–5 do not use any model or approximator, while methods 6–12 rely on different models.
However, the approximator used in methods 6 or 7 is not the same or a simplified version
of the dynamical model used in MPC; it simply attempts to approximate the solution to
the MPC optimisation task using a set of historical data. Similarly, the inverse static model
used in strategy 8 is not the same as the model used in MPC. The authors’ hybrid methods
9–12 are significantly different since for initialisation of the nonlinear MPC optimisation
task, a simplified MPC optimisation task is formulated and solved. The differences between
the hybrid methods described result from using a different model simplification approach
for the auxiliary controller and the way its optimisation task is solved. A constant linear
model is used in strategies 9 and 11, while a time-varying one is used in methods 10 and
12. Furthermore, the auxiliary controller utilises an explicit solution in strategies 9 and 10,
while quadratic optimisation is used in strategies 11 and 12.

Because a simplified version of the nonlinear model (used in the nonlinear MPC
algorithm) is used in the auxiliary controller, the hybrid methods have two important
advantages over all other methods. Firstly, the auxiliary controller has a negative feedback
mechanism, the same that is used in the nonlinear MPC algorithm. It means that all
model errors and disturbances affecting the process are compensated for during calculation
performed by the auxiliary controller. Such a mechanism is not present in all other methods.
Secondly, the auxiliary and nonlinear MPC algorithms solve the same optimisation task
but using different models and methods. It also means that if we develop a nonlinear MPC
algorithm, we can use the hybrid methods as well, provided we can obtain simple linear or
linearised versions of the full nonlinear model the MPC algorithm is based on.

Of note, the sophisticated approximator-based methods 6 and 7 do not offer any
feedback mechanism. As a result, one may train a perfect approximator for historical
data, but it is likely to give poor results when properties of the process are time-varying
or important disturbances occur in the control system. The inverse model-based method
suffers from the same shortcoming.

It is important to discuss the influence of the number of process inputs and outputs
on efficiency of the compared initialisation methods. Firstly, concerning the results of
simulation experiments of the MIMO process discussed in Section 6.2, strategy 5 is very
efficient in terms of both quality indicators. The same result is obtained for the SISO plant.
Secondly, approximator-based methods 6, 7 and inverse model-based method 8 require
much more complicated models when the number of process signals and model parameters
increases. Thirdly, hybrid methods 9 and 10 based on explicit auxiliary MPC controllers
are very efficient because the initial vector is calculated from an analytical formula; on-
line optimisation is avoided. Conversely, methods 11 and 12 require auxiliary quadratic
optimisation, which takes much more time to find the solution, particularly when many
process variables are used.

8. Conclusions

The choice of the initialisation strategies for the nonlinear MPC optimisation task
greatly influences the number of cost-function evaluations and the necessary calculation
time. Efficiency of twelve initialisation methods is thoroughly discussed for a neutralisation
reactor benchmark process. It is found out that:

1. Simple strategies 1, 2 and 3 do not take into account any information of the current
set-point and the process operating point. As a result, their effectiveness is very low.

2. Strategies 4 and 5 do not use the current set-point but do use the current operating
point. Simple strategy 4, in which the value of the process inputs from the previous
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sampling instant is used, gives much better results than simple strategies 1, 2 and
3. Strategy 5, in which the “tail” of the optimal control sequence from the previous
sampling instant is used, gives excellent results.

3. Approximator-based methods 6 and 7 (in this work, a neural approximator is used)
are quite complex since they need to be sufficiently collecting sets of data and training
an approximator. Unfortunately, their performance is good (comparable to method 5)
only for the precise model case. When model errors and disturbances occur, method 5
outperforms the approximator-based methods.

4. Inverse model-based method 8 requires an additional static model which for some
processes may be not available. Unfortunately, since the method does not use the
current operating point, it is not very efficient, in particular, for the imprecise model
and disturbances.

5. The authors’ original hybrid methods 11 and 12 are fairly complicated as they re-
quire solving an auxiliary quadratic programming problem at each sampling instant.
The authors’ methods 9 and 10 are much simpler since an analytical auxiliary con-
troller is utilised. Method 10, in which a linear approximation of the nonlinear model
is determined on-line to be used in the auxiliary controller, is the fastest one. It must be
pointed out that strategy 10 works very well for the imperfect model and disturbances.
Since a simplified version of the model is used in the auxiliary controller, the hybrid
methods perform much better than the approximation-based ones with complex
neural networks. The auxiliary controller has a negative feedback mechanism to
compensate model errors and disturbances.

We find out that methods 5 and 10 are the fastest ones and are robust to model
inaccuracies and disturbances. Strategy 10 is slightly better than 5. However, the difference
is not significant, but method 10 is much more complicated.

All things considered, when the auxiliary MPC controller based on a successively
linearised model is available, it may be successfully used for initialisation of nonlinear
MPC. Although much simpler, the method based on the part of the optimal solution
obtained at the previous sampling instant also gives excellent results. Unfortunately, quite
sophisticated methods based on a neural approximator are very disappointing.

In future research, it is worth trying to improve the initialisation methods based on
neural approximators. In particular, it would be necessary to reduce or eliminate the
fundamental weakness of approximator-based methods, which is the lack of robustness to
disturbances and process changes.
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