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Abstract: Rolling-element bearings play vital roles in the dynamic vibration performance of the whole
machinery. Hence, accurate modeling and assessment of the rolling-element bearing are beneficial
for the well understanding of the vibration response of rolling-element bearing. However, cage slip
is usually ignored in the traditional rolling-element bearing modeling methods, which has a direct
influence on the rotating speed and friction force of the rolling elements. To settle the modeling
problem of rolling-element bearing with cage slip, in this study, a nonlinear dynamic model with
multiple degrees of freedom of the roller bearing is established. The cage slip, the motion of each
roller, nonlinear contact, damping, and friction are taken into consideration. With the proposed
method, a nonlinear traction model is presented to describe the friction forces induced by cage slip.
Furthermore, both the friction force acting on rolling elements and the effects of cage slip on the
vibration response are investigated based on the established model. Some comparisons between the
proposed modeling method with cage slip and the classical method without cage slip are made. The
results show that the friction force applied to the balls increases with the cage slip, friction coefficient,
rotational speed, and radial load. A slight cage slip could be beneficial for reducing the vibration
energy of rolling-element bearing; however, it will result in more friction loss and impact components.

Keywords: rolling-element bearing; cage slip; friction force; dynamic modeling; vibration

1. Introduction

Rolling-element bearings play vital roles in dynamic vibration performance, running
stability, and service life of the whole machinery. It is of great significance to study the
underlying dynamic characteristics of rolling-element bearing for mechanical maintenance,
machine health monitoring, quality inspection, and design of rolling-element bearing [1].
Therefore, the accurate dynamic modeling of rolling-element bearings has attracted more
and more attention in the field of the mechanical industry. It can provide theoretical guid-
ance for the development of fault diagnosis techniques of rolling-element bearings [2,3].

Due to the special construction and functional principle of rolling-element bearing,
even for a perfect bearing, the vibration is inevitable under the excitation sources such as
varying compliance, radial clearance, and nonlinear contact relationship. The vibration
caused by varying compliance is normally termed as varying compliance (VC) vibration.
Many research works have been performed on the bearing VC vibration. For instance,
Sunnersjö [4] presented a lumped parameter model that considers the two degrees of
freedom (DOF) motion of the inner raceway based on the Hertzian contact theory to study
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the VC vibrations of rolling-element bearing. Zhang et al. [5] investigated the resonant
hysteresis of the VC vibrations for a rigid-rotor ball-bearing system using the harmonic
balance method and Floquet theory. Yang et al. [6] and Jin et al. [7] conducted, respectively,
an analytical study and an experimental study on the VC resonance of a rotor-bearing
system. They found that the varying compliance contact resonance presents soft spring
characteristics. Tomovic et al. [8] studied the effect of the number of rolling elements
and radial clearance on the vibration of a rigid rotor when the rolling-element bearing
is in the unloaded state. Xi et al. [9] presented a dynamic model for a spindle-bearing
system to investigate the vibration response of the system under vairous cutting forces and
rotating speeds.

Surface imperfections (e.g., waviness, roundness, off-size rolling elements, etc.) in-
evitably existed on the machined surfaces due to manufacturing errors, which are also
additional excitation sources to the bearing vibration [10]. Kankar et al. [11] presented
a dynamic analysis of a rigid rotor-bearing system with the consideration of the bearing
surface waviness. Dipen and Patel [12] established a dynamic model to study the vibration
responses of ball bearings with obvious raceway waviness. Liu et al. [13,14] introduced a
displacement excitation model to study the coupling errors including the waviness and
roundness of both raceways and balls. The effects of the order and amplitudes of the
coupling errors on the vibrations of ball bearings were studied. Yu et al. [15] proposed
an improved contact model between curved friction surfaces based on continuous length
scales and fractal theory.

The bearing vibration responses generated by the defect on the raceway have been
also widely studied, which are beneficial for bearing health monitoring. Singh et al. [16]
established a dynamic finite element model of a rolling-element bearing that has a localized
defect on the outer raceway. The generating mechanism of the dynamic contact loads
between raceways and rolling elements and the relationship between external bearing
vibration and the internal contact loads were explained. Li et al. [17] studied the dynamic
responses of an angular contact ball bearing with the consideration of a defect on the outer
raceway. The influences of some parameters on the internal contact load were investigated.
Shah and Patel [18] developed a dynamic model to predict the vibration response of
a ball bearing considering the masses of the shaft, raceways, ball, and housing. The
vibrations of dry and lubricated contact bearings with local defects on the raceways were
investigated. Liu et al. [19,20] proposed a revised time-varying displacement excitation
model, and the effects of localized defects and offset are modeled. Qin et al. [21] established
a nonlinear model for a high-speed ball bearing. The effects of time-dependent contact
angles between balls and raceways were studied. The fault excitation was presented by a
B-spline fitting curve.

Although there already exist a considerable number of studies on the vibration re-
sponse of rolling-element bearing, most of them determined the cage speed according
to pure-rolling assumptions, and the dynamic friction forces inside the bearing were ne-
glected. However, when the rolling element is in contact with raceways, a combination
of rolling and sliding motions occurs rather than a simple rolling motion [22]. Sawalhi
and Randall [23] defined the angular position of the rolling element considering slippage,
which was calculated based on the percentage variation in the mean impact frequency.
Niu et al. [24] performed an intensive study on ball passing frequencies of rolling-element
bearing, and the effects of three-dimensional motions and localize defects were included.
Tu et al. [25,26] established a dynamic model to study the impacts between the cage and
rolling elements when the bearing rotating speed fluctuates. Liu et al. [27] introduced a
new model of a rolling-element bearing that can be used to study skidding characteristics.
The novelty of this study is that the bearing cage is discretized so that its flexibility on the
skidding can be modeled. Wang et al. [28] studied the skidding characteristics of angular
contact ball bearing at high speed considering the dynamic contact between raceways and
balls. It was found that the skidding behavior is significantly altered when an axial load
is applied since the orbital and rotation speeds of balls are changed. Han and Chu [29]
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established a three-dimensional model to study bearing skidding when both the radial
and axial loads are applied to it. Han et al. [30] built another nonlinear dynamic model
for skidding behavior with the influences of radial clearance and discontinuous contact
considered. Selvaraj and Marappan [31] presented an experimental study to study the
influences of some parameters (shaft speed, radial load, oil viscosity, number of rollers,
etc.) on cage slip for various operating conditions. A non-dimensional parameter was
introduced to predict the cage slip under any operating condition. To avoid breaking
bearing structure while measuring the bearing cage slip, Zhan et al. [32] proposed a novel
non-contact method to mesaure the cage slip using a magnetic field detection sensor. An
adaptive de-noised method was used to increase the signal to noise ratio of the weak signal
from the sensor.

From the above survey, it is concluded that most studies investigated the vibration
responses of the rolling-element bearing via dynamic modeling with the consideration
of numeral factors (e.g., varying compliance, surface imperfections, and localized defect)
based on pure-rolling assumptions. There are some investigations considering the cage
slip, which mainly concentrate on the effects of cage slip on the cage speed fluctuation,
ball-cage impact frequency, and ball passing frequencies. There are a few experimental
works focusing on measuring the cage slip under various operating conditions. As far as
we know, variations in friction forces applied to the rolling element due to cage slip were
not thoroughly studied. The dynamic responses of rolling-element bearings with various
cage slip values have not been investigated. These constitute the major contribution of this
study to the literature.

The purpose of this study is to investigate the effects of cage slip on the dynamic
vibration response of rolling-element bearing. Therefore, a nonlinear dynamic model of
rolling-element bearing is established considering the cage slip and the motions of rolling
elements. This model includes nonlinear contact, damping, and friction forces. A nonlinear
traction model is adopted to describe the friction forces induced by cage slip. The fourth-
order Runge–Kutta method is used to solve the proposed model, and the bearing vibration
response is simulated. The friction forces acting on the rolling element and the effects of
cage slip on bearing vibration response are investigated.

2. Cage Slip Formulation and Friction Force Calculation

In the radial bearing applications of relatively low speed and sufficiently large load,
non-sliding contacts between rolling elements and the raceways are assured. In these
situations, the orbital speed of rolling elements, as well as the rotating speed of cage speed,
is calculated by simple kinematics. For instance, when the outer raceway is fixed, the
rotating speed of the cage is [33]

ωct =
1
2
(1 − D

dm
cosα)ωs (1)

where ωs is the rotating speed of the inner raceway; D denotes ball diameter; dm is the
bearing pitch diameter; α is the contact angle.

However, when the rolling-element bearing operates at a light load and a high speed,
the centrifugal load of the rolling element aroused by the high speed increases to a level that
cannot be neglected. The contact force between a rolling element and the inner raceway
tends to decrease caused by the light load condition. Due to the centrifugal load, the
radial clearance of rolling-element bearing increases, and the number of rolling elements
contacting with the inner raceway reduces. The centrifugal load reaches the load between
the rolling element and inner raceway under these situations. Therefore, the frictional drag
forces at the outer raceway will exceed the frictional driving forces at the inner raceway,
and the cage slip (also known as the skidding phenomenon) occurs. The cage speed will
decrease to achieve a new equilibrium of drag and driving forces.
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Cage slip is an important parameter to describe the skidding degree, which is given by

sc = (1 − ωca/ωct)× 100% (2)

where ωca denotes the actual value of cage speed. The larger the cage slip, the more severe
the bearing skidding.

Therefore, the actual cage speed can be derived through Equation (2) as follows:

ωca = (1 − sc/100%)ωct (3)

Once skidding occurs during bearing operation, the friction changes from rolling
friction to sliding friction, as shown in Figure 1. When high sliding speeds develop due
to cage slip, scuffing can be reached [34]. The sliding friction force is much larger and
has an important effect on the vibration responses of the rolling-element bearing. It has a
close relationship with the contact force and friction coefficient. To calculate the friction
forces applied to the jth ball, sliding velocities at the contact surfaces of the inner and
outer raceways are calculated first. The sliding velocities depend on the motions of bearing
components. The velocities of contact points on each contact body can be determined
according to the kinematical relationship as shown in Figure 2.

vii,j =
1
2

ωsdm(1 −
D
dm

cosα) (4)

vib,j =
1
2

ωcadm(1 −
D
dm

cosα) +
1
2

ωb,jDcosα (5)

vob,j =
1
2

ωcadm(1 +
D
dm

cosα)− 1
2

ωb,jDcosα (6)

where ωb,j is the rotational speed of the jth ball; vii,j is the linear velocity of the inner
raceway at the contact point with the jth ball; vib,j and vob,j are the linear velocities of the jth
ball at the contact points with the inner raceway and outer raceway, respectively.
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Figure 1. Sliding friction force due to skidding.

Thus, the sliding velocities at the contact surfaces of the inner and outer raceways are
now given by

∆vi,j = vii,j − vib,j =
1
2
(ωs − ωca)dm(1 −

D
dm

cosα)− 1
2

ωb,jDcosα (7)

∆vo,j = vob,j =
1
2

ωcadm(1 +
D
dm

cosα)− 1
2

ωb,jDcosα (8)

The traction behavior of bearing lubricant is quite complex that involves the indi-
vidual lubricant property, elastohydrodynamic (EHD) features, thermal effect, and the
viscosity–pressure–temperature relationship in the high-pressure contact zone. Gupta
presented an extensive summary on this subject in his book [35]. Bălan et al. [36] and
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Olaru et al. [37] introduced a theoretical model and an experimental methodology to deter-
mine the traction torque in a modified thrust ball bearing. Since the motivation of this study
was to investigate the influence of cage slip on the dynamic responses of rolling elements, a
well-known simplified lubricant coefficient-slip relationship was adopted. Consideration
of a sophisticated lubricant traction model could be one of our future research directions.

Figure 3 shows the simplified traction model in which the friction coefficient of the
contact between rolling elements and raceways depends only on the sliding velocity. The
friction coefficient increases linearly with the sliding velocity and remains unchanged
(i.e., µm) beyond a certain value of sliding velocity (i.e., ∆vm). This traction model was
used by many researchers to investigate the dynamic characteristics of rolling-element
bearing [24,35,38,39]. It needs to be noted that the friction coefficient used in this model is
independent of velocity, pressure, or temperature. However, as affirmed by Guta [35], this
relationship between the friction and sliding velocity is justified for a solid lubricant, as
considered in this study.
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Fout,j = −µQout,j
∆vo,j∣∣∆vo,j

∣∣ (10)

where Qin,j and Qout,j are the contact force between the jth ball and the inner raceway, and
the contact force between the jth ball and the outer raceway, respectively.

3. Theoretical Formulation of the Dynamic Model

In this study, the ball bearing under investigation was modeled by a lumped parameter
system. A dynamic model was built to study the influence of cage slip on bearing vibration,
as shown in Figure 4. For a radially loaded ball bearing, some effective assumptions were
made as follows:

1. Only plane motions of balls, cage, and raceways of the bearing were considered;
2. The balls were considered as mass points, and only the radial vibrations of the balls

were taken into account;
3. The raceways were treated as rigid bodies, except the contact areas. Nonlinear contact

deformations were considered at the contact zones between raceways and balls, which
are consistent with the Hertz elastic contact theory;

4. The role of the cage was to maintain a constant spacing between the rolling elements;
The cage was assumed to be rigid and maintained constant spacing between the balls.
The cage speed was constant, and the interactions between the cage and balls were
neglected;

5. The outer raceway was supported by a fixed housing, and the inner raceway was
firmly fitted to the shaft.
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3.1. Deformations and Contact Forces of Rolling Elements

To calculate the contact deformations between the jth ball and raceways, the radial
displacement of the inner raceway at the jth ball position was first determined. Figure 5
shows the positions of the inner raceway before and after loading. The displacements of
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the inner raceway along the x, y directions are xs, ys, respectively. The radial displacement
of the inner raceway at the jth ball position is

dr,j = xs cos θj + ys sin θj (11)
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The angular position θj of the jth ball is defined as

θj = (j − 1)
2π

Z
+ ωcat (12)

where Z indicates the number of balls.
The contact deformations between the jth ball and raceways depend on their rel-

ative motion and internal radial clearance of ball bearing. For the jth ball, the contact
deformations are given as

δin,j = λj(dr,j − dbr,j −
Pd
2
) (13)

δout, j = λj(dbr,j −
Pd
2
) (14)

where dbr,j denotes the radial displacement of the jth ball; Pd refers to the radial clearance
of ball bearing. Contact deformation is not allowed to be below zero at any time. Thus a
contact coefficient λj is defined, which can be determined by

λj =

{
1 δin,j, δout,j > 0
0 δin,j, δout,j ≤ 0

(15)

The contact forces are associated with contact deformations. The Hertzian contact
forces Qin,j and Qout,j between the jth ball and the inner and outer raceways are calculated by

Qin,j = kiδ
3/2
in,j (16)

Qout,j = koδ3/2
out,j (17)
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where ki and ko are contact stiffness coefficients between balls and raceways, which depend
on the curvatures of the ball and raceways. Detailed descriptions about the calculation of
the contact stiffness coefficients can be referred to ref. [33].

3.2. Governing Equations of Motion

Once the contact forces and friction forces between balls and raceways were obtained,
the dynamic differential equations of bearing components can be established. For the inner
raceway, the sum of contact forces in the x and y directions are given by

Nin,x =
Z

∑
j=1

Qin,j cos θj (18)

Nin,y =
Z

∑
j=1

Qin,j sin θj (19)

The sum of friction forces in the x and y directions are written as

Fin,x =
Z

∑
j=1

Fin,j sin θj (20)

Fin,y =
Z

∑
j=1

Fin,j cos θj (21)

Therefore, the translational motions of the inner raceways in the x and y directions are
defined by Newton’s law

mi
..
xs + c

.
xs + Nin,x − Fin,x = W (22)

mi
..
ys + c

.
ys + Nin,y − Fin,y = 0 (23)

where mi is the mass of the inner raceway (including the mass of shaft); c denotes the
supporting damping coefficient; W refers to the radial load of bearing; Z means the number
of balls.

For the jth ball, its dynamic motion in the radial direction is given as

mr
..
dbr,j + c

.
dbr,j +

(
Qout,j − Qin,j

)
= 0 j = 1, 2, 3, . . . , Z (24)

where mr is the mass of the ball.
The rotational motion of the ball is described as

Jr
..
θr,j −

1
2
(

Fin,j + Fout,j
)

D = 0 j = 1, 2, 3, . . . , Z (25)

where Jr is the moment of inertia of the ball.

4. Simulation Results and Discussion

The dynamic model described above includes (2Nb + 2) differential equations for
the bearing motion. The fourth-order Runge–Kutta algorithm with a constant time step
(∆t = 1 × 10−5 s) was used to solve these equations. The solution process is shown in
Figure 6. The bearing under investigation was a deep groove ball bearing (SKF 6304), and
the parameters are given in Table 1. The initial displacements and velocities of the inner
raceway were set to zero. Ball rotational speed obtained by simple kinematics was taken as
its initial value.
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Table 1. Values of some parameters for the deep groove ball bearing.

Parameter Value

Outer raceway diameter (do) 45.538 mm
Inner raceway diameter (di) 26.475 mm
Pitch diameter (dm) 36 mm
Ball diameter (D) 9.525 mm
Number of balls (Z) 7
Radial clearance (Pd) 15 µm
Contact angle (α) 0◦

Modulus of elasticity of bearing steel (E) 2.07 × 1011 Pa
Poisson’s ratio of bearing steel (ν) 0.3
Mass of the inner raceway (mi) 0.4 kg
Moment of inertia of ball (Jr) 3.18 × 10−8 kg·m2

Damping coefficient (c) 350 Ns/m

4.1. Model Validation

In this section, the feasibility of the proposed dynamic model is verified by comparing
simulated responses yielded by the proposed model with those obtained by Sunnersjo’s
model [4]. The dynamic model developed by Sunnersjo is a representative model to study
bearing vibration. It considers the contact forces between balls and raceways based on pure
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rolling assumption. In order to make the models comparable, a case without cage slip was
chosen for comparison.

Figure 7a illustrates the acceleration of the inner raceway in the x-direction obtained
by Sunnersjo’s model at 2000 rpm rotating speed and 2000 N radial load. The simulated
acceleration yield by the proposed model is shown in Figure 7b. It is found that the
simulated response from the proposed model is consistent with those from Sunnersjo’s
model in terms of the time waveform shape and the amplitudes. Table 2 compares the
statistical indicators including peak-to-peak value (PTP), root mean square (RMS), and
kurtosis value of the response from these two models. The error between the two models is
small, which verifies the proposed model.
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Figure 7. Acceleration of the inner raceway in the x-direction: (a) simulated vibration response by
the Sunnersjo’s model; (b) simulated vibration response by the proposed model; (c) comparison of
the two models in one period.

Table 2. Comparison in terms of statistical indicators of acceleration response.

X-Direction

PTP (m/s2) RMS (m/s2) Kurtosis

The proposed model 5.53 0.61 10.05
The Sunnersjo’s model 5.84 0.65 9.79

Relative error (%) 5.31 6.15 2.66

Moreover, it is shown in Figure 7c that there are some discrepancies between the
acceleration response obtained by the two models. The amplitude of the acceleration
yielded by the proposed model is smaller than that of Sunnersjo’s model. This may be
caused by the friction considered in the model. According to Equations (9) and (10), relative
slip between two contact surfaces generates friction force. Even under the situation of
zero cage slip, there is still a slight sliding velocity between the rolling element and the



Energies 2022, 15, 2396 11 of 16

raceways. This friction makes the waveform shift to the right, compared with the waveform
of Sunnersjo’s model.

4.2. Friction Force Acting on the Ball Due to Cage Slip

The effect of cage slip on the acceleration of the inner raceway is dominated by the
friction forces between the inner raceway and balls. The friction force is mainly dependent
on the contact force, friction coefficient, and sliding velocity at the contact surface. Figure 8
shows the friction force applied to the first ball changing with its angular position. It can
be observed that the friction force applied to the ball mainly appears in the loaded zone,
and the waveform is similar to that of the load distribution of bearing. The maximum
values of the friction force under different friction coefficients and cage slips are shown in
Figure 9. As shown in Figure 9, when the friction coefficient is fixed, the maximum value
of the friction force increases with the cage slip. The reason for this phenomenon is that
the sliding velocity increases with the cage slip, and the friction coefficient also increases,
as shown in Figure 4. Moreover, it can also be seen that when the cage slip is fixed, the
maximum value of the friction force increases with the friction coefficient.
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Figure 8. Friction force acting on the first ball versus angular position (ωs = 2000 rpm, W = 2000 N,
sc = 2%, µm = 0.05).
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Figure 9. Effects of cage slip under different friction coefficients (ωs = 2000 rpm, W = 2000 N).

Figure 10 shows the maximum values of the friction forces under different rotational
speeds of inner raceway and radial loads. It is found that the maximum friction force
increases with the radial load. This is because the contact force applied to the ball increases
with the radial load. In addition, the maximum friction force increases with the inner
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raceway speed. This can be attributed to the large sliding velocity when the raceway speed
is high, as shown in equation (Equation (7)).
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4.3. Dynamic Response Analysis

With the proposed model, the bearing vibration response was simulated and analyzed.
The acceleration responses and their spectrums under different cage slips are illustrated in
Figure 11. The most obvious change caused by the cage slip is the time interval between
two adjacent cycles or the ball passing the outer raceway frequency (fbpo). The ball passing
the outer raceway frequency under the situation of no cage slip (85.5 Hz) is equal to the
value determined by the calculation method in ref. [33]. The ball passing of the outer
raceway frequency decreases with the cage slip. The correlation between the ball passing
the outer raceway frequency and cage slip meets the following rule:

fbpo =
1
2
(1 − sc/100%)(1 − D

dm
cos α)ωsZ (26)
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The effects of the rotational speed, the radial load, and the friction coefficient and
cage slip on the bearing vibration response are investigated in this section. Three com-
monly used statistical indicators such as root mean square (RMS), peak-to-peak value
(PTP), and kurtosis values were adopted to study the effects of cage slips on the bearing
vibration response.
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Figure 12 shows the statistical indicators of the acceleration response in the x-direction
of the inner raceway under different cage slips and friction coefficients when the load W
and rotating speed ωs are 2000 N and 2000 rpm, respectively. It can be found that the RMS
and PTP values of acceleration both decrease with the cage slip. This is probably because
the friction forces applied to the inner raceway caused by the cage slip are in the opposite
direction of the motion of the inner raceway. The friction forces could offset a portion of the
contact forces and weaken the vibration energy. The vibration energy of the inner raceway
decreases with the cage slip because of the friction forces acting on the inner raceway
increase with the cage slip. This indicates that a small amount of cage slip could be helpful
for the bearing vibration response. Moreover, when the cage slip is fixed, the RMS and PTP
values of acceleration both increase with the friction coefficient when the friction is large
enough, which means that the vibration energy increases with the friction coefficient. In
addition, the kurtosis value increases with the cage slip and friction coefficient. The reason
is that the impact components of acceleration response are induced by the friction forces.
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The statistical indicators of the acceleration in the x-direction of the inner raceway
under different rotational speeds and radial loads are illustrated in Figure 13, when the
cage slip sc and the friction coefficient µm are 2% and 0.01, respectively. It can be found that
the RMS and PTP values of acceleration response both increase with rotational speeds. This
can be also attributed to the friction forces, which increase with the rotational speeds. This
leads one to infer that the vibration energy of the inner raceway increases with the inner
raceway speed. Moreover, the RMS and PTP values of acceleration response increase with
the growth of radial load at higher speeds, while they do not change significantly at lower
speeds. In addition, the kurtosis value decreases when the inner raceway speed increases,
and the change in the kurtosis value that occurs with the radial load is not obvious.
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5. Conclusions

Aiming to settle the modeling problem of rolling-element bearing with cage slip, we
established a nonlinear dynamic model with multiple degrees of freedom of rolling-element
bearing, along with nonlinear contact, damping, and friction. The established model was
verified by comparison with Sunnersjo’s model under the situation of no cage slip. The
friction force due to cage slip and the effect of cage slip on bearing vibration response were
studied. The main conclusions of this research are drawn as follows:

(1) The friction force applied to the ball mainly appeared in the loaded zone. The peak
value of the friction force increased with the cage slip, radial load, friction coefficient,
and rotational speed;

(2) The RMS and PTP values of acceleration both decreased with the cage slip and
increased with the friction coefficient. A minor cage slip was beneficial to the bearing
vibration response. The kurtosis value increased with the cage slip and friction
coefficient;

(3) When considering the cage slip, the RMS and PTP values of acceleration increased
with the inner raceway speed and increased with the radial load only at high speeds.
The kurtosis value decreased with the inner raceway speed. The variation trend of
the kurtosis value with the radial load was not obvious.
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